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Barrier Tunneling and Reflection in the Time and Energy Domains:
The Battle of the Exponentials
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The issue of quantum barrier crossing and reflection in the time domain is addressed. We find that
(1) classically forbidden barrier tunneling and above-barrier reflection are well-defined and important
processes in the time domain, (2) classically forbidden processes can overshadow allowed ones when
both are present, and (3) classically allowed trajectories in the time domain are not, in general, sufficient
to explain tunneling amplitudes in the energy domain. We also make clear the essential distinction of
barriers which flatten out at large distance and those which do not. [S0031-9007(97)03010-X]

PACS numbers: 03.65.Sq, 31.15.Kb

Tunneling through (or reflection from) a barrier at fixed warded with the well-known classically forbidden imagi-
energyE is well understood from a semiclassical (WKB) nary time tunneling trajectories, which asymptotically give
perspective. WKB theory involves the use of complexthe correct WKB fixed energy tunneling amplitudes (trans-
trajectories which travel partly in imaginary time in order |paildx/
to penetrate the barrier. The same barrier problems in th
time domain have received much less scrutiny, and hav
caused confusion at times, due to some subtleties whic
we expose here. For exampls:there any tunneling in
the time domain across a barrier, since classical trajectori

mission~e f"l , Wherea, , are the classical turn-
ﬁmg points at energy). Suppose the semiclassical time
omain Green function is very accurate. Then a corre-
ondingly accurate energy domain result would follow
from numericalFourier transform and would be different

particle initially atx; to be found at, after timeT is given

semiclassically by the propagator, formed numerically(rather than by stationary phase) one

would get an even better result. Strangely, such a result
sc ) . 1 i/h) Su—ivar /2 would be given only in terms of classically allowed over-
G* (2, T3x,0) = > 2mihi VY e, the-barrier trajectories [sinc&* (x,, T;x;,0) is]. The
1) smallness of the tunneling amplitude in this view would be
due to the rapid oscillation of the integrand. This method
which is the classical limit of Feynman’s path integral [1]. was considered in recent work [2]. It is reinforced by
The sum goes over all classical paths linkingto x, in  analogy with certairuniformizationsin semiclassical the-
time 7, and St = Sei(x2,x1,T) = [ pa(x)dx — EqT  ory, in which troublesome semiclassical amplitudes are re-
is the action along that pathp. (x) = /2m[Eq — V(x)]  placed by more accurate, “uniform” ones, which can come
is the classical momentum at of a particle with en- from an integral expression. The foundation of such an
ergy E.;, and E is determined by the classical relation idea was, however, called into doubt in [3], and the situa-
T=m fjf dx/pa(x). V is the Van Vleck determinant tion remained cloudy. Here, we show that the numerical
|92S.1/0x20x1| and v is the Maslov index. Consider a time-energy Fourier integral, using above-barrier informa-
transmission problem wherg andx, are on the left and tion, is indeed inadequate. In fact, below-barrier tunneling
right sides, respectively, of a barrier in an otherwise conirajectories are needaen in the time domaiim certain
stant potential. At any real tim& there is exactly one regimes, where for finité theydominatethe classically al-
classical path withE > V. Which contributes in (1). lowed result. Moreover, they dominate the Fourier trans-
So the barrier problem in the time domain seemingly doe$orm at below-barrier energies.
not involve “tunneling” or classically forbidden paths. In  The Time Domair—The semiclassical recipe (1) for
order to obtain the semiclassical energy domain Greethe time Green function calls only for ordinary real-

function, one performs the Fourier transform by stationtime classical paths linking:; to x, in time 7. For
ary phase: definiteness, we consider a quasiclassical phase space

