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Calculation of Hadron Form Factors from Euclidean Dyson-Schwinger Equations
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We apply Euclidean time methods to phenomenological Dyson-Schwinger models of hadrons. By
performing a Fourier transform of the momentum space correlation function to Euclidean time and
by taking the large Euclidean time limit, we project onto the lightest on-mass-shell hadron for given
guantum numbers. The procedure, which actually resembles lattice gauge theory methods, allows the
extraction of moments of structure functions, moments of light-cone wave functions, and form factors
without ad hoc extrapolations to the on-mass-shell points. We demonstrate the practicality of the
procedure with the example of the pion form factor. [S0031-9007(97)03002-0]

PACS numbers: 13.40.Gp, 11.10.St, 11.15.Ha, 12.39.Ki

The planned experimental program at the Thomasnuch more powerful and can be successfully applied to
Jefferson National Accelerator Facility (TINAF) will sub- higher point functions as well.) This approach does not
ject the electromagnetic structure of hadrons and nuclei toircumvent the need to make assumptions about the ana-
detailed scrutiny. The calculation of hadron form factorslytic structure of the components in the diagram of Fig. 1,
is therefore of fundamental importance to the subsequerut rather relies on the selection of relevant singularities
interpretation of the obtained experimental results. Howin much the same way as is accomplished by Euclidean-
ever, the nonperturbative description of the hadron strucspace lattice calculations. We consider the pion form fac-
ture in the Minkowski metric, which has only recently beentor as a prototype for the purposes of illustration.
pursued in detail [1], is extremely difficult due to the direct The exact calculation of the pion form factor via lattice
confrontation with singularities and the indefinite norm.techniques has been studied previously [6,7], and proceeds
Alternatively, Euclidean space is characterized by a posias follows: one first considers the Euclidean three-point
tive definite norm, i.e.p? = p} + p3 + p3 + p? =0, correlation function
and it has long been known that the Euclidean formulation
is therefore advantageous in the description of nonpertur- ~ (.. 1y) :f Bx &Py
bative processes through the Dyson-Schwinger (DSE) and """

Bethe-Salpeter (BSE) equations. _ _ % <0|T[J:§(Y)J,L(O)JW(X)]|0>6_"K'§€"P'£,

These components are frequently assembled into dia- 1

grams such as that in Fig. 1 for the calculation of form

factors [2,3]. The problem with the Euclidean formula- where s, (x) = u(x)iysd(x) is the interpolating field for

tion of such processes is that for physical particles thene pion and/,,(0) = %ﬁ(o)yﬂu(o) _ %H(O)yﬂd(o) is the

external rr210menta must Szatisfy the mass-shell conditiogector current. tyandz, are the time components efand

P> = —Mj and K* = —Mj3, thus forcing the return to >, respectively. Upon inserting a complete set of states
be

Minkowski space. One is then faced with the problem ofyatveen each pair of operators in Eq. (1) and taking the
complex momenta flowing through the loop in the diagram

of Fig. 1. This in turn requires solving the DSE’s in the

complex plane. Although some progress has been made Av
in this regard [4], it is an extremely difficult problem, and Q=K.P
most calculations until now have employed entire-function -
fits on the real axis. Although some success has been ob-
tained with this approach [3], there are uncertainties as-
sociated with the extrapolation of these functions into the k- §+K \O k+§
complex plane. i
Here we offer a fresh approach which avoids these un- | j
certainties by obtaining the mass-shell conditions implic- P
itly through an application of the Cauchy integral formula. K k- > P

(A similar method has been applied in Ref. [5] to 2-point . L
functions, where it has been used as a means to obtain tth:%G' 1. The electromagnetic vertex for a composite pion at
' e level. The quark Green’s functions, quark-photon vertex,

physical mass. However, in this paper, we would like toand the pion Bethe-Salpeter amplitudes, are dressed in a
demonstrate that Euclidean time projection methods areonsistent, gauge-invariance manner.
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limit 7, — —o andt, — o, so that only the lightest state configuration of link fieldsU. Note that the group inte-

contributes S|gn|f|cantly one finds gration [ dU implies that the quark lines and the vertices
) are dressed with arbitrary gluon lines.
etrte Bk The ab le "(pl th les |
lim Ke u(tety) = — <0|JT(0)|7T K) le above example (plus many other examples in
ty, =t 4EpEf Euclidean lattice gauge theory) shows that, despite the fact

