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Stochastic Resonance in Chaotic Spin-Wave Dynamics
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We report the first experimental observation mdise-free stochastic resonance by utilizing the
intrinsic chaotic dynamics of the system. To this end we have investigated the effect of an
external periodic modulation on intermittent signals observed by high power ferromagnetic resonance
in yttrium iron garnet spheres. Both the signal-to-noise ratio and the residence time distributions
show the characteristic features of stochastic resonance. The phenomena can be explained by
means of a one-dimensional intermittent map. We present analytical results as well as computer
simulations. [S0031-9007(97)02988-8]

PACS numbers: 05.45.+b, 05.40.+j, 75.30.Ds

Stochastic resonance, invented fifteen years ago as aExperiments and results-High power ferromagnetic
model for geophysical dynamics [1], has meanwhile foundesonance experiments were performed on spheres of
its way into such diverse fields as physics, meteorologyyttrium iron garnet (YIG), which is well established as a
chemistry, and biology [2—4]. The rising interest in this “prototype nonlinear ferromagnet” and has been studied
field stems from the counterintuitive effect that a periodicextensively for decades [10—12]. The sample was placed
signal component can be amplified by a stochastic force.in a bimodal transmission-type microwave cavity and

The basic mechanism is usually explained in terms ofxcited by a microwave field 25 GHz, applied perpen-
the famous Kramers problem [5], i.e., the overdampedlicularly to the static magnetic fiel. The parametric
motion of a particle in a symmetric double-well potential excitation of spin waves was observed subsidiary
subjected to noise, which is supplemented by a time peabsorption[13]. The transmitted and rectified signal was
riodic forcing. The noise causes “incoherent tunneling”recorded with a digital transient recorder and analyzed on
between the two wells with an exponentially decreasinga personal computer. Accessible system parameters are
distribution of the respective residence times. The perithe static magnetic field and the microwave power, which
odic forcing leads to enhanced transitions on certain timés proportional to the squared amplitude of the pumping
scales and, therefore, to a periodic signal component. field. Increasing the pumping power above the first-order
is the prominent feature of stochastic resonance that th®uhl threshold [13] we observed auto-oscillations and a
signal-to-noise ratio does not decrease with increasingariety of routes into chaos: period doubling, quasiperi-
noise amplitude, but attains a maximum at a certain noisedicity, and different types of intermittency [11,12]. Our
strength. A second characteristic property shows up in theneasurements were performed in a parameter region of
distribution of residence times, where the periodic forc-type-lll intermittency, where the system jumps between
ing leads to maxima at odd multiples of half the driving period 2 behavior (regular phase) and chaotic behavior
period (cf. [6]). Of course, these signatures of stochasti¢chaotic phase). The intermittency scenario can be run
resonance are not confined to this special model, but occtinrough in two ways, either by varying the microwave
in more general bi- and monostable systems and for difinput powerP or the static magnetic fiel&l [9].
ferent types of noise [2,4]. Here, the regular and chaotic phases take the role of the

It was suggested by Anishcheng&bal. [7] based on the two states in conventional models of stochastic resonance,
numerical analysis of a simple map, that quite similar pheand the intrinsic chaotic dynamics acts as a “stochastic”
nomena can be caused by the internal chaotic dynamidercing. Accordingly, the mean lengths of the two
instead of an external noise. In that case the intermittenthases can be changed on variation of the two external
hopping between different chaotic repellers in conjunctiorcontrol parameters® and H. In this senseP and H
with an additional periodic forcing can be used to amplify correspond to the noise strength in conventional stochastic
the periodic signal component in close analogy to confresonance experiments. To obtain the resonance effect
ventional stochastic resonance. This mathematical modeine has to apply an additional periodic forcing, which
system motivated us to look fooise-freestochastic reso- in our case consists of an amplitude modulation of
nance in real experimental systems. the microwave power. The two additional parameters,

