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We study driven lattice gas systems with quenched spatial randomness: the disordered drop-p
process, for which the steady state is shown to have inhomogeneous product measure form, and
disordered asymmetric exclusion process. We conjecture that time-dependent correlation functio
which monitor dissipation of kinematic waves behave as in the pure system if the wave speed is nonze
and support this with simulations. This speed vanishes close to half filling in the disordered exclusi
process where macroscopic regions with different densities coexist. [S0031-9007(97)02953-0]
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What is the effect of quenched disorder on driven, no
equilibrium systems? This question is important in a num
ber of physical situations involving flow in random medi
[1]. Theoretically, our understanding of these phenome
is based largely on numerical simulations and on the ana
sis of continuum equations for coarse-grained variabl
In this Letter we obtain the exact steady state and sta
correlation function for a class of models of driven, inte
acting particles on a lattice—the drop-push process—w
quenched site disorder in the hopping rates. Further,
study the time dependence of hydrodynamic fluctuatio
for this system in one dimension, and also for the diso
dered asymmetric exclusion process. We find that the
havior of a system with currentJ0 and densityr is largely
determined byc0 ­ ≠J0y≠r. If the density is uniform on
a macroscopic scale,c0 is the mean speed of kinemati
waves which transport density fluctuations through the s
tem [2]. If c0 is nonzero, we conjecture that quenched d
order does not affect the asymptotic behavior of the dec
of fluctuations, and support this with extensive numeric
results. By contrast, we find that vanishingc0 can signal
the onset of disorder-induced phase separation with co
isting macroscopic regions of different density, in whic
case the dynamical behavior is different.

In a coarse-grained description of a 1D disorder
current-carrying system, the nonuniform steady state d
sity profile is described by a functionr0sxd. The evolution
of density fluctuations̃r ; rsx, td 2 r0sxd is described
phenomenologically by a stochastic evolution equati
with spatially random coefficients:

≠tr̃ ­ ≠xfDsxd≠xr̃ 2 csxdr̃ 2 lsxdr̃2 · · · 2 hsx, tdg .
(1)

This follows from the continuity equation≠tr̃sx, td 1

≠xJsx, td ­ 0 on writing the current asJsx, td ­
Jsyssx, td 2 Dsxd≠xr̃ 1 hsx, td, where Dsxd is the
space-dependent diffusion constant andh is white noise;
the systematic part of the currentJsys is expanded as
J0 1 csxdr̃ 1 lsxdr̃2 . . . . The most relevant source o
disorder in (1) is the term with coefficientcsxd which
0031-9007y97y78(16)y3039(4)$10.00
-
-

na
ly-
s.
tic
-
th
e

ns
r-
e-

s-
-

ay
al

x-

d
n-

n

represents the space-varying local speed of the kinema
wave of density fluctuations. The problem is equivalen
to that of a moving interface in the presence of a certa
type of columnar disorder; the interface heighthsx, td is
related tor̃ by r̃ ­ ≠xh. Equation (1) then becomes

≠th ­ Dsxd≠xxh 2 csxd≠xh 2 lsxd s≠xhd2 · · · 2 hsx, td .
(2)

The random coefficientscsxd, lsxd now represent colum-
nar disorder in the 2Dh-x space. It is important to
understand how disorder affects scaling properties and
identify factors responsible for different universality
classes [3]. A crucial difference between (2) and the mod
studied by Krug [4] is the absence of an additive quench
noiseesxd which models a frozen random contribution to
interface mobility. Such a term, which strongly influence
static and dynamic properties, is necessarily absent in
as a consequence of the spatial constancy ofkJsysl implied
by particle conservation. Further, our model is distinc
from depinning-threshold interface models with quenche
point disorder [3]. We show that the roughness expone
a ­ 1y2 in contrast to [3] and [4]. The decay of the
kinematic wave in time leads to a power law,t2b growth
of the correlation function

S2std ; kfhsx 1 c0t, td 2 hsx, 0d 2 J0tg2l . (3)

We conjecture that as long asc0 is nonzero, leading power
law behaviors are the same as in the pure system with
disorder (b ­

1
3 ) [5,6]. This is supported by Monte Carlo

simulation results for the disordered drop-push proces
and for the disordered exclusion process in the regim
jr 2 1y2j . D with D fi 0. For jr 2 1y2j , D we
present evidence thatJ0 is independent ofr. In this
regime, c0 vanishes and shocks separate macroscop
regions of different mean densities.

