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Stochastic Resonance in Chaotic Spin-Wave Dynamics
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(Received 27 September 1996)

We report the first experimental observation ofnoise-freestochastic resonance by utilizing the
intrinsic chaotic dynamics of the system. To this end we have investigated the effect of an
external periodic modulation on intermittent signals observed by high power ferromagnetic resonance
in yttrium iron garnet spheres. Both the signal-to-noise ratio and the residence time distributions
show the characteristic features of stochastic resonance. The phenomena can be explained b
means of a one-dimensional intermittent map. We present analytical results as well as computer
simulations. [S0031-9007(97)02988-8]

PACS numbers: 05.45.+b, 05.40.+ j, 75.30.Ds
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Stochastic resonance, invented fifteen years ago
model for geophysical dynamics [1], has meanwhile fou
its way into such diverse fields as physics, meteorolo
chemistry, and biology [2–4]. The rising interest in th
field stems from the counterintuitive effect that a period
signal component can be amplified by a stochastic forc

The basic mechanism is usually explained in terms
the famous Kramers problem [5], i.e., the overdamp
motion of a particle in a symmetric double-well potent
subjected to noise, which is supplemented by a time
riodic forcing. The noise causes “incoherent tunnelin
between the two wells with an exponentially decreas
distribution of the respective residence times. The p
odic forcing leads to enhanced transitions on certain t
scales and, therefore, to a periodic signal component
is the prominent feature of stochastic resonance that
signal-to-noise ratio does not decrease with increas
noise amplitude, but attains a maximum at a certain no
strength. A second characteristic property shows up in
distribution of residence times, where the periodic fo
ing leads to maxima at odd multiples of half the drivin
period (cf. [6]). Of course, these signatures of stocha
resonance are not confined to this special model, but o
in more general bi- and monostable systems and for
ferent types of noise [2,4].

It was suggested by Anishchenkoet al. [7] based on the
numerical analysis of a simple map, that quite similar p
nomena can be caused by the internal chaotic dynam
instead of an external noise. In that case the intermit
hopping between different chaotic repellers in conjunct
with an additional periodic forcing can be used to ampl
the periodic signal component in close analogy to c
ventional stochastic resonance. This mathematical mo
system motivated us to look fornoise-freestochastic reso-
nance in real experimental systems.

In this Letter we report on its realization in chaot
spin-wave dynamics. By taking advantage of the kno
bifurcation scenarios beyond the instability thresho
[8,9], we have investigated the chaotic intermittent d
namics subjected to an additional periodic forcing.
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Experiments and results.—High power ferromagnetic
resonance experiments were performed on spheres
yttrium iron garnet (YIG), which is well established as
“prototype nonlinear ferromagnet” and has been stud
extensively for decades [10–12]. The sample was pla
in a bimodal transmission-type microwave cavity an
excited by a microwave field of9.25 GHz, applied perpen-
dicularly to the static magnetic fieldH. The parametric
excitation of spin waves was observed insubsidiary
absorption[13]. The transmitted and rectified signal wa
recorded with a digital transient recorder and analyzed
a personal computer. Accessible system parameters
the static magnetic field and the microwave power, whi
is proportional to the squared amplitude of the pumpi
field. Increasing the pumping power above the first-ord
Suhl threshold [13] we observed auto-oscillations and
variety of routes into chaos: period doubling, quasipe
odicity, and different types of intermittency [11,12]. Ou
measurements were performed in a parameter region
type-III intermittency, where the system jumps betwe
period 2 behavior (regular phase) and chaotic behav
(chaotic phase). The intermittency scenario can be
through in two ways, either by varying the microwav
input powerP or the static magnetic fieldH [9].

