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As a model of dusty plasmas, the structure of a Yukawa system confined in a one-dimensional
external field is analyzed by molecular dynamics simulations and theoretical approaches. Particles form
clear thin layers at low temperatures and the structure changes discretely with system parameters. The
number and positions of layers and other characteristics are obtained as functions of dimensionless
parameters. A simple sheet (shell) model with intralayer cohesive energy is shown to reproduce results
of numerical experiments to a good accuracy. [S0031-9007(97)02964-5]

PACS numbers: 52.25.Wz, 52.65.–y
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Dusty plasmas have recently been attracting much
terest from the viewpoints of both basic plasma physi
and plasma applications. The formation of dust crysta
may be a typical example of interesting behaviors of dus
plasmas [1–4], and such dusty systems may serve as
of the ideal materials for experiments on classical fluid
and solids [5]. In this Letter, we describe some results
numerical experiments on a dusty plasma [6] and pres
a simple and successful theoretical model.

The interaction potential between macroscopic dust p
ticles depends on their own physical parameters and th
of surrounding plasmas. There may exist various possib
ties for these parameters and accordingly for the intera
tion potential. In order to understand the behavior of dus
plasmas in complicated situations, however, the results
simple and basic cases are indispensable. As one of th
cases, we assume that macroscopic particles are interac
via the isotropic Yukawa (Debye-Hückel) potential [7]

ysrd ­
q2

r
exps2krd . (1)

Here q is the charge (the same for all particles),r the
distance, and1yk the screening length.

It has been shown [8–11] that the ion flow aroun
a particle induces a wake field which can be viewe
as composed of (1) [12] and an oscillating anisotrop
part and the latter can align particles vertically. Bein
dependent on the Mach number, the anisotropic part m
vary according to experimental apparatus and conditio
and there are also cases where one observes bcc and
(and hcp) structures without direct alignments [2]. W
may have situations where the layered structure is mai
determined by the isotropic part, and the correlation
particle distribution in adjacent layers is determined by th
anisotropic part. The Yukawa system seems to be s
serving as a reference frame for experiments [5,13] and
analysis also clarifies the role of the anisotropic part b
identifying what kinds of structures can or cannot resu
from (1).

In addition to mutual interactions, dust particles are u
der the effect of various external forces such as gravitatio
electrostatic force, ion drug, and so on. We assume t
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the total effect of external forces is expressed by a simp
one-dimensional confining potential

yextszd ­
k
2

z2. (2)

The uniformity in thexy plane may be satisfied around
the center of the experimental apparatus. When the
ternal forces, for example, the gravitation and the electr
static force, balance with each other in the planez ­ 0, we
may simulate the total external potential nearz ­ 0 by the
parabolic form in the first approximation [14]. The uni
form Yukawa system has long been extensively studi
and its phase diagram and other statistical properties h
already been analyzed [15]. We show structures and tr
sitions between structures of the confined finite Yukaw
system at low temperatures.

The classical Yukawa system in thermal equilibrium
the temperatureT is characterized by two independent d
mensionless parameters. With appropriately defined me
distancea, these parameters may be given by

G ­
q2

akBT
and j ­ ka . (3)

In the external field (2), we have another independe
dimensionless parameter related to the ratio of the exter
potential to thermal energyka2ykBT . Since our system is
confined by a force along thez direction, the mean distance
may be defined byNs ­ 1ypa2, whereNs is the surface
number density in thexy plane.

In what follows, we are mainly concerned with th
structure at low temperatures. Since bothG andka2ykBT
diverge in this case, we adoptj and the ratio

h ­
p1y2

4
ka2ykBT
q2yakBT

­
k

4pq2N3y2
S

(4)

as two independent parameters. The extra factor is ad
for the sake of consistency with previous works wit
k ­ 0 or the one-component plasma (OCP) [16,17].

In order to simulate the Yukawa system with infinite ex
tensions in thexy plane, we impose the periodic boundar
conditions. Since the shape of the periodicity sometim
© 1997 The American Physical Society 3113
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FIG. 1. Positions of layers forj ­ 1. Results of simulation
(circles) and theory (lines). (Positions are symmetrical wi
respect toz ­ 0.) Inset: Orbits forh ­ 0.002 at high (G ­
100, top) and low (G ­ 3000, bottom) temperatures.

strongly influences the distribution, especially its symm
try, of particles, we take into account the deformation
fundamental vectors of periodicity as in the case of OC
[18] following Ref. [19], keeping the area of the unit ce
in thexy plane constant [18]. We also introduce a virtu
time and follow the dynamics of a virtual system to simu
late the canonical ensemble [20].