The disordered drop-push process (DDPP) is a mod
of driven transport of carriers trapped in local regions o
space, with each move involving a cascade of transfe
through filled traps [7,8]. In 1D, on every sitei of anL-site
ring is a well which can accommodate at mostli particles
© 1997 The American Physical Society 3039
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FIG. 1. Typical DDPP configuration and move.

(Fig. 1). Each well depthli is chosen independently from
a probability distributionPslid. The configuration of the
system is specified by the set of particle occupation nu
bershnij of all the wells. The dynamics is stochastic, an
in a small time intervaldt, there is a probabilityesnijlid dt
that a particle from welli hops out, and drops into wel
i 1 1. If well i 1 1 is already full, a particle from this
well now gets pushed further right, and so on (Fig. 1). T
cascade of adjacent-site jumps terminates once a par
drops into a well (sayi 1 r) which was not completely full
earlier. This elementary move thus changes configura
C ; h· · · nili11li12 · · · li1r21ni1r · · ·j to C 0 ; h· · · ni 2

1li11li12 · · · li1r21ni1r 1 1 · · ·j. The jump ratesesnijlid
are prespecified, and depend both on the depth of
well and the occupation. The rates and well depths
quenched random variables.

The probability for the system to be in configurationC

satisfies the standard master equation [9] with the transi
probabilitiesW sC ! C 0d identified with e’s above. In
the steady state, the total flux out ofC equals the total
incoming flux. This is ensured if for everyC 0 obtained
from C by an elementary transition there is a uniq
configurationC 00 such that in the steady state

WsC ! C 0dmsC d ­ WsC 00 ! C dmsC 00d . (4)

Here msC d is the invariant measure and (4) is the co
dition of pairwise balance [8]. We define weights fo
single-site occupations byuis0d ­ 1 anduisnid ­ tis1d 3

tis2d · · · tisnid if 0 , ni # li, with tsnid ; e0yesni jlid,
wheree0 is a microscopic rate. The measure for config
rationC hnij has the product form

msC d ­
LY

i­1

uisnid . (5)

To show that this satisfies (4), we construct the config
ration C 00 corresponding to a givenC andC 0 as follows.
Suppose the transitionC ! C 0 involves hopping a parti-
cle at welli to well i 1 r with all wells in between full.
Also suppose welli 2 s is not full but all wells between
i 2 s andi are full (Fig. 1). ConfigurationC 00 is identical
to C at all sites except at the sitesi 2 s and i, at which
n00

i2s ­ ni2s 1 1, n00
i ­ ni 2 1. Then (4) is satisfied, in

view of the measure (5). Since the dynamics is ergodic
invariant measure (5) is unique for a fixed number of pa
cles [9]. This generalizes the result obtained earlier for
nondisordered case [8], and is the first instance of an e
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determination of the steady state of a spatially disorde
nonequilibrium system of interacting particles [10].

The product measure form (5) allows us to calculate se
eral physical quantities: the site densities, height-heig
correlation function, currentJ0, and wave speedc0. In
the limit of largeL, it is convenient to introduce the gen
erating functionZi ­

Pli
ni­0 uisnidzni , wherez is the fu-

gacity. The probability of occurrence of configuratio
C is P sC d ­ msC dzNP y

Q
i Zi , where NP is the num-

ber of particles in the configuration. The steady state
characterized by uniformz, but inhomogeneous site den
sities knil ­ z≠ ln Ziy≠z. The height-height correlation
functionG2srd ; kshi1r 2 hid2l becomes

Pi1r
j­i11skn2

j l 2

knjl2d and can be evaluated. Disorder averaging giv
Gsrd , r1y2, implying a ­ 1y2.

