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Barrier Tunneling and Reflection in the Time and Energy Domains:
The Battle of the Exponentials

N. T. Maitra and E. J. Heller
Department of Physics and Harvard-Smithsonian Center for Astrophysics, Harvard University, Cambridge, Massachusetts

(Received 24 January 1997)

The issue of quantum barrier crossing and reflection in the time domain is addressed. We find that
(1) classically forbidden barrier tunneling and above-barrier reflection are well-defined and important
processes in the time domain, (2) classically forbidden processes can overshadow allowed ones when
both are present, and (3) classically allowed trajectories in the time domain are not, in general, sufficient
to explain tunneling amplitudes in the energy domain. We also make clear the essential distinction of
barriers which flatten out at large distance and those which do not. [S0031-9007(97)03010-X]

PACS numbers: 03.65.Sq, 31.15.Kb
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Tunneling through (or reflection from) a barrier at fixe
energyE is well understood from a semiclassical (WKB
perspective. WKB theory involves the use of compl
trajectories which travel partly in imaginary time in orde
to penetrate the barrier. The same barrier problems in
time domain have received much less scrutiny, and h
caused confusion at times, due to some subtleties wh
we expose here. For example:is there any tunneling in
the time domain across a barrier, since classical trajecto
can always be found which connect two positions, one
each side of the barrier? The probability amplitude fo
particle initially atx1 to be found atx2 after timeT is given
semiclassically by the propagator,

Gscsx2, T ; x1, 0d 
X

cl2paths

1
p

2pih̄

p
V esiy"d Scl2inpy2,

(1)

which is the classical limit of Feynman’s path integral [1
The sum goes over all classical paths linkingx1 to x2 in
time T , and Scl  Sclsx2, x1, Td 

Rx2

x1
pclsxddx 2 EclT

is the action along that path.pclsxd 
p

2mfEcl 2 V sxdg
is the classical momentum atx of a particle with en-
ergy Ecl, and Ecl is determined by the classical relatio
T  m

Rx2

x1
dxypclsxd. V is the Van Vleck determinan

j≠2Scly≠x2≠x1j and n is the Maslov index. Consider a
transmission problem wherex1 andx2 are on the left and
right sides, respectively, of a barrier in an otherwise co
stant potential. At any real timeT there is exactly one
classical path withEcl . Vmax which contributes in (1).
So the barrier problem in the time domain seemingly do
not involve “tunneling” or classically forbidden paths. I
order to obtain the semiclassical energy domain Gre
function, one performs the Fourier transform by statio
ary phase:

Gscsx2, x1; Ed 
1
ih̄

Z
sp

eiETy h̄Gscsx2, T ; x1, 0ddT . (2)

However, for energies below the barrier top, no real-tim
stationary phase point is found, forcing a search in
complex-time plane for a saddle point. The search is
0031-9007y97y78(16)y3035(4)$10.00
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warded with the well-known classically forbidden imag
nary time tunneling trajectories, which asymptotically giv
the correct WKB fixed energy tunneling amplitudes (tran

mission,e
2

Ra2

a1
jpcljdxy h̄

, wherea1,2 are the classical turn-
ing points at energyE). Suppose the semiclassical tim
domain Green function is very accurate. Then a cor
spondingly accurate energy domain result would follo
from numericalFourier transform and would be differen
numerically from stationary phase evaluation. It is thu
tempting to think that if the original (real-time) Fourie
transform over the semiclassical propagator were p
formednumerically(rather than by stationary phase) on
would get an even better result. Strangely, such a res
would be given only in terms of classically allowed ove
the-barrier trajectories [sinceGscsx2, T ; x1, 0d is]. The
smallness of the tunneling amplitude in this view would b
due to the rapid oscillation of the integrand. This metho
was considered in recent work [2]. It is reinforced b
analogy with certainuniformizationsin semiclassical the-
ory, in which troublesome semiclassical amplitudes are
placed by more accurate, “uniform” ones, which can com
from an integral expression. The foundation of such
idea was, however, called into doubt in [3], and the situ
tion remained cloudy. Here, we show that the numeric
time-energy Fourier integral, using above-barrier inform
tion, is indeed inadequate. In fact, below-barrier tunneli
trajectories are neededeven in the time domainin certain
regimes, where for finitēh theydominatethe classically al-
lowed result. Moreover, they dominate the Fourier tran
form at below-barrier energies.

