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Steady State and Dynamics of Driven Diffusive Systems with Quenched Disorder
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We study driven lattice gas systems with quenched spatial randomness: the disordered drop-push
process, for which the steady state is shown to have inhomogeneous product measure form, and the
disordered asymmetric exclusion process. We conjecture that time-dependent correlation functions
which monitor dissipation of kinematic waves behave as in the pure system if the wave speed is nonzero,
and support this with simulations. This speed vanishes close to half filling in the disordered exclusion
process where macroscopic regions with different densities coexist. ~ [S0031-9007(97)02953-0]

PACS numbers: 05.60.+w, 05.40.+j, 05.50.+q

What is the effect of quenched disorder on driven, nontepresents the space-varying local speed of the kinematic
equilibrium systems? This question is important in a numwave of density fluctuations. The problem is equivalent
ber of physical situations involving flow in random media to that of a moving interface in the presence of a certain
[1]. Theoretically, our understanding of these phenomengype of columnar disorder; the interface heigtit, ) is
is based largely on numerical simulations and on the analyrelated top by p = d,h. Equation (1) then becomes
sis of continuum equations for coarse-grained variables, 5
In this Letter we obtain the exact steady state and stati!’! = D(x)dxch = c(x)dch = Ax) (9xh)"- -~ = m(x,1).
correlation function for a class of models of driven, inter- (2)

acting particles on a lattice—the drop-push process—witR-,o random coefficients(x), A(x) now represent colum-
quenched site disorder in the hopping rates. Further_, Whar disorder in the 2D¢z-x’space. It is important to
study the time dependence of hydrodynamic fluctuationg,jestand how disorder affects scaling properties and to
for this system in one dimension, and also for the disorjyentify factors responsible for different universality
dergd asymmetric e>§clu5|on process. We fm_d that the bgsj,qqes [3]. A crucial difference between (2) and the model
havior (.)f a system with currea? and der_ISII')p |s_Iarger studied by Krug [4] is the absence of an additive quenched
determined by, = 3Jo/dp. If the density is uniform on noisee(x) which models a frozen random contribution to

a macroit_:ohplc scale:OO:s the ?ean s_peedhof k|r;1errr]1at|c interface mobility. Such a term, which strongly influences
waves which transport density fluctuations through the sySg;aiic and dynamic properties, is necessarily absent in (2)

tem [2]. If ¢o is nonzero, we conjecture that quenched dIS—aS a consequence of the spatial constandy.f) implied

order doeg not affect the asym.ptot.ic behaviqr of the de_ca y particle conservation. Further, our model is distinct
of fluctuations, and support this with extensive numerica., , depinning-threshold interface models with quenched
results. By contrast, we find that vamshmgc_an S|gnal pointdisorder [3]. We show that the roughness exponent
the onset of disorder-induced phase separation with COEX; — 1/2 in contrast to [3] and [4]. The decay of the
isting macroscopic regions of different density, in which ;e matic wave in time leads to a power law?# growth
case the dynamical behavior is different. f the correlation function

In a coarse-grained description of a 1D disorderec?
current-carrying system, the nonuniform steady state den- S%(t) = (h(x + cot,t) — h(x,0) — Jot*). (3)

sity profile is described by a functi . The evolution . . .
yp y () We conjecture that as long agis nonzero, leading power

Jaw behaviors are the same as in the pure system with no

with spatially random coefficients: disorder 3 = %) [5,6]. This is supported by Monte Carlo
simulation results for the disordered drop-push process,
0:p = 9. [D(x)op — c(x)p — A(x)pz-.- — n(x,1)]. and for the disordered exclusion process in the regime

1) lo — 1/2] > A with A #0. For|p — 1/2| < A we
present evidence thafk, is independent ofo. In this
This follows from the continuity equatio®,p(x,t) +  regime, ¢, vanishes and shocks separate macroscopic
dJ(x,r) = 0 on writing the current asJ(x,t) = regions of different mean densities.
Jos(x,1) — D(x)d.p + n(x,t), where D(x) is the The disordered drop-push process (DDPP) is a model
space-dependent diffusion constant ands white noise; of driven transport of carriers trapped in local regions of
the systematic part of the curredty,, is expanded as space, with each move involving a cascade of transfers
Jo + c(x)p + A(x)p?.... The most relevant source of through filled traps [7,8]. In 1D, on every sitef anL-site
disorder in (1) is the term with coefficient(x) which  ring is a well which can accommodate at mgsparticles
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determination of the steady state of a spatially disordered
nonequilibrium system of interacting particles [10].

