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Structure of Confined Yukawa System (Dusty Plasma)
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As a model of dusty plasmas, the structure of a Yukawa system confined in a one-dimensional
external field is analyzed by molecular dynamics simulations and theoretical approaches. Particles form
clear thin layers at low temperatures and the structure changes discretely with system parameters. The
number and positions of layers and other characteristics are obtained as functions of dimensionless
parameters. A simple sheet (shell) model with intralayer cohesive energy is shown to reproduce results
of numerical experiments to a good accuracy. [S0031-9007(97)02964-5]

PACS numbers: 52.25.Wz, 52.65.—y

Dusty plasmas have recently been attracting much inthe total effect of external forces is expressed by a simple
terest from the viewpoints of both basic plasma physic®ne-dimensional confining potential
and plasma applications. The formation of dust crystals «
may be a typical example of interesting behaviors of dusty Vert(2) = = 22 (2)
plasmas [1—4], and such dusty systems may serve as one 2

of the ideal materials for experiments on classical fluidsrpe uniformity in thexy plane may be satisfied around
and so_lids [5]. In this Letter, we describe some results ofne center of the experimental apparatus. When the ex-
numerical experiments on a dusty plasma [6] and preseqgnga| forces, for example, the gravitation and the electro-
a simple and successful theoretical model. _ static force, balance with each other in the plane 0, we

The interaction potential between macroscopic dust Paimay simulate the total external potential neas 0 by the
ticles depends on their own physical parameters and thosfrapolic form in the first approximation [14]. The uni-
Qf surrounding plasmas. There may e>'<istvarious pc.)ssibiliform Yukawa system has long been extensively studied
ties for these parameters and accordingly for the interagyng its phase diagram and other statistical properties have
tion potential. In order to understand the behavior of dUSt)éIready been analyzed [15]. We show structures and tran-
plasmas in complicated situations, however, the results fa§jtions between structures of the confined finite Yukawa
simple and basic cases are indispensable. As one of th0§9stem at low temperatures.
cases, we assume that macroscopic particles are interactingrne classical Yukawa system in thermal equilibrium at
via the isotropic Yukawa (Debye-Hiickel) potential [7]  the temperatur@ is characterized by two independent di-

(r) = q_2 ) 1 mensionless parameters. With approp.riately defined mean
vir) =, expl—«r). (1) distances, these parameters may be given by

Here ¢ is the charge (the same for all particles)the g _

distance, and/x the screening length. I'= aksT and ¢ = ka. (3)

It has been shown [8-11] that the ion flow around i i
a particle induces a wake field which can be viewed" the external field (2), we have another independent
as composed of (1) [12] and an oscillating anisotropicd'mens'onless parameter related to th_e ratio of the ext_ernal
part and the latter can align particles vertically. BeingPotential to thermal energy®/ksT. Since our system is
dependent on the Mach number, the anisotropic part ma?onflned by_a force along thedirection, the.mean distance
vary according to experimental apparatus and conditiondnay be defined by, = 1/7a?, whereN; is the surface
and there are also cases where one observes bcc and fé¢mber density in they plane. _
(and hcp) structures without direct alignments [2]. We N what follows, we are mainly concerned with the
may have situations where the layered structure is mainlgtructure at low temperatures. Since bbtandka’/ksT
determined by the isotropic part, and the correlation ofliverge in this case, we adogtand the ratio

particle distribution in adjacent layers is determined by the 712 ka? /kgT k
anisotropic part. The Yukawa system seems to be still =, 2 aksT = AmalN32 4)
serving as a reference frame for experiments [5,13] and its 9 B Vs

analysis also clarifies the role of the anisotropic part byas two independent parameters. The extra factor is added
identifying what kinds of structures can or cannot resultfor the sake of consistency with previous works with
from (1). x = 0 or the one-component plasma (OCP) [16,17].

In addition to mutual interactions, dust particles are un- In order to simulate the Yukawa system with infinite ex-
der the effect of various external forces such as gravitatiortensions in thery plane, we impose the periodic boundary
electrostatic force, ion drug, and so on. We assume thatonditions. Since the shape of the periodicity sometimes
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FIG. 1. Positions of layers fof = 1. Results of simulation FIG. 2. Domains ofN (= 1,2,...) layer structure. Symbols

(circles) and theory (lines). (Positions are symmetrical withare boundaries determined by simulationsfo= 1.8, 1.4, 1.0,

respect toz = 0.) Inset: Orbits forn = 0.002 at high " = 0.804, 0.322, and 0.0322 and thick lines are fittings of the form

100, top) and low ' = 3000, bottom) temperatures. n. = aexp—B¢). (The small circle is the boundary of 6
and 7 for¢é = 0.0322.) Thin lines are boundaries given by
our theory. Arrows are the first four boundaries #r= 0 in

strongly influences the distribution, especially its symme- Ref. [22].

try, of particles, we take into account the deformation of
fundamental vectors of periodicity as in the case of OCRymetry of confinement at low enough temperatures and
[18] following Ref. [19], keeping the area of the unit cell the number of layers and the total thickness change dis-
in thexy plane constant [18]. We also introduce a virtual cretely with the system parameter [16,17,21,22]. Our re-
time and follow the dynamics of a virtual system to simu-sults for the Yukawa system indicate that these properties
late the canonical ensemble [20]. are common for Coulomb and Coulomb-like systems.