The Time Domain.—The semiclassical recipe (1) fo
the time Green function calls only for ordinary rea
time classical paths linkingx1 to x2 in time T . For
definiteness, we consider a quasiclassical phase sp
view of propagation across a symmetric Eckart barr
V0 sech2x and take mass1. A state jxl may be repre-
sented by a vertical line throughx corresponding to mo-
mentum being completely unspecified when the positi
is exactly known. Sincekx2 j x1stdl  kx2je2iHty h̄jx1l 
kx2jseiHty2 h̄dye2iHty2 h̄jx1l  kx2s2ty2djx1sty2dl, we may
© 1997 The American Physical Society 3035
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represent the propagator by the overlap of the phase sp
distribution from a vertical line atx1 evolved for timeTy2
with that of a vertical line atx2 evolved backward in time
for Ty2. In Fig. 1 we focus on the casex1  2x2 , 0
andV0  1. We have shown the phase space distributi
at four successive times. At first, this distribution simp
shears, as it would for free particle motion. Only ver
high energy trajectories reach the interaction region.
time evolves, lower energy trajectories arrive near the b
rier. The classical overlap of the forward and backwa
propagated distributions is proportional to the Van Vlec
determinant. Because of the separatrix and the conco
mitant exponential instability, the density of trajectories
the intersectionx  0 (classically allowed above-barrie
trajectories) falls away exponentially rapidly. In the plot
we have propagated a finite uniform density of seve
hundred trajectories along the initial line; after some tim
st  10d, the density at the separatrix is so low that th
manifold is not seen atx  0. We call this contribution
to the time Green function theA term (classically allowed,
over the barrier). At the same time, however, we s
a below-barrier loop structure developing with a health
density. At timet  10, for example, trajectories of a
certain energy (belowV0) have just reached the barrie
and are beginning to turn around. The loops are stron
suggestive of a tunneling contribution to the propagat
since they are very similar to the fixed energy manifol
(Fig. 2) which tunnel across the barrier in the energy d
main. The loops fromx1 andx2 make no contribution in
the primitive semiclassical limit as they do not overla
However, if we includetunneling between these loops
we have a second contribution to the time Green functio
term B. For finite, fixedh̄, a “battle of the exponentials”
ensues. The classical termA Van Vleck prefactor, which
dies exponentially in time, is pitted against the tunnelin
term B, which is a factor bounded by a fixed exponenti
multiplied by an algebraically decaying prefactor. Thu

FIG. 1. A quasiclassical view of the propagato
Gs10, T ; 210, 0d in phase spacest  Ty2d (see text).
As time evolves, the density dies exponentially; only at ve
dense seeding of initial conditions will the thin manifold b
seen. “Tunneling loops” develop. Phase space contours
overlaid.
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the battle is always lost by the classical termA at long
times. For the Eckart barrier and end points far fro
the interaction region, tunneling overtakes the classi
contribution whene2psv22xyTdy h̄y

p
T .

p
vy2 ex2vTy2.

The right-hand side of this is the square root of the lon
time limit of the Van Vleck determinant (termA), which
determines the magnitude of the semiclassical propaga
and v is the frequency of the (inverted) oscillator in th
harmonic approximation to the barrier top. The left-han
side is the tunneling contribution (termB) at long times
and far end points. To evaluate this, we observe that
this limit the loops approach energy contours, and so
issue of getting across the barrier region becomes ident
to the energy tunneling problem. The energy of traject
ries arriving at the barrier changes only slowly with time
Moreover, as time increases, the trajectories arriving fro
the distant points are of lower and lower energy, so t
loop “falls through” successively lower energies as tim
increases. The tunneling part of the amplitude at a giv
time then follows from the usual energy tunneling at th
energy of the arriving trajectories, suitably weighted b
their number density. We use expression (1) but sub
tute the (time-dependent) energy of the loop for the cla
sical energy. This gives the left-hand side of the abo
inequality: The density on the loops falls off as1yT ,
much slower than the exponential falloff of the classic
contribution. Once we have reached the crossover tim
tunneling dominates the classically allowed contributio.
Indeed, the conventional semiclassical propagator us
only above-barrier trajectories becomes a much wo
approximation at longer times. This is seen in Fig.
which shows the exact Green function and the “primitive
semiclassical result, which collapses nearT  50. Also
shown is the “loop” contribution, which does an exce
lent job representing the full Green function at such lon
times. The exact propagator was obtained by nume
cal Fourier transform of the exact energy Green functi
for the Eckart barrier; the latter was calculated in [4]. I
Figs. 3 and 5,̄h  1.

