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Jaynes-Cummings Model for a Trapped Ion in Any Position of a Standing Wave
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Wuhan 430074, People’s Republic of China
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It is shown that the dynamics of a two-level ion in any position other than at the antinode of
standing wave that moves in a harmonic trapping potential can be described by Jaynes-Cumm
model under the conditions of the rotating-wave approximation, the Lamb-Dicke limit, and the stro
confinement limit. [S0031-9007(97)02997-9]

PACS numbers: 32.80.Pj, 42.50.Vk
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Over the last two decades much attention has been
cused on the Jaynes-Cummings (JC) model and its var
nonlinear extensions in quantum optics. Such models
shown to exhibit interesting nonclassical effects, such
the collapse and revivals of Rabi oscillations [1–4], a
tibunched light [1,2], squeezing [1,2], inversionless lig
amplification [5], electromagnetic induced transparen
[6], etc. These phenomena have wide applications
micromaser [7], microlaser [8], ultrahigh precision spe
troscopy [1,9,10], etc. For instance, the collapse a
revivals of Rabi oscillations may be utilized to realiz
quantum-nondemolition measurement of the photon sta
tics in a cavity [9]. The extensions of the JC model a
mainly along two directions. On the one hand, one s
considers a two-level atom and a single-mode quanti
light field but taking multiphoton processes into accou
[1,11]. On the other hand, one can consider a three-le
atom and multimode quantized cavity fields, and then tu
this system into an effective two-level problem by the ad
batic elimination approximation [1,2] or perturbation tran
formation method [3]. It has recently been proved by o
of us [4] that the system of a three-level atom interact
with two quantized fields in theL configuration can ex-
actly be transformed into an effective two-level proble
Subsequently, we [11] have developed a unified and s
dardized method to solve analytically various linear a
nonlinear JC models, and established the similarity
tween JC models and the one describing a spin-1y2 par-
ticle in an external magnetic field, which generalizes
well-known conclusion by Feynmanet al. for the special
case of linear JC model with the single-mode field trea
classically to the one for the general situation of linear a
nonlinear JC models with the quantized field(s).

Recently, Ciracet al. [12] have shown that the dynam
ics of a trapped and laser-cooled two-level ion, at
node of a standing wave, is described by the JC mo
one of the paradigms of quantum optics mentioned abo
Except for the rotating-wave approximation, the oth
conditions for such a description are that the vibratio
amplitude of the ion motion is much less than the wa
length of the light (Lamb-Dicke limit), and that the tra
frequencyn is much greater than the atomic decay rateG
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(strong confinement limit) which does not seem to hav
been achieved in current experiments. Given these con
tions, they showed that the well-established field of io
trapping can be applied to the investigations of the J
model and of effects taken directly from cavity quantum
electrodynamics (QED) studies. Moreover, there appe
to be considerable advantages in the trapped-ion reali
tion of the JC model over that with a cavity field mode, a
the vibrational states (phonons) of the trap, replacing ph
tons in the JC model of quantum optics, is only very weak
damped and, further, the strength of the coupling betwe
the two-level ion and the phonons can be made very stro
simply by increasing the intensity of the standing wav
[12,13]. Based on this important relation between trappe
ion dynamics and cavity QED, many fascinating proposa
or ideas [12,14–10] have been put forward, for instanc
the quantum-nondemolition measurement of the final tem
peratures or the vibrational energy of a trapped ion by a
plying a sequence of probe pulses [12] or a CW probe fie
[13], theoretical analysis [12,14,15] and experimental re
alization [10] of collapse and revivals, as well as noncla
sical states of the ion motion, such as Fock, coherent, a
squeezed states. However, there exists an important un
swered question whether the dynamics of a trapped ion
any other position, besides at the node, of a standing wa
is still described by the JC model under the same cond
tions, which will be shown to be true in this paper.

In the situation where the trap frequencyn is much
greater than the atomic decay rate (strong confineme
limit), we can neglect the effect of the atomic deca
rate and consider the dynamics of a trapped and las
cooled two-level ion in a standing wave by Hamiltonian
formalism. The Hamiltonian in this case reads (h̄ ­ 1)
[12,14,15]

H ­ naya 1
D

2
sz 1

V

2
sx cosshx 1 fd , (1)

wheren is the trap frequency,a, ay are destruction and
creation operators for phonons or the vibrational states
the trap,D ­ v0 2 vl is the detuning between the tran-
sition and laser frequencies,sx ­ s21 1 s12 and sz ­
s22 2 s11 are the two-level polarization and inversion
© 1997 The American Physical Society
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operators,sii are the level occupation operators andsij

si fi jd are the transition operators from levelsj to i satis-
fying sjksmn ­ sjndmk ands11 1 s22 ­ 1, ands22 ­
s1 1 szdy2, s11 ­ s1 2 szdy2, V is the Rabi frequency
proportional to the amplitude of the standing wave,h is
Lamb-Dick parameter,x ­ a 1 ay denotes a dimension
less position operator for the position of the ion, andf

accounts for the relative position of the ion in the standi
wave. In particular,f ­ py2 corresponds to an ion cen
tered at a node of the standing wave. In the Lamb-Dic
limit, the Hamiltonian can be rewritten asH ­ H0 1 Hint

where

H0 ­ naya 1
Vf

2
sx 1

D

2
sz ,

Hint ­ 2h
V sinf

2
ss21 1 s12dx 1 Osh2d , (2)

whereVf ­ V cosf, andOsh2d denotes the terms equa
to and greater than the order ofh2, which will be neglected
hereafter. Introducing the interaction picture by the re
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tion Ỹ ­ expsiH0tdY exps2iH0td, we, after some calcula-
tions, obtainx̃ ­ a exps2intd 1 ay expsintd and