Here, the regular and chaotic phases take the role of
two states in conventional models of stochastic resonan
and the intrinsic chaotic dynamics acts as a “stochas
forcing. Accordingly, the mean lengths of the tw
phases can be changed on variation of the two exte
control parametersP and H. In this senseP and H
correspond to the noise strength in conventional stocha
resonance experiments. To obtain the resonance ef
one has to apply an additional periodic forcing, whic
in our case consists of an amplitude modulation
the microwave power. The two additional paramete
modulation frequency and amplitude, have to be adjus
properly, i.e., the modulation amplitude has to be chos
small enough to ensure that the system stays ins
the intermittency regime, but large enough to obser
a periodic component in the transmitted signal. T
© 1997 The American Physical Society 3101
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influence of modulation frequency shows up in t
duration of regular and chaotic phases (cf. Fig. 1). W
found that the mean length of the regular state is
affected by the modulation. The mean chaotic len
shows a distinct maximum atnmax ­ 1 kHz, which
means that the reinjection from the chaotic to the regu
state becomes less probable. Atnmax the mean return
time, i.e., the sum of the two lengths, is of the ord
of the modulation period, which is a prerequisite for t
occurrence of stochastic resonance.

Signatures of stochastic resonance could be obse
in the distribution of the durations of the chaotic pha
i.e., the residence time distribution. Without modulati
one would obtain an exponential decay, caused by
uniform reinjection from the chaotic to the regular sta
With modulation there appears a structure on top of t
background, which represents a typical feature of s
chastic resonance [6]. The distribution atnmax is plotted
in Fig. 2(a). The exponential background resulting fro
the intermittent dynamics is larger than in convention
stochastic resonance. Figure 2(b) shows the distribu
after having subtracted this background. The distance
tween the peaks is equal to the modulation periodTm, as
expected from theory. Since our system is strongly as
metric the first peak is not located at exactly half the p
riod but shifted towards a higher value.

Stochastic resonance was originally defined by an
crease of the signal-to-noise ratio with increasing no
strength. In our experiments we have two possibilit
to change the internal “deterministic noise level”. At th
bifurcation point (H ­ Hc, P ­ Pc) the regular state is
marginally stable. With increasing bifurcation paramet
´1 ­ Pc 2 P and ´2 ­ Hc 2 H [9] the switching rate
between regular and chaotic states increases and h
the internal noise level, too. If we take, as usual,
amplitude ratio between peak and background of
Fourier spectrum as a definition of the signal-to-no
ratio, we observe a maximum on variation of the sta
magnetic field or the microwave power. Figure 3 sho
the results for several modulation frequencies on a lo

FIG. 1. Mean lengths of the chaoticsnd and the regulars=d
phases vs modulation frequency.
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rithmic scale. Distinct resonance phenomena can be se
in both the field and power dependences.

Theoretical model and simulations.—Far above the
Suhl threshold an approach from first principles ha
turned out to be extremely complicated [11]. Thu
we adopt a phenomenological description in terms
simple mathematical model systems, which have prov
to be fruitful in diverse problems of nonlinear dynamics
In order to develop a theoretical explanation for th
residence time distribution we propose a time depende
one-dimensional map which can be treated analytically.

This map generates a regular phase via an inver
pitchfork bifurcation and a chaotic phase via a chaot
repeller (cf. Fig. 4). We adopt a piecewise linear mode
with slopesgl on the intervalsIl to keep the analysis
entirely analytical [14]. A periodic modulation with
period np is included via the time dependence of th
slope in the right-hand intervalI3. For simplicity we
confine ourself to the case where the slopeg3 changes
between two different valuesgA

3 and g
B
3 every snpy2dth

time step. Letrlsnd denote the probability density for a
trajectory hitting the intervalIl at time n. It is periodic
in time with periodnp but attains a constant value on
each interval, since the model maps intervals on interva
(Markov map). Furthermore letSksnd # I0 denote those
phase space points which stay exactlyk time steps in
the chaotic regionI1 < I2 < I3 if the initial phase of
the modulation isn, and denote the size of this set by
lsSksndd. Thenr0sndlsSksndd gives the probability that

FIG. 2. (a) Probability distribution of the chaotic lengths fo
n ­ nmax. The full line indicates the exponential background
(b) Difference between the total probability and the exponenti
background taken from (a).
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FIG. 3. Signal-to-noise ratio vs the bifurcation paramete
´1 ­ Pc 2 P (a) and´2 ­ Hc 2 H (b) for various modula-
tion frequencies (h 1.0 kHz, s 5.0 kHz, n 10.0 kHz).