Inverted Harmonic Oscillator.—In Ref. [5], Wigner
functions are used to show that tunneling at energ
below the inverted harmonic oscillator arises throug
real trajectories with above-barrier energies. However,

FIG. 2. The classically forbidden processes of tunnelin
through a barrier (1) and above-barrier reflection (2).
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FIG. 3. Transmission throughV  sech2x: Gs30, T ; 230, 0d.

essential physical aspect of the barrier problem is tha
asymptotes to a flat potential, a property which the inve
harmonic potential does not share. This has profou
analytic consequences, introducing a branch structure
trajectories in the complex plane [6,7]. In the inverte
harmonic case, no tunneling loops develop, since
vertical line atx  x1 representing the initial phase spac
density always only shears because the dynamics is lin
The conventional semiclassical propagator (which pic
up the classically allowed intersection of the forward a
backward propagated pieces) is exact in this case.
tunneling trajectories exist to compete with the classica
allowed ones. The tunneling loops are also suppres
even for the Eckart-type barriers ifjx1j, jx2j are near
the barrier, where the problem begins to look harmon
In this limit one might hope the contribution to th
semiclassical propagator from the classical “over-th
barrier” overlap would give reasonable results. This w
already successfully exploited in [2] and may be
practical significance.

The Energy Domain.—We now consider the probabil
ity of tunneling fromx1 to x2 at energyE , Vmax. Con-
sider the idea that the classically allowed term is sufficie
to use in the numerical transform. The thinking is as f
lows: The complex-time stationary phase integral (lea
ing to standard WKB results) is an approximation to t
Fourier transform over the (primitive) semiclassical prop
gator (termA); therefore, doing the Fourier transform nu
merically should yield a better result. However, the fir
phrase is incorrect: The integral through the comp
saddle point isnot the same integral as the real-time in
tegral. For general end points and barrier potentials
branch cut in the complex-time plane makes the integ
along the complex contour distinct from that along the re
time contour. In fact, in a numerical fast Fourier tran
form (FFT), term B must be added to term A as separa
contributions to the amplitude. This is in tune with the
essence of the semiclassical limit to Feynman’s path in
gral, which requires a sum over distinct, stationary pat
The numerical FFT of the semiclassical termA shows a
nonphysical end-point dependence at energies below
barrier; as the end pointsx1,2 are moved out beyond the
it
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barrier region, the transmission probability decreases,
beyond the barrier the motion is free so there must be
amplitude loss [3,7]. The tunneling termB, dominant at
long times, is resonant at below-barrier energies, so a
dominates the Fourier integral there. One may therefo
eliminate theA term when calculating the tunneling, a
least in the largejx1j, jx2j limit.

The Fourier transform of theB term can be performed
by stationary phase; in the largejx1j, jx2j limit the result is
the usual WKB below-barrier tunneling amplitude whic
we now show. This is not a contour deformation on theA
term; rather, bothA andB exist as distinct contributions.
When x1 and x2 are far from the barrier, the loops
approach energy contours of energyEsT d, whereEsT d ,
2x2

1yT 2 is the energy needed to arrive at the barrier in tim
Ty2. The loop contribution then follows from Eq. (1)
where we substituteEsTd in place of the classical energy
Ecl. The stationary phase point in the time-energy Four
transform of this at energyE0 is given by

≠E
≠T

Ç
T p

Z x2

x1

dx
pEsTpd

2
≠E
≠T

Ç
Tp

Tp 2 EsTpd 1 E0  0 .