1 . view of propagation across a symmetric Eckart barrier
G*(xy, x3E) = — f T G* (xy, T;x1,0)dT . (2)  Vgsech?x and take mass. A state|x) may be repre-
ih Jsp sented by a vertical line through corresponding to mo-
However, for energies below the barrier top, no real-timementum being completely unspecified when the position
stationary phase point is found, forcing a search in thas exactly known. Sincex; | xi(¢)) = (xy|e " HIB|x)) =
complex-time plane for a saddle point. The search is retx,|(e/2M)te=iHI/2h| x|y = (x,(—1/2)|x1(¢/2)), we may

cl—paths
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represent the propagator by the overlap of the phase spattee battle is always lost by the classical teArat long
distribution from a vertical line at; evolved for timeT' /2  times. For the Eckart barrier and end points far from
with that of a vertical line ak, evolved backward in time the interaction region, tunneling overtakes the classical
for T/2. In Fig. 1 we focus on the casg = —x, <0  contribution whene ™ @=2¢/1)/1 /[T > \[¢ /2 ¢¥~©T/2,
andV, = 1. We have shown the phase space distributiorThe right-hand side of this is the square root of the long-
at four successive times. At first, this distribution simply time limit of the Van Vleck determinant (term), which
shears, as it would for free particle motion. Only verydetermines the magnitude of the semiclassical propagator
high energy trajectories reach the interaction region. Asnd w is the frequency of the (inverted) oscillator in the
time evolves, lower energy trajectories arrive near the barmarmonic approximation to the barrier top. The left-hand
rier. The classical overlap of the forward and backwardside is the tunneling contribution (ter®) at long times
propagated distributions is proportional to the Van Vleckand far end points. To evaluate this, we observe that in
determinant. Because of the separatrix and the conconthis limit the loops approach energy contours, and so the
mitant exponential instability, the density of trajectories atissue of getting across the barrier region becomes identical
the intersectiont = 0 (classically allowed above-barrier to the energy tunneling problem. The energy of trajecto-
trajectories) falls away exponentially rapidly. In the plots,ries arriving at the barrier changes only slowly with time.
we have propagated a finite uniform density of severaMoreover, as time increases, the trajectories arriving from
hundred trajectories along the initial line; after some timethe distant points are of lower and lower energy, so the
(r = 10), the density at the separatrix is so low that theloop “falls through” successively lower energies as time
manifold is not seen at = 0. We call this contribution increases. The tunneling part of the amplitude at a given
to the time Green function théterm (classically allowed, time then follows from the usual energy tunneling at the
over the barrier). At the same time, however, we seenergy of the arriving trajectories, suitably weighted by
a below-barrier loop structure developing with a healthytheir number density. We use expression (1) but substi-
density. At timer = 10, for example, trajectories of a tute the (time-dependent) energy of the loop for the clas-
certain energy (below,) have just reached the barrier sical energy. This gives the left-hand side of the above
and are beginning to turn around. The loops are stronglinequality: The density on the loops falls off a¢T,
suggestive of a tunneling contribution to the propagatormuch slower than the exponential falloff of the classical
since they are very similar to the fixed energy manifoldscontribution. Once we have reached the crossover time,
(Fig. 2) which tunnel across the barrier in the energy dotunneling dominates the classically allowed contribution
main. The loops fromx; andx, make no contribution in  Indeed, the conventional semiclassical propagator using
the primitive semiclassical limit as they do not overlap.only above-barrier trajectories becomes a much worse
However, if we includetunneling between these loops, approximation at longer times. This is seen in Fig. 3,
we have a second contribution to the time Green functionwhich shows the exact Green function and the “primitive”
termB. For finite, fixedZ, a “battle of the exponentials” semiclassical result, which collapses n&as= 50. Also
ensues. The classical tenVan Vleck prefactor, which  shown is the “loop” contribution, which does an excel-
dies exponentially in time, is pitted against the tunnelinglent job representing the full Green function at such long
term B, which is a factor bounded by a fixed exponentialtimes. The exact propagator was obtained by numeri-
multiplied by an algebraically decaying prefactor. Thuscal Fourier transform of the exact energy Green function
for the Eckart barrier; the latter was calculated in [4]. In
Figs. 3and 5i = 1.