Molecular dynamics simulations have been performed In OCP, the spacings and populations for all layers are
mainly with 1024 independent particles. Starting fromalmost equal and the spacings increase with the decrease of
states at sufficiently higif where particles form a cloud 7 [17,21]. In our Yukawa system just after the appearance
aroundz = 0, we slowly reducel’. With the decrease of a new layer, populations are nearly equal and outer
of T, microscopic structures appear in the cloud. At suf-layers have larger spacings (typically by 10%). With
ficiently low temperatures, particles organize themselvefurther decrease of, outer layers become less populated
into well-defined thin layers as shown in the inset of Fig. 1,(by 10% to 20%) and relative differences in spacings
which plots the positions of layers as a functionpfin ~ become smaller, all the spacings being expanded. Their
the case ot = 1. The number of layers at low tempera- values return to the initial state when another new layer
turesN" depends o andn; N = N (§, 7). InFig. 2,  appears and similar changes are repeated.
we show boundaries of domains of the parameters where The critical values ofy for the transition’N” — N +
we have the states dN layers with’N" = 1,2,.... In 1, 5.(N), is a function ofé. In Fig. 2, we observe that
Fig. 3, we plot the total thickness of our system alang 7.(N') ~ a(N)exd —B(IN)&]for & = 0.3. Values of
for several values of.

The external potentiad.(z) tries to confine particles

in the planez = 0. In the limit of strong confinement or 25 ey

n > 1, particles are thus forced to be in the plane 0 o \\

and N (¢,n) = 1. Mutual repulsions between patrticles, 20 - "h v

on the other hand, tend to increase the thickness of particle D AN
distribution and the thickness increases whebecomes N '94\,% \
smaller. We here note that this tendency manifests itself & D‘p %‘b\ )

as the appearance of a new layer with a finite population, T '9%% O
analogously to the behavior of the order parameter in the . ‘I:i

first order phase transitions. In Figs. 1 and 3, we also sk ~%

observe that, whem decreases, the thickness increases

with discontinuities corresponding to the stepwise changes o b

in 2N'. The number of layers and the thickness are thus 0.0001 0.001

determined as a result of the competition between the

confining force and mutual repulsion. FIG. 3. Total thickness. Symbols are results of simulations.
In the case of OCP, it has been shown that a confineghin and thick lines are those of the continuum model (6) and

finite system forms thin layers in accordance with the gesheet model with cohesive energy (8), respectively.
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and hcp lattices appear in our system. Correspondence
with characteristic parameters, however, is not yet com-
pletely clear. It seems that structures with vertical align-
ments between adjacent layers do not appear. This may
indicate the role of anisotropic interaction in vertical align-
ments in real experiments.

We now make theoretical analyses along the lines of the
shell model which have been successful for OCP [16,17].
Starting from the continuum model, we take into account
the discreteness in two steps.

In the one-dimensional potential fietd,(z), the total
potential energy (per particle) of the uniform distribution

N with thicknes2d is given by

FIG. 4. Behavior of coefficientax(N') and B8(N'). Solid 1 T qus

. Y . — g2 A
lines are0.9 N ~!'7 and 1.4N %7, respectively. 6 kd” + 2 K342

One might expect that the thickness of our system is es-
and B(N') ~ 1.4N*7, respectively, as shown in Fig. 4. timated by the value o2d which minimizes this expres-

Since all layers have approximately equal populationsS'On' In Fig. 3, optimum values did/a are shown by