X <7T’K|JM(0)|7T’i)><77j)|17(0)|0>’ that the calculations are performed in a Euclidean metric,
@) it is still possible to extract on-mass-shell matrix elements,
without having to makead hoc assumptions about the
analytic continuation back to a Minkowskian metric. The
basic idea is that large Euclidean time merely acts as a
filter to project out the ground state of the Hamiltonian.
n this Letter, we present a procedure that uses similar
iechniques in the context of Euclidean Dyson-Schwinger
calculations, which also there allows an unambiguous
extraction of the on-mass-shell matrix elements.
The Dyson-Schwinger approach to form factor cal-
culations—An alternative to performing the exact (or
(P, + K)F,[(P — K)*] = (w,1?|1#(0)|7,ﬁ>, (3) quenched) calculation is to employ two approximations
~ . ~ . restricting the type of allowed gluon dressing. The first is
where P = (E3,P) and K = (Eg,K). In practice [6] to consider only dressing by the gluon two-point function,
Eq. (1) is usually evaluated in the quenched approximaand the second is to consider only ladder/rainbow dress-

where |7, P> represents an on-mass-shell (| & =
VM2 + p2) pion state with three- momentu. Note
that" Eq. (2) is exact. Thus, despite the Euclidean for
mulation (as long as one does not employ any furthe
approximations such as quenching, finite quark masse
finite lattice spacing, finite volume), it allows an exact
computation of the on-shell pion electromagnetic form
factor

tion, yielding ing. (Note that ladder/rainbow dressing implicitly leads
o to a restriction on allowed quark lines that resembles the
Cults ty) =[ dU e_S(U)f dPxdPy e KV il que_nched approximat'ion !n lattice QCD.) These ap'proxi-
mations are in fact implied by the diagram of Fig. 1,
X trlysM ~'(U) (x,0)y,M ' (U) (0, ) and allow the separate calculation of the components,

) i.e., quark propagators and vertex functions. These ap-

proximations further comprise an electromagnetic gauge-
invariant description [2,8]. Within this approximation the
diagram of Fig. 1 is given by

X ysM ™' (U) (y, )],

whereM ~'(U) (y, x) is the quark propagator for a givelp

A(K,P) = ] o) tr[As(P,k)G<k + %)A,L(K - Pk + §>
o= 2w k)aslikn - L Kofi- 2], ©

whereAs is the solution of thenhomogeneoupseudoscalar BSE (quark-pseudoscalar vertgy)is the solution of the
inhomogeneousector BSE (quark-photon vertex), agdis the quark propagator.

We will use the notatiom\ to represent the solutions to thhomogeneouBSE, andI” to represent the solutions to
thehomogeneouBSE. In the vicinity of a pole, they are related by [8]

MVZ(=M?) b gy

AP.K) = =

(6)
where M is the pole massZ(—M?) is the wave function renormalization, adt{P, k) therefore obeys the standard

Bethe-Salpeter bound state normalization [8].
The vertex function for a photon coupling to an on-shell pion is then given by

I7(K,P) = ] é:; tr[l}(P,k)G(k + %)A,L(K — Pk + g)
(g [ S S 5)}, @)

wherein the vicinity of the pion pole
MAZ(—M?2)
(P2 + M2)(K? + M2) Fu

A(K,P) = oK, P). (8)
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The quantityl'7 (K, P) has the decomposition [2] wherem, is taken to be a constituent quark mass. Above,
I7(K,P)= (P, + K )F-(P*,K* (K — P)?) in Eq. (6), we introduced a factor 817 into the definition

+ (K, — P,)(P? — K?) of the vertex function, smce'thls makgs the vertex funptlon
s s dimensionless. However, in the strigf> = 0 case, this

X H,(P%LK* (K — P)?), (9) would lead to ill-defined expressions and we thus leave
and is commonly used to extract the pion form facfoy,  out the factor? in this toy model.
at the on-shell poinP? = K? = —M2. Equation (12) implies in particular th&t, = iys. The

Rather than explicitly enforcing the mass-shell condi-€xact result can be obtained analytically by directly fixing
tion as has been explored previously [3], here we inthe mass-shell condition in the evaluation of Eq. (7) and
stead take an approach that is similar to that taken in thEd. (9), and is shown by the solid line in Fig. 2. The
Euclidean-space lattice calculation. The quantity in theconstituent quark massy,, is taken to be 300 MeV,
DSE approach that is analogous to the three-point correl@nd a cutoff ofl GeV? is applied on the relative four-

tion function,C,, (1, ,) in (4), is momentunt at the quark-photon vertex [i.gk + K/2)?
= dP4dKs _ip, ks s in Fig. 1] to regulate the integration. (This cutoff is
C (1, ty) = —f ome ¢ el A5 (K, P). necessary for the toy model, but is not a general feature of