Inverted Harmonic Oscillator—In Ref. [5], Wigner
functions are used to show that tunneling at energies
below the inverted harmonic oscillator arises through
real trajectories with above-barrier energies. However, an

FIG. 1. A quasiclassical view of the propagator
G(10,T;—10,0) in phase space(r =T/2) (see text).
As time evolves, the density dies exponentially; only at very 0
dense seeding of initial conditions will the thin manifold be

seen. “Tunneling loops” develop. Phase space contours afelG. 2. The classically forbidden processes of tunneling
overlaid. through a barrier (1) and above-barrier reflection (2).
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0.08 ~ . . . . barrier region, the transmission probability decreases, yet
. exact . beyond the barrier the motion is free so there must be no
e semiclassical : i '
0.04 L A "loop" 1 amplitude loss [3,7]. The tunneling terf dominant at
' long times, is resonant at below-barrier energies, so also
dominates the Fourier integral there. One may therefore
eliminate theA term when calculating the tunneling, at
least in the largéx, |, |x,| limit.
The Fourier transform of th& term can be performed
! by stationary phase; in the largg |, |x,| limit the result is
-0.08L : . s s the usual WKB below-barrier tunneling amplitude which
30 50 70 90 110 we now show. This is not a contour deformation on zhe
T term; rather, botld and B exist as distinct contributions.
FIG. 3. Transmission throught = sech?x: G(30,T; —30,0). ~ When x; and x, are far from the barrier, the loops
approach energy contours of ene®¢7’), whereE(T) ~
2x}/T? is the energy needed to arrive at the barrier in time
essential physical aspect of the barrier problem is that it"/2. The loop contribution then follows from Eg. (1),
asymptotes to a flat potential, a property which the inversgvhere we substitut&(T) in place of the classical energy
harmonic potential does not share. This has profound . The stationary phase point in the time-energy Fourier
analytic consequences, introducing a branch structure afansform of this at energk, is given by
trajectories in the complex plane [6,7]. In the inverted %y 9E
harmonic case, no tunneling loops develop, since a— [ - =
vertical line atx = x; representing the initial phase space T Ar- Ju PE) oT
density always only shears because the dynamics is linear. 3)
The conven;ional semicla_ssical propagator (which pickyow, by definition] = 2 f;]” dx/ peer(x), where—xz
up the classically allowed intersection of the forward ands the (left-hand) turning point at energg(T). This

backward propagated pieces) is exact in this case. Ngeans the first two terms of Eq. (3) together give
tunneling trajectories exist to compete with the classically

Re G(30,T:-30,0)
-0.04}

T" — E(T*) + Eyp = 0.

T*

X7 / :
allowed ones. The tunneling loops are also suppressed—; ] T_d JE| i 235 = ”TE(T),
even for the Eckart-type barriers ], |x,| are near —xr |PEEH(X)] 0T 7 T |x:1 1

the barrier, where the problem begins to look harmonicyhere the integral is calculated for the case of the Eckart
In this limit one m|ght hOpe the contribution to the barrier and we have used the |argﬁ_approximation
semiclassical propagator from the classical “over-thex(r) ~ 2x?/72 to evaluate the partial derivative. In
barrier” overlap would give reasonable results. This washe |argex, limit, this term is ignorable compared to
already successfully exploited in [2] and may be ofthe other two terms of Eq. (3) as it is suppressed by a
practical significance. . . factor of 1/|x;|. The stationary phase condition becomes
_ The Energy Domair—We now consider the probabil- g(7+) = E,. This (real) stationary phase point is the
ity of tunneling fromyx, to x; at energyE < Vmax. Con-  time at which a loop of energy, (below the barrier)
sider the idea that the classically allowed term is sufficienfas formed at timd'/2, i.e., particles of energyg, have

