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The bilayer Heisenberg antiferromagnet is known to exhibit a quantum-critical transition at a
particular value of the interlayer coupling. Using a new type of coherent state, appropriate to th
special order parameter structure of the bilayer, we map the problem onto the quantum nonline
sigma model. It is found that the bare coupling constant diverges at the classical transition, so th
in any finite dimension the actual transition occurs inside the ordered phase of the classical theor
[S0031-9007(97)02986-4]
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The study of nonclassical collective quantum states
matter is a central theme of modern condensed ma
physics. Despite the successes in1 1 1 dimensions, it has
proven difficult to address these matters in higher dime
sions. Either the minus-sign problem intervenes (as
e.g., thet-J model and frustrated spin models), or the te
dency towards classical order is too strong (e.g., unfru
trated spin models). The class of bilayer Heisenberg mod
is special in this regard [1,2]. It is sign-free, and con
vincing numerical evidence exists showing that its lon
wavelength behavior is governed by theOs3d quantum
nonlinear sigma model (QNLS) with tunable bare couplin
constantu [3]. The relationship between the microscop
model and its long wavelength behavior is nontrivia
Chubukov and Morr (CM) made the key observation tha
in order to construct the classical limit, the severe loc
(interplanar) fluctuations have to be integrated out first [4
In the resulting singlet-triplet representation, a phase tra
sition between a Néel state and an incompressible stat
found already at the classical level. Here it is shown th
this transition does not correspond to the quantum cr
cal transition found in numerical studies. Because of t
special structure of the order parameter, the standard SUs2d
generalized spin coherent state does not suffice for the c
struction of the path integral. We introduce a novel typ
of coherent state which allows us to straightforwardly r
cover the QNLS describing the long wavelength behavi
We find that the bare coupling constant of the field theo
diverges at the classical transition. The quantum phase
transition therefore occurs well before the classical tra
sition can occur, and the latter is therefore in any fini
dimension an artifact. Our results are consistent with t
indications of quantum criticality found by CM.

It is convenient to consider the “bilayer” model in
arbitrary dimensions, with an added magnetic field ($B),

H  J1

X
kijl

s$si1 ? $sj1 1 $si2 ? $sj2d

1 J2

X
i

$si1 ? $si2 2 $B ?
X

i

s$si1 1 $si2d , (1)

where kijl runs over the bonds of twod-dimensional
hypercubes 1 and 2. The antiferromagnetically coupl
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(J1 . 0) s 
1
2 Heisenberg spins$sih are coupled locally

by J2. Following CM, we first integrate out theJ2 term
[4,5]. Define the sum and the difference of the sp
operators,

$S  $s1 1 $s2; $̃S  $s1 2 $s2 , (2)

such that

H 
1
2

J1

X
kijl

s $Si ? $Sj 1
$̃Si ?

$̃Sjd

1
1
4

J2

X
i

s $S2
i 2

$̃S2
i d 2 $B ?

X
i

$Si . (3)

Equation (2) amounts to a transformation to a single
triplet basis. Introducing hard-core bosons creating t
local singlet state,a

y
i 

1
p

2
scy

i1#c
y
i2" 2 c

y
i1"c

y
i2#d, and the

local triplet b
y
i1,0,21 (b

y
1i  c

y
i1"c

y
i2" etc.), Eq. (2) can be

alternatively written as

Sz  b
y
1 b1 2 b

y
21b21 ,

S1 
p

2 sby
1 b0 1 b

y
0 b21d ,

S̃z  2ayb0 2 b
y
0 a ,

(4)

S̃1 
p

2 sby
1 a 2 ayb21d .