Molecular dynamics simulations have been perform
mainly with 1024 independent particles. Starting fro
states at sufficiently highT where particles form a cloud
aroundz ­ 0, we slowly reduceT . With the decrease
of T , microscopic structures appear in the cloud. At su
ficiently low temperatures, particles organize themselv
into well-defined thin layers as shown in the inset of Fig.
which plots the positions of layers as a function ofh in
the case ofj ­ 1. The number of layers at low tempera
turesN depends onj andh; N ­ N sj, hd. In Fig. 2,
we show boundaries of domains of the parameters wh
we have the states ofN layers withN ­ 1, 2, . . . . In
Fig. 3, we plot the total thickness of our system alongz
for several values ofj.

The external potentialyextszd tries to confine particles
in the planez ­ 0. In the limit of strong confinement or
h ¿ 1, particles are thus forced to be in the planez ­ 0
andN sj, hd ­ 1. Mutual repulsions between particles
on the other hand, tend to increase the thickness of part
distribution and the thickness increases whenh becomes
smaller. We here note that this tendency manifests its
as the appearance of a new layer with a finite populatio
analogously to the behavior of the order parameter in
first order phase transitions. In Figs. 1 and 3, we al
observe that, whenh decreases, the thickness increas
with discontinuities corresponding to the stepwise chang
in N . The number of layers and the thickness are th
determined as a result of the competition between
confining force and mutual repulsion.

In the case of OCP, it has been shown that a confin
finite system forms thin layers in accordance with the g
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FIG. 2. Domains ofN s­ 1, 2, . . .d layer structure. Symbols
are boundaries determined by simulations forj ­ 1.8, 1.4, 1.0,
0.804, 0.322, and 0.0322 and thick lines are fittings of the fo
hc ­ a exps2bjd. (The small circle is the boundary of 6
and 7 for j ­ 0.0322.) Thin lines are boundaries given by
our theory. Arrows are the first four boundaries forj ­ 0 in
Ref. [22].

ometry of confinement at low enough temperatures a
the number of layers and the total thickness change d
cretely with the system parameter [16,17,21,22]. Our
sults for the Yukawa system indicate that these propert
are common for Coulomb and Coulomb-like systems.

In OCP, the spacings and populations for all layers a
almost equal and the spacings increase with the decreas
h [17,21]. In our Yukawa system just after the appearan
of a new layer, populations are nearly equal and ou
layers have larger spacings (typically by 10%). Wit
further decrease ofh, outer layers become less populate
(by 10% to 20%) and relative differences in spacin
become smaller, all the spacings being expanded. Th
values return to the initial state when another new lay
appears and similar changes are repeated.

The critical values ofh for the transitionN ! N 1

1, hcsN d, is a function ofj. In Fig. 2, we observe that
hcsN d , asN d expf2bsN djg for j * 0.3. Values of

FIG. 3. Total thickness. Symbols are results of simulation
Thin and thick lines are those of the continuum model (6) a
sheet model with cohesive energy (8), respectively.
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FIG. 4. Behavior of coefficientsasN d and bsN d. Solid
lines are0.9N 21.7 and1.4N 0.7, respectively.

a andb are approximately given byasN d , 0.9N 21.7

andbsN d , 1.4N 0.7, respectively, as shown in Fig. 4
Since all layers have approximately equal populatio
the mean distance in the layer is approximately given
b ­ N 1y2a. Therefore the ratio of the mutual repulsio
and confining force atb is given by

kb2

sq2ybd exps2kbd
­ 4p21y2N 3y2h expsN 1y2jd . (5)

If the transitions occur when this ratio reaches a cert
value, we may haveasN d ~ N 23y2 and bsN d ~

N 1y2. Experimental behavior ofhc indicates that this
picture works as a first estimation.