H̃0 ­ H0 ­ naya 1
Vt

2
Sz , (3)

s̃x ­ 2
D

2Vt
fS21 expsiVt td 1 S12 exps2iVt tdg

1
Vf

Vt
Sz , (4)

where

Vt ­
p

V
2
f 1 D2 , Sz ­

Vf

Vt
sx 1

D

Vt
sz , (5a)

S12 ­
1
2

µ
D

Vt
sx 2

Vf

Vt
sz 1 sxsz

∂
, (5b)

S21 ­
1
2

µ
D

Vt
sx 2

Vf

Vt
sz 2 sxsz

∂
. (5c)

Using the above results, we arrive at
H̃int ­ 2h
VD sinf

2Vt
ssshS21a expfisVt 2 ndtg 1 S12ay expf2isVt 2 ndtgj 1 hS21ay expfisVt 1 ndtg

1 S12a expf2isVt 1 ndtgjddd 1 h
VD cosf sinf

2Vt
fa exps2intd 1 ay expsintdgSz . (6)
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Under the rotating-wave approximationVt , n ¿ jVt 2

nj, the last two rows in the above equation represent o
resonant terms and can be neglected compared with
resonant terms, i.e., the terms in the first row of the abo
equation. We therefore obtain the Hamiltonian in t
interaction picture under the conditions of the rotatin
wave approximation and Lamb-Dicke limit as well a
strong confinement limit as follows:

H̃ ­ naya 1
Vt

2
Sz 2 h

VD sinf

2Vt
saS21 1 ayS12d ,

(7)

where the time dependence has been suppressed by g
from the Shrödinger to the Heisenberg picture. Th
equation is the central result of this paper.

Let us now explain the physical meaning of the operat
Sij and illustrate that the above equation is the JC mo
for the interaction between phonons and the ion dres
by the standing wave. Using the definitions ofS12, S21,
and Sz and definingS11 ­ S12S21 and S22 ­ S21S12,
one easily shows that these operators satisfySjkSmn ­
Sjndmk, S11 1 S22 ­ 1, S22 ­ s1 1 Szdy2, andS11 ­
s1 2 Szdy2. Their physical meanings are as follow
Sz ­ S22 2 S11 is the inversion operator for the two
dressed levels of the ion (the two bare levels of the ion
dressed by the standing wave),Sii are the dressed leve
occupation operators, andSij si fi jd are the transition
operators from dressed levelsj to i. In other words,
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sij correspond to the operators for the two bare lev
of the ion whileSij are those for its two dressed level
Consequently, Eq. (7) indeed represents the JC mode
the interaction between phonons and the ion dressed
the standing wave. In particular, in the circumstance
f ­ py2 corresponding to the ion centered at a node
the standing wave, the operatorsSij for the dressed levels
becomesij for the bare levels, and Eq. (7) reduces to t
JC model derived previously by Ciracet al.

In summary, we have, in this paper, introduced t
dressed-state description and shown that the dynamics
two-level ion in a harmonic trapping potential oscillatin
not only around the node of a standing wave, as in
previous result [12], but also around any other positi
of the standing wave can be described by the Jayn
Cummings model under the conditions of rotating-wa
approximation, Lamb-Dicke limit, and strong confineme
limit. This conclusion establishes a complete connect
between the trapped-ion dynamics and the cavity Q
within the framework of the JC model, and should, in o
view, have important implications to both fields. And,
facilitates the realizations of collapse and revivals as w
as nonclassical states of the ion motion, such as Fo
coherent, and squeezed states since one need not care
arrange the ion such that it locates around the node
a standing wave. Also, the dressed-state Hamiltonian
interaction picture [Eq. (6)] might have other application
For instance, it can be utilized to simplify the discussio
3087
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and the expressions of cooling and heating rates when
decay rateG is taken into account, which is currently
underway, and corresponding results will be publish
elsewhere. Here, we only give a brief discussion. Fro
Eq. (6), one sees that the fluorescent spectrum w
generally have three peaks centered atn ­ 0, 6Vt where
Vt is given by Eq. (5) when the decay rateG is omitted
and it is given byVt ­

p
V2

f 1 D2 1 5G2 when the
decay rate is taken into account. The peak positions ag
fairly well with the previous numerical computations [14
From Eq. (6), one also sees that there is not the peak
n ­ 0 asf ­ py2, and that the three peaks do not exi
as f ­ 0, p. Again, these results also agree well wit
the previous numerical computations [14]. Asf ­ 0, p,
i.e., at the antinode of the standing wave, the coupli
parameter in the interaction Hamiltonian of the JC mod
[Eq. (7)] becomes zero, and hence higher order ter
describing two-phonon or multiphonon processes sho
be taken into account which will be discussed elsewher
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