In this Letter we report on its realization in chaotic modulation frequency and amplitude, have to be adjusted
spin-wave dynamics. By taking advantage of the knowrproperly, i.e., the modulation amplitude has to be chosen
bifurcation scenarios beyond the instability thresholdsmall enough to ensure that the system stays inside
[8,9], we have investigated the chaotic intermittent dy-the intermittency regime, but large enough to observe
namics subjected to an additional periodic forcing. a periodic component in the transmitted signal. The
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influence of modulation frequency shows up in therithmic scale. Distinct resonance phenomena can be seen
duration of regular and chaotic phases (cf. Fig. 1). Waen both the field and power dependences.
found that the mean length of the regular state is not Theoretical model and simulatiors:-Far above the
affected by the modulation. The mean chaotic lengthSuhl threshold an approach from first principles has
shows a distinct maximum av,.x = 1 kHz, which turned out to be extremely complicated [11]. Thus
means that the reinjection from the chaotic to the regulawe adopt a phenomenological description in terms of
state becomes less probable. Af.x the mean return simple mathematical model systems, which have proven
time, i.e., the sum of the two lengths, is of the orderto be fruitful in diverse problems of nonlinear dynamics.
of the modulation period, which is a prerequisite for theln order to develop a theoretical explanation for the
occurrence of stochastic resonance. residence time distribution we propose a time dependent
Signatures of stochastic resonance could be observemhe-dimensional map which can be treated analytically.
in the distribution of the durations of the chaotic phase, This map generates a regular phase via an inverse
i.e., the residence time distribution. Without modulationpitchfork bifurcation and a chaotic phase via a chaotic
one would obtain an exponential decay, caused by theepeller (cf. Fig. 4). We adopt a piecewise linear model
uniform reinjection from the chaotic to the regular state.with slopesy; on the intervalsl/; to keep the analysis
With modulation there appears a structure on top of thientirely analytical [14]. A periodic modulation with
background, which represents a typical feature of stoperiod n, is included via the time dependence of the
chastic resonance [6]. The distribution:gf., is plotted slope in the right-hand interval;. For simplicity we
in Fig. 2(a). The exponential background resulting fromconfine ourself to the case where the slopechanges
the intermittent dynamics is larger than in conventionalbetween two different valueg; and y% every (n,/2)th
stochastic resonance. Figure 2(b) shows the distributiotime step. Letp,;(n) denote the probability density for a
after having subtracted this background. The distance berajectory hitting the interval; at timen. It is periodic
tween the peaks is equal to the modulation peffigdas in time with periodn, but attains a constant value on
expected from theory. Since our system is strongly asymeach interval, since the model maps intervals on intervals
metric the first peak is not located at exactly half the pe{Markov map). Furthermore Ief;(n) C I, denote those
riod but shifted towards a higher value. phase space points which stay exactlytime steps in
Stochastic resonance was originally defined by an inthe chaotic region/; U I, U I3 if the initial phase of
crease of the signal-to-noise ratio with increasing noise¢he modulation isn, and denote the size of this set by
strength. In our experiments we have two possibilitiesA(S,(r)). Then po(n)A(Sk(n)) gives the probability that
to change the internal “deterministic noise level”. At the
bifurcation point @ = H., P = P.) the regular state is
marginally stable. With increasing bifurcation parameters 60 4
g1 =P, — P ande, = H. — H [9] the switching rate
between regular and chaotic states increases and hence
the internal noise level, too. If we take, as usual, the
amplitude ratio between peak and background of the
Fourier spectrum as a definition of the signal-to-noise
ratio, we observe a maximum on variation of the static
magnetic field or the microwave power. Figure 3 shows 15
the results for several modulation frequencies on a loga-
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(a) Probability distribution of the chaotic lengths for
The full line indicates the exponential background.

FIG. 1. Mean lengths of the chaoti®) and the regulafV)
phases vs modulation frequency.

(b) Difference between the total probability and the exponential
background taken from (a).
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FIG. 3. Signal-to-noise ratio vs the bifurcation parameters
gy = P. — P (@) ande, = H. — H (b) for various modula-

tion frequencies({ 1.0 kHz, O 5.0 kHz, A 10.0 kHz).

n,—1

at phasen of the modulation a chaotic burst of length intermittency mechanism. Expression (4) is evaluated by

1
Ny =

observation. With Eq. (3) the distribution (1) reads

n1)71 k—1
Ni

> T1riml = pe)]. (4)
P n=0 i=1

Its structure is entirely determined by the time dependence
of the escape rate and does not depend on details of the

k occurs. Hence by averaging over the initial phase wé&ombinatorics. In the case of large periag > 1 the
obtain the desired distribution of residence times

> po(m)A(Sk(n)),

nPﬁOA(IO) n=0

1)
wherep,, denotes the average of(n) over one period.

The structure of the distribution is determined by the
time dependence of the density as well as by the tim
dependence of;(n). The size ofS,(n) can be expressed

distribution becomes quasicontinuous

_ _ f-(x), 0=x<1/2
Nie = expl O-k/n”){f+(x), 12=x<1" O
where x = k/n,|modl denotes the fractional part of

the chaotic length with respect to the modulation pe-
riod. Expression (5) reflects an exponential decay of the

Ristribution with rateo := ny[1 — (pa + pg)/2] and a
by the (static) escape rates of the chaotic repeller [15];
Using the abbreviation

pa = 1/Inil + 1/lyal + 1/195]
if (k + n)lmodn, <n,/2

ps =11yl + 1/lyal + 1/195]°
if (k + n)lmodn, =n,/2

pr(n) = (2)

a geometrical consideration yields

k=1
ASk(m) = Ao [T i) [1 = pe]. ()
i=1

time independentpo(n) = .

uperstructure of period, (cf. Fig. 5), which is explic-
ly given by

f+(1/2 = z) :==2zo coshs(1/2 — z)]

+ 2z8sinf8(1/2 — 2)]

+ 20/6sin8(1/2 — 2)]. (6)
Here 6 := (pg — pa)n,/2 represents the amplitude of
the modulation.

In addition to our analytical results we have performed
computer simulations using a one-dimensional map like
Fig. 4 but with the left-hand part being replaced by a
cubic function. The time dependence was introduced

The densitypy(r) can in principle be evaluated, too. But by modulation of the right-hand maximum. From the

This implies that the

to leading order in the modulation amplitude it remainstime series we evaluated the distribution of the residence

times which are shown in Fig. 5. As in the case of
properties of the regular phase are not affected by théhe analytical results, we found an exponential decay
modulation, which is in accordance with our experimentaimodulated periodically with the period of the forcing. In
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