to use in the numerical transform. The thinking is as fol-jyst reached their (left-hand) turning point at the barrier
lows: The complex-time stationary phase integral (leadin time 7/2. The prefactor for the stationary phase
ing to standard WKB results) is an approximation to thejntegral is then calculated from the second derivative of
Fourier transform over the (primitive) semiclassical propathe exponent and, under the largeapproximation, gives

gator (termA); therefore, doing the Fourier transform nu- 5 ;5 I dx/p% (). Gathering all factors, we find
merically should yield a better result. However, the first B 0

i [X0 P2 1[0
phrase is incorrect: The integral through the complex Gl BT /A g7 e’ f.q pdxt5 fxU pdx=g ffm Ipldx
saddle point isnot the same integral as the real-time in- Be = e () ’
tegral. For general end points and barrier potentials, a =~ ihp(x)p(x2) 4
branch cut in the complex-time plane makes the integral (4)

along the complex contour distinct from that along the realwhich is exactly the WKB result. p, xy, etc., are the
time contour. In fact, in a numerical fast Fourier trans-momentum and turning point at enerdy,. We note
form (FFT),term B must be added to term A as separatethat (4) is also the result of a “FFT” of thelassical
contributions to the amplitude This is in tune with the term A but along the complex-time contour through the
essence of the semiclassical limit to Feynman’s path intesaddle point. We stress again that this is not the same
gral, which requires a sum over distinct, stationary pathsintegral as the real-time FFT of tersndue to the branch
The numerical FFT of the semiclassical tesyshows a cut. We refer the reader to Ref. [7] for a discussion
nonphysical end-point dependence at energies below thef the branch structure of the primitive semiclassical
barrier; as the end points ; are moved out beyond the propagator (termA) in the complex-time plane. Here
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FIG. 4. A quasiclassical view of the propagator 10 30 50 T 70 90
G(—10,T;—-10,0) in phase space t(= T/2, see text).
In this intermediate time range, where there is no classical FIG. 5. The reflection propagatGt(—30,T; —30,0).
reflection, contours resembling above-barrier energy contours
have formed, suggesting a quantum reflection contribution.

Fig. 4, we show the quasiclassical picture for reflection

L where we now take the overlap of thig/2-evolved line
we note that this is different yet closely related to theg. x, with its mirror image through the axis. The lat-

yvell-known_ branch structure of the classical traject(_)ries[er representsx, (—7/2)). We see contours resembling
in the barrier, where branch cuts separate topologicallynergy contours above the separatrix (Fig. 2), classically
distinct paths d|ffer|ng in the number of passes _under disconnected, but across which quantum above-barrier re-
the barrlt_er [6’7].' This structure leaves its imprint ongection oceurs, In analogy to the tunneling case, we may
the classical actios(x;, x, T) and, consequently, on the o\4;ate the quantum reflection contribution at tify&p-
semiclassical propagator. Whether the branch structurg,qimating the phase space distribution at an intermediate

exists is determined by whether singularities of the; o by an energy contour at the energy of the trajectory

potential in the complex plane may be reached in finit§ i has reached = 0 at time7/2. We then analyti-
(complex) time [6,7]. Thus the semiclassical propagato%a”y continue the semiclassical reflection propagator to

for the harmonic oscillator is entire, but not so for_ this above-barrier energy, just as in the tunneling loop case.

the Eth?rt barrier. r\:Ve ?}lsol suspect (althEUQh this i plot the result in Fig. 5, where our quantum reflection
},’ﬁtdéo oe r}rg\genh)_ tdaL tt? ar%dlxll,lxsz, rtE*e' m%re contribution (missing in the primitive semiclassical propa-
ldden™ Is 7, behind the branch cut, wherg; is the gator) well reproduces the oscillations at shorter times.
complex time satisfying th? stationary phase condition E.J.H. thanks Bill Miller for energetic discussions
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