The product measure form (5) allows us to calculate sev-
eral physical quantities: the site densities, height-height
. . . correlation function, currenfy, and wave speed,. In
1-S 1 +T the limit of largeL, it is convenient to introduce the gen-
FIG. 1. Typical DDPP configuration and move. erating functionz; = Z,l{,=0 u;(n;)z", wherez is the fu-
gacity. The probability of occurrence of configuration

(Fig. 1). Each well deptt is chosen independently from C is P(C) = u(C)z""/T1; Zi, where Np is the num-
a probability distributionP(/;). The configuration of the Per of particles in the configuration. The steady state is
system is specified by the set of particle occupation numeharacterized by uniform, but inhomogeneous site den-
bers{n;} of all the wells. The dynamics is stochastic, andSities (n;) = zdInZ;/éz.  The height-height correlation
in a small time intervaliz, there is a probabilitg (n;]1;) dr ~ functionI*(r) = ((hi+, — hi)*) becomeg ;. (nj) —
that a particle from weli hops out, and drops into well (7;)*) and can be evaluated. Disorder averaging gives
i + 1. Ifwell i + 1 is already full, a particle from this I'(r) ~ r'/2,implying & = 1/2.
well now gets pushed further right, and so on (Fig. 1). The To find the steady state curreny, note that the current
cascade of adjacent-site jumps terminates once a particfei+1 across bondi,i + 1) comes from jumps which
drops into awell (say + r)which was not completely full originate from either (a) sites to the left of site(with
earlier. This elementary move thus changes configuratioit-between wells full), or (b) site itself (a contribution
C={ niljsilisr - lisy1nis,--} to C'=4{..n;, — Ji)- Class (a) events evidently also contribute to the
Wisrliva - lisr—1nis, + 1---}. The jump rates(n;|7;) ~ current across bondi — 1,7). Of all events that con-
are prespecified, and depend both on the depth of th&bute toJi—1;, class () is that subset of events in which
well and the occupation. The rates and well depths argit€ i is fully occupied. Since the probability of a jump
quenched random variables. between_z -1 andz is independent of the probability of
The probability for the system to be in configurati6n ~ °ccupation OfIS'tei’ we havel w1 = Ji-1ipi(l) + ji,
satisfies the standard master equation [9] with the transitiowhere j; = 3> —; e(n;ll))pi(n;) = €oz[1 — pi(l;)] and
probabilites W (C — C’) identified with e’s above. In  pi(n;) = wi(n;))z"/Z;. Noting that/;—1; = Jii+1 = Jo,
the steady state, the total flux out 6f equals the total We find Jo = €z. Since bothJy and p are known in
incoming flux. This is ensured if for ever§’ obtained terms ofz, the macroscopic speeth = dJo/dp of the

from C by an elementary transition there is a uniquekinematic wave can be determined [2].
configurationC” such that in the steady state Interestingly, the steady state measure and current can

also be found ind > 1, for models in which the ratio
W(C — Cu(C) =wW({[C"— C)u(C"). (4)  of hopping rates in different directions is independent of
site and configuration, and the cascade of adjacent-site
Here u(C) is the invariant measure and (4) is the con-overflows in a single move is in the same direction [11].
dition of pairwise balance [8]. We define weights for The other model we investigate is the disordered fully
single-site occupations by (0) = 1 andu;(n;) = 7;(1) X  asymmetric simple exclusion process (DASEP) on a 1D
7i(2)---7i(ny) if 0 <n; =1;, with 7(n;) = €y/€(n;ll;), ring. Inthis model, each site can hold 0 or 1 particle. A
wheree is a microscopic rate. The measure for configu-particle hop is attempted to the nearest-neighbor site on
ration C {n;} has the product form the right, and is completed only if the site in question is
; \égcagt. gttemﬁt rates.ar((je associ_ate(; withbbor:jds a;)nd gre
isordered, with magnitudes varying from bond to bond,
n(C) = lj1 ui(n;). (5) chosen from a binar%/ distributiorzl. ?Jnlike in the DDPP,
. there is no analytical characterization of the steady state
To show that this satisfies (4), we construct the configueven with a single inhomogeneous bond. A numerical
ration C" corresponding to a give@ andC' as follows. study has shown that i is close tol/2, a single weak
Suppose the transitio@ — C’ involves hopping a parti- bond acts as a blockage and produces unequal densities
cle at welli to well i + r with all wells in between full. over macroscopic length scales on either side of it, and
Also suppose well — s is not full but all wells between a shock where the density profiles meet, far from the
i — s andi are full (Fig. 1). Configuratiol€©” is identical  blockage [12]. We have studied the disordered case with
to C at all sites except at the sités— s andi, at which an extensive number of weak bonds by Monte Carlo
n!_y =ni—s + 1,n! =n; — 1. Then (4) is satisfied, in simulation and found that the steady state depends strongly
view of the measure (5). Since the dynamics is ergodic then the filling. The current/y varies smoothly withp
invariant measure (5) is unique for a fixed number of partiprovided |p — 1/2] > A (regime A), whereas/, has a
cles [9]. This generalizes the result obtained earlier for thaingle value ifip — 1/2| < A (regimeB) [Fig. 2(a)]. The
nondisordered case [8], and is the first instance of an exagalue of A depends on the ratie of rates of the weak
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a of such 1D systems is dominated by kinematic waves
which transport density fluctuations through the system at
a mean speed,. Owing to quenched disorder, the local

speed of the wave varies from one location to another
(Fig. 3) and the question arises how wave dissipation, and

Mean-field —

Monte Carlo thus S(z), is affected. In the pure system, the evolution
0~z 04 oo o equation (1) has-independent coefficients and the long-
time growth of S(¢) is described by = 1/3 [5,6]. In

c the disordered system, let us regard the coarse-grained

. medium as made of successive disordered patches, each
independent of the other, and ask for the behavior of
8 . : a large-scale density fluctuation as it passes through the