To find the steady state currentJ0, note that the current
Ji,i11 across bondsi, i 1 1d comes from jumps which
originate from either (a) sites to the left of sitei (with
in-between wells full), or (b) sitei itself (a contribution
ji). Class (a) events evidently also contribute to th
current across bondsi 2 1, id. Of all events that con-
tribute toJi21,i , class (a) is that subset of events in whic
site i is fully occupied. Since the probability of a jump
betweeni 2 1 and i is independent of the probability of
occupation of sitei, we haveJi,i11 ­ Ji21,ipislid 1 ji,
where ji ­

Pli
ni­1 esni jlidpisnid ­ e0zf1 2 pislidg and

pisnid ­ uisnidzni yZi. Noting thatJi21,i ­ Ji,i11 ­ J0,
we find J0 ­ e0z. Since bothJ0 and r are known in
terms of z, the macroscopic speedc0 ­ ≠J0y≠r of the
kinematic wave can be determined [2].

Interestingly, the steady state measure and current
also be found ind . 1, for models in which the ratio
of hopping rates in different directions is independent
site and configuration, and the cascade of adjacent-
overflows in a single move is in the same direction [11]

The other model we investigate is the disordered fu
asymmetric simple exclusion process (DASEP) on a 1
ring. In this model, each site can hold 0 or 1 particle.
particle hop is attempted to the nearest-neighbor site
the right, and is completed only if the site in question
vacant. Attempt rates are associated with bonds and
disordered, with magnitudes varying from bond to bon
chosen from a binary distribution. Unlike in the DDPP
there is no analytical characterization of the steady st
even with a single inhomogeneous bond. A numeric
study has shown that ifr is close to1y2, a single weak
bond acts as a blockage and produces unequal dens
over macroscopic length scales on either side of it, a
a shock where the density profiles meet, far from t
blockage [12]. We have studied the disordered case w
an extensive number of weak bonds by Monte Ca
simulation and found that the steady state depends stron
on the filling. The currentJ0 varies smoothly withr

provided jr 2 1y2j . D (regime A), whereasJ0 has a
single value ifjr 2 1y2j , D (regimeB) [Fig. 2(a)]. The
value of D depends on the ratior of rates of the weak
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FIG. 2. DASEP steady states (a)J vs r for r ­ f ­ 0.5,
(b) density profile forr ­ 0.80, (c) blowup of box in (b),
(d) profile for r ­ 0.5, and (e) blowup of box in (d).

and strong bonds and on the fractionf of weak bonds,
and is.0.16 for r ­ f ­ 0.5. In regimeA, the density
profile consists of a large number of shocks with a me
intershock spacing of a few lattice spacings [Fig. 2(c
the number of shocks scales with the system size.
length scales large compared to the intershock spac
the density is roughly uniform. A semiquantitative pictur
of the steady state can be obtained using a mean-fi
approximation, writing the current between sitesi and
i 1 1 asJ ­ ei,i11r0sid f1 2 r0si 1 1dg, where the rate
ei,i11 is e0 se0y2d for a strong (weak) bond. AsJ is
the same in every bond, the densitieshr0sidj satisfy a set
of coupled, nonlinear equations, which can be iterated
convergence. The result is shown in Fig. 2(c). The mea
field approximation evidently obtains locations of shoc
fairly well, but not shapes of individual shocks. In regim
B, Monte Carlo results and mean-field calculations sho
that the density is nonuniform on amacroscopicscale
[Fig. 2(d)], besides showing shock structure on the sc
of a few lattice spacings [Fig. 2(e)]. In this regime, th
occurrence of long stretches of successive weak bon
coupled with the requirement of spatial uniformity o
current, results in phase separation into high and lo
density phases, qualitatively as in the single defect ca
[12]. In both regimes, numerical results showGsrd , ra

with a . 0.5.
Turning now to the dynamical behavior of fluctuation

in the steady state, we first consider systems which ha
a uniform density on macroscopic scales. The dynam
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of such 1D systems is dominated by kinematic wav
which transport density fluctuations through the system
a mean speedc0. Owing to quenched disorder, the loca
speed of the wave varies from one location to anoth
(Fig. 3) and the question arises how wave dissipation, a
thus Sstd, is affected. In the pure system, the evolutio
equation (1) hasx-independent coefficients and the long
time growth ofSstd is described byb ­ 1y3 [5,6]. In
the disordered system, let us regard the coarse-grai
medium as made of successive disordered patches, e
independent of the other, and ask for the behavior
a large-scale density fluctuation as it passes through
succession of patches. Ifc0 is nonzero, the probability of
a density fluctuation in an infinite system returning to th
same disorder patch dies down rapidly at long times, so
is a good approximation to regard the effect of disord
as essentially uncorrelated in time. Further, since t
speedcsxd is a spatially random function, the use of th
averaged valuec0 in (3) induces a noise of amplitude
t1y2 in the location of the density fluctuation. Sinc
fluctuations inh scale asx1y2, the effects,t1y2d on S2