Along with the decrease ofh in the range between the
appearance of a new layer and that of another new la
the symmetry of distribution of particles in each layer r
peats alternative changes from that of the square lattic
the triangular lattice. The relation between the interlay
distance and intralayer symmetry is shown in Fig. 5. T
kind of transition may be analogous to the case of OCP [
and colloidal suspensions confined between glass pl
[23], where systematic changes of the symmetry with
increase or decrease of the number of layers have been
served. Three-dimensionally, structures similar to bcc, f

FIG. 5. Intralayer symmetry and interlayer spacingD, b
being mean distance in layer.
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and hcp lattices appear in our system. Corresponde
with characteristic parameters, however, is not yet co
pletely clear. It seems that structures with vertical alig
ments between adjacent layers do not appear. This m
indicate the role of anisotropic interaction in vertical align
ments in real experiments.

We now make theoretical analyses along the lines of
shell model which have been successful for OCP [16,1
Starting from the continuum model, we take into accou
the discreteness in two steps.

In the one-dimensional potential fieldyextszd, the total
potential energy (per particle) of the uniform distributio
with thickness2d is given by

1
6

kd2 1
p

2
q2Ns

k3d2
fexps22kdd 2 1 1 2kdg . (6)

One might expect that the thickness of our system is
timated by the value of2d which minimizes this expres-
sion. In Fig. 3, optimum values of2dya are shown by
thin lines. Whenj ø 1, our results for2dya are in good
agreement with those of numerical experiments. For fin
values of j, however, this model largely overestimate
2dya. In (6), particles are treated as continuum and t
effects of discreteness or the correlation between part
positions are completely neglected. The above result
dicates that we have to take them into account.

The effects of discreteness appear as (i) the format
of layers perpendicular to thez axis and (ii) the formation
of lattice structures in each layer. Let us first assume t
our system is composed of thin planar sheets and t
(i) into account. Suppose we haveN thin planar sheets
of surface number densitiesni at z ­ zi , i ­ 1, 2, . . . N ,
andNs ­

P
i ni. When particles are distributed uniformly

in each layer, the total potential energy per particle
given by

1
2

X
i

ni

Ns
kz2

i 1
p

Ns

q2

k

X
ij

ninj exps2kjzi 2 zjjd . (7)

When we minimize (7) with respect toni andzi for given
values ofNs and k, experimental thickness is approxi
mately reproduced, ifN is appropriately assumed. The

FIG. 6. Total energyu in sheet model with cohesive energy
3115
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sheetssN ! `d as in the case of OCP [16].

In order to include (ii), we define the cohesive energ
as the difference between the interaction energy with c
relation and that of uniform distribution. Since the effec
of discreteness in thexy plane leads to a negative cohe
sive energy in each sheet, we have a possibility to stabil
the state of finite number of sheets: There is a tradeoff b
o

s

h
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r

g
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r
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tween intersheet interaction energy and intrasheet cohes
energy which is lower for larger density in each sheet a
favors smaller number of sheets. The cohesive energy
particle for a sheet of the surface densityni is expressed
by a function ofkn21y2

i
asq2n1y2

i
ecohskn21y2

i
d. We have

calculated values ofecohsxd for the triangular and square
lattices.

The total potential energy is thus given by
1
2

X
i

ni

Ns
kz2

i 1
p

Ns

q2

k

X
ij

ninj exps2kjzi 2 zjjd 1
X

i

ni

Ns
q2n

1y2
i ecohskn

21y2
i d . (8)
i,
.

s

al

a

t,

,

s.
When we minimize (8) with respect to all parameters f
given Ns andk, we have the results which reproduce th
transitions between structures. An example is shown
Fig. 6. The results for positions, critical values of tran
sitions, and thickness are given by solid lines in Figs.
2, and 3. Values ofecohskn21y2

i
d for both triangular and

square lattices give almost the same results. Though v
ues ofhc are somewhat small, our simple model succes
fully reproduces the main features of structure of Yukaw
system in external fields at low temperatures.

The effect of discreteness also appears as interla
correlation in the distributions of particles neglected in (8
This effect is closely connected with the alternate chang
in the intralayer symmetries shown in Fig. 5 and may al
be related to systematic deviations ofhc from simulations.
We may conclude, however, the overall behavior of t
confined Yukawa system is reproduced by our sheet (sh
model with intralayer cohesive energy.

We have shown that the confined Yukawa syste
organizes itself into layered structures at low temperatu
and its behavior is approximately reproduced by a simp
model. In the latter, the inclusion of the cohesive ener
in the layer is of essential importance to give transitio
between structures.
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