Mean-field — succession of patches. df is nonzero, the probability of
Monte Carlo - a density fluctuation in an infinite system returning to the
same disorder patch dies down rapidly at long times, so it
is a good approximation to regard the effect of disorder
as essentially uncorrelated in time. Further, since the
speedc(x) is a spatially random function, the use of the
averaged valuey in (3) induces a noise of amplitude
'/2 in the location of the density fluctuation. Since
fluctuations ink scale asx'/2, the effect(~¢!/2) on §2
is subleading. Thus we conjecture thatjf# 0, the long
time behavior ofS%(r) is ~2/3, the same as for the pure
FIG. 2. DASEP steady states (d)vs p for r = f = 0.5, system. Our argument differs from that used earlier for
(b) density profile forp = 0.80, (c) blowup of box in (b), the effect of point disorder on unpinned, moving interfaces
(d) profile for p = 0.5, and (e) blowup of box in (d). [13], as our case corresponds to columnar disorder in the
interface language. The irrelevance of randomnes§in
and strong bonds and on the fractignof weak bonds, is consistent with straightforward power counting in (2).
and is=0.16 for r = f = 0.5. In regimeA, the density In our numerical determination ¢f(¢) from simulations
profile consists of a large number of shocks with a mearnf the two types of lattice models, we definédi, r)
intershock spacing of a few lattice spacings [Fig. 2(c)l;as >} ;) #(k, 1), whereiy(r) is the position of a specific
the number of shocks scales with the system size. Oparticle. We averaged results fd#(z) over 40 time
length scales large compared to the intershock spacingyolutions for a fixed realization of disorder, and then
the density is roughly uniform. A semiquantitative picture over several realizations. For drop-push dynamics, we
of the steady state can be obtained using a mean-fielcbnsidered a model with only two types of welsand
approximation, writing the current between sitesand B, distributed randomly. Each well can hold at most one
i + 1asJ = e€;;+1po(i)[1 — po(i + 1)], where the rate particle, but the jump rates out of the two types of wells
€ii+1 IS € (€9/2) for a strong (weak) bond. Ad is are different, say, andeg. We usede,/ep = 0.5, and
the same in every bond, the densit{gs(i)} satisfy a set a fractionf = 0.5 of low rates. Since the placement of
of coupled, nonlinear equations, which can be iterated tthe wells is random, the essential feature of quenched
convergence. The resultis shown in Fig. 2(c). The meandisorder is still present. Since (5) still holds, we start
field approximation evidently obtains locations of shockswith an initial configuration of particles consistent with
fairly well, but not shapes of individual shocks. In regimethis product measure. The analysis is aided by the fact
B, Monte Carlo results and mean-field calculations show
that the density is nonuniform on macroscopicscale
[Fig. 2(d)], besides showing shock structure on the scale
of a few lattice spacings [Fig. 2(e)]. In this regime, the
occurrence of long stretches of successive weak bonds,
coupled with the requirement of spatial uniformity of
current, results in phase separation into high and low l ’
density phases, qualitatively as in the single defect case
[12]. In both regimes, numerical results shdr) ~ r¢
with o = 0.5.
. Turning now to the dynamical pehavior of quctqations FIG. 3. Typical time evolutions (a) DDPP, (b) DASER,=
in the steady state, we first consider systems which havgzs, and {(c) DASEP,» = 0.5. Darker regions are particle
a uniform density on macroscopic scales. The dynamicech. The tilted streaks are kinematic waves.

4 71| Mean-field —
Monte-Carlo «
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that the more rapid growth ¢f in this case arises from op-

=
S

1008 positely moving kinematic waves in different macroscopic
E 3l; regions [Fig. 3(c)].
g2 g We conclude with a recapitulation of our principal
5 2 results. For the DDPP, the steady state has a product
ol ° measure form, and the current can be determined. For
S the DASEP, the steady state density profile shows many
. -'_.-'-: oo shocks and is quite well described by a mean-field ap-
Strartiastioo0faet DASER P05 e proximation. Our conjecture, that disorder does not affect
L .::::::A‘:nuzf\ifs“ E::E; 2:(3: " the dynamical universality class if the kinematic wave
;AA:DDZzZAAA DDPP p=0és ] speedc, is nonzero, is borne out by S|mulat|or_1 s_tudles
DZZAAA DDEP p=05 & of the DDPP and the DASEP in reginfe A vanishing
2 . . . c¢o can indicate phase coexistence with different densities
100 1000 10000

in different macroscopic regions, as in regirBeof the

t MCsieps) DASEP; the dynamical behavior is different in this case.
FIG. 4. $%(1) for the DDPP and the DASEP for different ~ We thank R.E. Amritkar, D. Dhar, S. Krishnamurthy,
densities. Individual data sets have been shifted for clarityand G.|. Menon for useful comments.
The straight lines have slope884 and 0.67. Inset: the
return time of the kinematic waves is given by the period of
oscillations of the autocorrelation function.
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