is subleading. Thus we conjecture that ifc0 fi 0, the long
time behavior ofS2std is ,t2y3, the same as for the pure
system. Our argument differs from that used earlier f
the effect of point disorder on unpinned, moving interfac
[13], as our case corresponds to columnar disorder in
interface language. The irrelevance of randomness incsxd
is consistent with straightforward power counting in (2).

In our numerical determination ofSstd from simulations
of the two types of lattice models, we definedhsi, td
as

Pi
i0std r̃sk, td, where i0std is the position of a specific

particle. We averaged results forSstd over 40 time
evolutions for a fixed realization of disorder, and the
over several realizations. For drop-push dynamics, w
considered a model with only two types of wellsA and
B, distributed randomly. Each well can hold at most on
particle, but the jump rates out of the two types of wel
are different, sayeA andeB. We usedeAyeB ­ 0.5, and
a fractionf ­ 0.5 of low rates. Since the placement o
the wells is random, the essential feature of quench
disorder is still present. Since (5) still holds, we sta
with an initial configuration of particles consistent with
this product measure. The analysis is aided by the f

FIG. 3. Typical time evolutions (a) DDPP, (b) DASEP,r ­
0.25, and (c) DASEP,r ­ 0.5. Darker regions are particle
rich. The tilted streaks are kinematic waves.
3041
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FIG. 4. S2std for the DDPP and the DASEP for differen
densities. Individual data sets have been shifted for clar
The straight lines have slopes0.84 and 0.67. Inset: the
return time of the kinematic waves is given by the period
oscillations of the autocorrelation function.

that J0 and c0 are known explicitly. In the case of th
DASEP, we choser ­ f ­ 0.5 and used a system of siz
8000, allowing it to relax for.60 000 Monte Carlo steps
to achieve steady state. Further,J0 andc0 were estimated
in two stages: First, a rough estimate ofJ0 was obtained by
direct measurement, whilec0 (in regimeA) was estimated
from the return time of the kinematic wave in a small
system (Fig. 4 inset). Then a more accurate estimate
obtained by minimizingS in a large system with respec
to J0 andc0. Details of the minimization procedure wil
be given elsewhere [11]. Figure 4 shows data for t
different densities for the DDPP and also regimeA of
the DASEP, all corresponding to nonzeroc0. In all these
cases, the data is consistent withS2 , t2y3, as for the pure
system, supporting our conjecture. Further, we perform
a direct check of the,t1y2 growth of disorder-induced
noise in locations of density fluctuations, discussed in
previous paragraph. Such noise should alter the gro
law for the sliding-tag correlation function [14] (which
monitors fluctuations of tagged-particle locations) fro
,t1y3 to ,t1y2 —a change we confirmed by simulation o
the DDPP [11].

In regimeB of the DASEP,Sstd shows stronger fluctua
tions than in regimeA, from one realization of disorde
to another. On averaging over 10 samples, we findSstd
grows astb with b ­ 0.42 6 0.02 (Fig. 4). It is possible
3042
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that the more rapid growth ofS in this case arises from op-
positely moving kinematic waves in different macroscop
regions [Fig. 3(c)].

We conclude with a recapitulation of our principa
results. For the DDPP, the steady state has a prod
measure form, and the current can be determined.
the DASEP, the steady state density profile shows ma
shocks and is quite well described by a mean-field a
proximation. Our conjecture, that disorder does not affe
the dynamical universality class if the kinematic wav
speedc0 is nonzero, is borne out by simulation studie
of the DDPP and the DASEP in regimeA. A vanishing
c0 can indicate phase coexistence with different densit
in different macroscopic regions, as in regimeB of the
DASEP; the dynamical behavior is different in this case
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