) . . , X thin lines. Whené < 1, our results fo2d/a are in good
the mean distance in the layer is approximately given b greement with those of numerical experiments. For finite
b = N'24. Therefore the ratio of the mutual repulsion '

and confining force ab is aiven b values of &, however, this model largely overestimates
9 9 y 2d/a. In (6), particles are treated as continuum and the
kb? effects of discreteness or the correlation between particle
(q2/b) exp(—kb) positions are completely neglected. The above result in-
. ) ) _dicates that we have to take them into account.
If the transitions occur when this ratio reaches a certain The effects of discreteness appear as (i) the formation
-3/2 ; ) " .
Va'ﬁ*/ez’ we may havea(N') = N ,/ and B(N') «  of Jayers perpendicular to theaxis and (ii) the formation
N/%. Experimental behavior of;. indicates that this  of |attice structures in each layer. Let us first assume that
picture works as a first estimation. our system is composed of thin planar sheets and take
Along with the decrease of in the range between the (j) intg account. Suppose we ha®' thin planar sheets
appearance of a new layer and that of another new layegs 5\ rface number densities atz = z;,i = 1,2,... N,
the symmetry of distribution of particles in each layer ré-andN, = 3, n;. When particles are distributed uniformly

peats alternative _changes from.that of the square lattice t8 each layer, the total potential energy per particle is
the triangular lattice. The relation between the mterlayergi\,en by

distance and intralayer symmetry is shown in Fig. 5. This

kind of transition may be analogous to the case of OCP [22] 1 Z N2 T q_2

and colloidal suspensions confined between glass platesy N, < N, «

[23], where systematic changes of the symmetry with an ‘ ‘

increase or decrease of the number of layers have been ofhen we minimize (7) with respect tg andz; for given

served. Three-dimensionally, structures similar to bcc, fccvalues of Ny and k, experimental thickness is approxi-
mately reproduced, ifN is appropriately assumed. The

[exp(—2kd) — 1 + 2kd]. (6)

« and g are approximately given by (N') ~ 0.9 N ~17

= 47 PNy expN2E) . (5)

Zninj exp(—«lzi — zil). (7)
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FIG. 5. Intralayer symmetry and interlayer spacidy b

being mean distance in layer.

FIG. 6. Total energy in sheet model with cohesive energy.
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global minimum, however, is given by the state of infinite tween intersheet interaction energy and intrasheet cohesive

sheetd /N’ — =) as in the case of OCP [16]. energy which is lower for larger density in each sheet and
In order to include (ii), we define the cohesive energyfavors smaller number of sheets. The cohesive energy per

as the difference between the interaction energy with corparticle for a sheet of the surface densityis expressed

relation and that of uniform distribution. Since the effectby a function ofKni‘l/2 aSq2n}/2ecoh(Kni‘1/2). We have

of discreteness in they plane leads to a negative cohe- calculated values of..,(x) for the triangular and square

sive energy in each sheet, we have a possibility to stabilizkttices.

the state of finite number of sheets: There is a tradeoff pe- The total potential energy is thus given by

1 ni . 5 T q* ni 5 1/2 -1/2
E) Z Flkzi + E o le:ninj exp(—«lz — z;l) + Z FLC] n;'econ(kn; 7). (8)

When we minimize (8) with respect to all parameters #or (London) 379, 806 (1996).

given N, andk, we have the results which reproduce the [6] Some earlier results have been given in H. Totsuij,
transitions between structures. An example is shown in  T. Kishimoto, Y. Inoue, C. Totsuji, and S. Nara, Phys.
Fig. 6. The results for positions, critical values of tran- _ Lett. A 221, 215 (1996).

sitions, and thickness are given by solid lines in Figs. 1, [/ H. Ikezi, Phys. Fluid29, 1764 (1986).

2. and 3. Values Oécoh(Kn;l/z) for both triangular and [8] S.V. Vladimirov and M. Nambu, Phys. Rev. &2, 2172

. . (1995).
square lattices give almost the same results. Though val-[g] F. Melandsg and J. Goree, Phys. Re\6E 5312 (1995)

ues ofr. are somewhatlsmall, our simple model SUCCESSr ) 5 v, Viadimirov and O. Ishihara, Phys. Plasns444
fully reproduces the main features of structure of Yukawa ~ (1996): O. Ishihara and S.V. Viadimirov, Phys. Plasmas
system in external fields at low temperatures. 4, 69 (1997).

The effect of discreteness also appears as interlaygri] A. Melzer, V.A. Schweigert, I.V. Schweigert, A. Ho-
correlation in the distributions of particles neglected in (8). mann, S. Peters, and A. Piel, Phys. Rev.5E R46
This effect is closely connected with the alternate changes  (1996); V.A. Schweigert, 1.V. Schweigert, A. Melzer,
in the intralayer symmetries shown in Fig. 5 and may also  A. Homann, and A. Piel, Phys. Rev. 3, 4155 (1996).
be related to systematic deviationsmffrom simulations. [12] We have the Debye-Hiickel screening also in nonneutral
We may conclude, however, the overall behavior of the ~ Plasmas as shown in R.C. Davidsdhysics of Nonneu-
confined Yukawa system is reproduced by our sheet (shell) 8! Plasmas(Addison-Wesley Publishing Company, Red-
model with intralayer cohesive energy. wood City, California, 1990), Chap. 3.

; 13] A. Melzer, A. Homann, and A. Piel, Phys. Rev. 33,
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