at phasen of the modulation a chaotic burst of lengt
k occurs. Hence by averaging over the initial phase w
obtain the desired distribution of residence times

Nk ­
1

npr0lsI0d

np21X
n­0

r0sndlsssSksndddd , (1)

wherer0 denotes the average ofr0snd over one period.
The structure of the distribution is determined by th
time dependence of the density as well as by the tim
dependence ofSksnd. The size ofSksnd can be expressed
by the (static) escape rates of the chaotic repeller [1
Using the abbreviation

pksnd ­

8>>><>>>:
pA := 1yjg1j 1 1yjg2j 1 1yjg

A
3 j

if sk 1 nd jmod np , npy2
pB := 1yjg1j 1 1yjg2j 1 1yjg

B
3 j

if sk 1 nd jmod np $ npy2

, (2)

a geometrical consideration yields

lsssSksndddd ­ lsI0d
k21Y
i­1

pisnd f1 2 pksndg . (3)

The densityr0snd can in principle be evaluated, too. Bu
to leading order in the modulation amplitude it remain
time independentr0snd . r0. This implies that the
properties of the regular phase are not affected by
modulation, which is in accordance with our experiment
s

e

e

].

e
l

FIG. 4. Piecewise linear mapxn11 ­ T sxnd. The broken
line in I3 and the double arrow show the time dependen
modulation. The shaded box in the upper right corner indicat
the region of the chaotic repeller.

observation. With Eq. (3) the distribution (1) reads

Nk .
1

np

np21X
n­0

k21Y
i­1

pisnd f1 2 pksndg . (4)

Its structure is entirely determined by the time dependen
of the escape rate and does not depend on details of
intermittency mechanism. Expression (4) is evaluated b
combinatorics. In the case of large periodnp ¿ 1 the
distribution becomes quasicontinuous

Nk . exps2skynpd
Ω

f2sxd, 0 # x , 1y2
f1sxd, 1y2 # x , 1 , (5)

where x ­ kynpjmod1 denotes the fractional part of
the chaotic length with respect to the modulation pe
riod. Expression (5) reflects an exponential decay of th
distribution with rates := npf1 2 spA 1 pBdy2g and a
superstructure of periodnp (cf. Fig. 5), which is explic-
itly given by

f6s1y2 6 zd := 2zs coshfds1y2 2 zdg

6 2zd sinhfds1y2 2 zdg

1 2syd sinhfds1y2 2 zdg . (6)

Here d := spB 2 pAdnpy2 represents the amplitude of
the modulation.

In addition to our analytical results we have performe
computer simulations using a one-dimensional map lik
Fig. 4 but with the left-hand part being replaced by
cubic function. The time dependence was introduce
by modulation of the right-hand maximum. From the
time series we evaluated the distribution of the residen
times which are shown in Fig. 5. As in the case o
the analytical results, we found an exponential deca
modulated periodically with the period of the forcing. In
3103
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FIG. 5. Distribution of chaotic lengths. Analytical resul
(solid line) and simulation.

this case, as for the ferromagnetic resonance experime
a large exponential background occurs which is caus
by the internal chaotic dynamics, i.e., the determinis
noise level. The coincidence is even more convinci
when keeping in mind that the analytical prediction an
the simulation have been obtained from different ma
and different modulation mechanisms.

We have reported on the experimental realization
stochastic resonance in ferromagnetic resonance exp
ments beyond the Suhl threshold. In contrast to conve
tional stochastic resonance we used the interplay betw
the intrinsic chaotic dynamics in an intermittent param
eter region and an external periodic modulation for t
realization ofnoise-freestochastic resonance. Neverthe
less, the signal-to-noise ratio and the residence time d
tributions show exactly the same characteristic behav
as in conventional stochastic resonance. We were a
to explain these features in terms of a one-dimensio
intermittent map. An analytical expression for the res
dence time distribution was derived and compared to
sults from computer simulations. Both the quantitativ
agreement between theoretical calculations and simu
tions, and the qualitative coincidence with the experime
tal result demonstrates the universality of these featur
We expect that noise-free stochastic resonance will be
alized in many other physical or technical applications
the near future.
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