(3)

Now, by definition,T  2
R2xT

x1
dxypEsTdsxd, where2xT

is the (left-hand) turning point at energyEsT d. This
means the first two terms of Eq. (3) together give

2i
Z xT p

2xT

dx
jpEsTpdsxdj

≠E
≠T

Ç
Tp

, ip

p
2E

Tp


ipEsT d
jx1j

,

where the integral is calculated for the case of the Eck
barrier and we have used the large-x1 approximation
EsT d , 2x2

1yT2 to evaluate the partial derivative. In
the large-x1 limit, this term is ignorable compared to
the other two terms of Eq. (3) as it is suppressed by
factor of 1yjx1j. The stationary phase condition become
EsT pd  E0. This (real) stationary phase point is th
time at which a loop of energyE0 (below the barrier)
has formed at timeTy2, i.e., particles of energyE0 have
just reached their (left-hand) turning point at the barri
in time Ty2. The prefactor for the stationary phas
integral is then calculated from the second derivative
the exponent and, under the large-x1 approximation, gives
2pih̄

Rx2

x1
dxyp3

E0sTpd. Gathering all factors, we findZ
sp

GBeiE0Ty h̄dT 
e

i

h̄

R
2x0

x1
pdx1 i

h̄

Rx2

x0
p dx2 1

h̄

Rx0

2x0
jpjdx

ih̄
p

psx1dpsx2d
,

(4)

which is exactly the WKB result. p, x0, etc., are the
momentum and turning point at energyE0. We note
that (4) is also the result of a “FFT” of theclassical
term A but along the complex-time contour through th
saddle point. We stress again that this is not the sa
integral as the real-time FFT of termA due to the branch
cut. We refer the reader to Ref. [7] for a discussio
of the branch structure of the primitive semiclassic
propagator (termA) in the complex-time plane. Here
3037
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FIG. 4. A quasiclassical view of the propagato
Gs210, T ; 210, 0d in phase space (t  Ty2, see text).
In this intermediate time range, where there is no classi
reflection, contours resembling above-barrier energy conto
have formed, suggesting a quantum reflection contribution.

we note that this is different yet closely related to th
well-known branch structure of the classical trajectori
in the barrier, where branch cuts separate topologica
distinct paths differing in the number of passes “unde
the barrier [6,7]. This structure leaves its imprint o
the classical actionSsx1, x2, T d and, consequently, on the
semiclassical propagator. Whether the branch struct
exists is determined by whether singularities of th
potential in the complex plane may be reached in fin
(complex) time [6,7]. Thus the semiclassical propaga
for the harmonic oscillator is entire, but not so fo
the Eckart barrier. We also suspect (although this
yet to be proven) that the largerjx1j, jx2j, the more
“hidden” is Tp

A behind the branch cut, whereTp
A is the

complex time satisfying the stationary phase conditi
at E , V0 for term A. This happens because of th
large real-time propagation outside the barrier region. T
contribution from Tp

A is equal to that from the saddle
point from term B at the real timeResTp

Ad, as shown
above. This is independent of any real-time contributio
from termA (e.g., from a numerical FFT) which vanishe
in this limit of far end points. For smalljx1j, jx2j, termB
does not exist, and the problem looks harmonic. Inde
in this case, the complex saddle point from termA is near
the branch point, and a permitted contour deformati
could pick it up. The distinctness of theA term and
integral through the complex saddle point is thus blurr
in the smalljx1j, jx2j limit.

Barrier Reflection.—A similar analysis may also be ap
plied to quantum reflection above a barrier. Takingx2 
x1 to the left of the barrier in the propagator (1) involve
summing over classical paths which have returned after
flection from the barrier as well as the fixed zero-ener
trajectory. Clearly, these have energies below the barr
Until a certain time, real trajectories have not had time
reach the barrier and turn around; only the zero-ener
fixed classical path contributes to the semiclassical a
plitude. Quantum above-barrier reflection [process (2)
Fig. 2] plays an important role in this time regime as r
flected amplitude interferes with the zero-energy path.
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FIG. 5. The reflection propagatorGs230, T ; 230, 0d.

Fig. 4, we show the quasiclassical picture for reflectio
where we now take the overlap of theTy2-evolved line
from x1 with its mirror image through thex axis. The lat-
ter representsjx1s2Ty2dl. We see contours resembling
energy contours above the separatrix (Fig. 2), classica
disconnected, but across which quantum above-barrier
flection occurs. In analogy to the tunneling case, we ma
evaluate the quantum reflection contribution at timeT , ap-
proximating the phase space distribution at an intermedia
time by an energy contour at the energy of the trajecto
which has reachedx  0 at timeTy2. We then analyti-
cally continue the semiclassical reflection propagator
this above-barrier energy, just as in the tunneling loop cas
We plot the result in Fig. 5, where our quantum reflectio
contribution (missing in the primitive semiclassical propa
gator) well reproduces the oscillations at shorter times.
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