(10) the technique that we are using. For instance, in a more
Th h of thi his that the . realistic calculation, the Bethe-Salpeter amplitudes would
e strength of this approach Is that thantegration o off the integration naturally.) The external momenta
necessary to evaluate Eq. (7) is now over real functlonsare constrained such that = K2 = 0
functions that can be determined from the Euclidean- For comparison, we evaluate Eq.(ll) by substituting
space Dyson—S_chwing.er (_equations. In practicgl applica,me toy model Eq., (12) into Eq. (5) for the verte¥ .
tions, both the Integration in Eq. (10) as well as in Eq. (7)The results are shown by the series of dashed cuﬂrves in
are performed numerically. Fig. 2 for time separationar =1, — t, ~2fm. The

sio-lr-1he form factor is obtained implicitly from the expres- ¢ ier transform is performed with 4096 equally spaced

oEite p—Eity points with a grid spacing 00.02 GeV. Note that the
lim C'(t.,1,) = — —[Mi«/Z(—M,ZT)] agreement with the exact result diminishes at larger
fy e 4EpEg momentum transferg?, as is expected. The agreement
X [(Py + K, )F-(K — P)»)] a]E large momen;um is improved b;l/ i(;lcrleasing the number
) [ of Fourier transform points to include larger momentum
X [MoNZ(-M7)]. (11) components in the integration.

The correctness of Eq. (11) is readily verified by substi- Tnere is an additional effect due to the presence of
tuting Egs. (8) and (9) into (10), along with the implicit nojes in the quark propagators. This is revealed in Fig. 3

assumption that there are no poles in the immediate viCinynere, for example, a constituent quark mass of 1 GeV
ity of the ground-state pion pole of interest. The validity

of this assumption is, of course, model dependent. Equa- 11 .

tion (11) can be directly compared with the exact result in — exact

Eq. (2). _ o _ === t,=1,=0.9 fm
Toy-model calculatior—In principle, Eq. (11) illus- o ] {,=-t,=1.0 fm

trates how the form factor is extracted from the 3-point - t=t,=11fm

function for large Euclidean times. It remains to be oo | - = t=t,=1.2fm

demonstrated that the procedure is practical. For this pur-
pose, we now examine a toy model where all integrals can
be performed analytically to yield an “exact” reference 0.8

calculation. The model is then also treated numerically in @
exactly the same way as one would proceed in the gen- i
eral case where the Bethe-Salpeter amplitudes and vertex 0.7 1
functions cannot be treated analytically. We are thus able
to get some idea about typical numerical requirements of 0.6 -
our method.
We now proceed to evaluate Eq. (11) for a simple
model. Here we make the following choices 05r
_ s
A5(P,k)—P2, oa o
) 0.0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1.0
Au(P k) = =iy, (12) Q (GeV?)
Gk) = ; FIG. 2. The exact and extracted “pion” form factors are
ivk + my compared for a constituent quark masg = 300 MeV.
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1.8 T Even though we have studied the pion form factor as a
showcase example, applications of Euclidean time projec-
16 - tion methods should be applicable to a much wider class
of physical observables. Starting with 2-point functions,
L4 r one can obtain masses [5] as well as light-cone moments of
hadron wave functions [7] on the mass shell. Examples for
12 3-point functions that we plan to calculate include the elas-
tic form factor, moments of parton distribution functions
510 (e.g., momentum or spin fraction carried by the quarks in
o a given hadron), and thg*7 — vy transition form factor.
‘008 The most simple observables related to 4-point functions
that one might consider calculating using Euclidean time
0.6 - ] projection are hadron polarizabilities and (virtual) Comp-
- . ton scattering processes.
0.4 f)fct =09 fm The main limitations of the method are first of all
/ ,,,,,,, ty=-tz=1:0 fm the restriction to the lightest hadrons for given quantum
02r N ti:.tle.lfm numbers; though theoretically possible, it is in practice
/ — — t=t,=12fm rather difficult to use the method to obtain observables that

involve excited states, since the whole trick is to use large
Euclidean times to suppress excited states (a limitation that
is very familiar to the lattice gauge community). Another
FIG. 3. The exact and extracted “pion” form factors arelimitation concerns very large momentum transfers, where
compared for a constituent quark mags = 1.0 GeV. rapid oscillations of the integrand require a large number
of integration points. However, even with rather moderate
computing power, this still allows access to most of the
is used with 1024 Fourier transform points at a gridkinematic range that is available at TINAF.
spacing of0.03 GeV. With this large quark mass the M.B. would like to thank the Department of Energy
associated singularities are strongly damped and therefo{€ontract No. DE-FG03-96ER40965) as well as TINAF
do not contaminate the extraction of the pion pole. Thedor support. M.R.F. is supported by the Department of
comparison with the exact result is now quite good outEnergy under Grant No. DE-FG06-90ER40561. K.L.M.
to reasonably large momenta. The increasing discrepandy supported by the Natural Sciences and Engineering
with increasing time separation at large momenta is du&esearch Council of Canada.
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