$S describesS  1 spins, while $̃S is related to fluctuations
from triplets to singlets. These operators form anos4d
dynamical algebra,

fSa , Sbg  i´abcSc, (5)

fS̃a , S̃bg  i´abcSc, (6)

fSa , S̃bg  i´abcS̃c. (7)

At the J2  0 point (two decoupled layers) the problem
has anOs4d global invariance, which is broken for any
finite J2, leaving only an invariance under the SUs2d
subgroup Eq. (5). The unconventional aspect of th
problem is that for positiveJ2 the spontaneous symmetr
breaking involves the generatorsS̃. TheJ2 . 0 classical
© 1997 The American Physical Society 3019
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saddle-point of CM is easily seen to correspond to th
vacuum amplitudes (z  2d),

$̃
V 

1
N

øX
i

s21di $̃Si

¿


vuut1 2
J2

2

J2
1 z2

QsJ1z 2 J2dn̂ ,

(8)

nA 
1
N

øX
i

a
y
i ai

¿


1
2

µ
1 1

J2

J1z

∂
QsJ1z 2 J2d

1 QsJ2 2 J1zd , (9)

wheren̂ is a vector on the unit sphere. The condensatio
of $̃S [Eq. (8)] and the existence of a mean singlet densi
[Eq. (9)] is a direct ramification of the explicit symmetry
breaking due to the interplanar coupling.$̃V is still a
vector order parameter, because$̃S transforms as a vector
under $S. It is therefore a Néel order state, albeit one wit
a variable local moment size, which implies that its lon
wavelength behavior should be described by the QNLS

On the classical level it is found thatnA is nonzero for
all positiveJ2, while $̃

V vanishes continuously atJ2  J1z,
wherenA becomes equal to one. This is the lowest ord
result found by CM. Regarding its formal status, it is easi
seen that this classical theorybecomes exact in infinite
dimensions[5,6]. The energy fluctuations disappear in thi
limit: DEyE ~ 1y

p
Nd. In addition, we note that$̃V also

exists ins2 1 1dD, at least in the vicinity of the quantum
critical point: the correlation functions in terms of$s1 and$s2
go to zero at the transition with their ratios fixed accordin
to Eq. (8) [3].

What is wrong with the assertion that this transitio
and the quantum-critical transition ins2 1 1dD are the
same? The transition in infinite dimensions is aclassical
transition. In terms of the singlet-triplet basis, the quan
tum fluctuations disappear at the lattice cutoff and therm
fluctuations dominate at any finite temperature. The n
merical study shows quantum criticality [3]: at zero tem
perature, the quantum fluctuations are scale independ
In the remainder we will show that this classical theor
becomes pathological in the neighborhood of the classic
transition.

Coherent state path integrals offer a convenient fram
work to study quantum order parameter fluctuations [7
Because of the special status of the order parame
Eq. (8), the usual generalized spin coherent states do
suffice. Our key result is the discovery of a special cohe
ent state for this type of order parameter structure. Ne
to the general requirements of normalizability and the e
istence of the identity, it should be demanded from cohe
ent states that they reproduce all properties of the classi
sector. Besides reproducing Eqs. (8) and (9), they sho
also allow for an$S derived vacuum expectation value,

$V 
1
N

øX
i

$Si

¿
. (10)

We find that the following coherent state satisfies all the
requirements:
3020
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jVṼl  eifSz

eiuSy

eiu2Sx

eic S̃y

jxl , (11)

with the reference state,

jxl  scosxay 1 sinxb
y
0 d jvacl . (12)

Equation (11) looks conventional. It refers to the var
ous rotations related to theOs4d symmetry. The novelty
is Eq. (12): instead of the usual maximum weight stat
this nonexact state underlies the order parameter struc
Eqs. (8) and (9), with$̃

V chosen along thez axis, whilex is
fixed by the explicit symmetry breaking interaction,J2.
The freedom implied by Eq. (11) might at first instanc
appear as redundant. However, it turns out that the st
ness in the temporal direction is caused entirely by t
fluctuations from $̃

V into the $V direction, and the four
angles appearing in Eq. (12) take care of the independ
rotations of $̃

V and $V. Explicitly, c parametrizes a rota-
tion from $̃

V to $V'
$̃

V ( $S ?
$̃S  0). The rotation of $̃

V in
the plane perpendicular to$V is parametrized byu2. This

is the only free rotation left to$̃
V in a magnetic field. u

andf fix the direction of $V.
We obtain the following expressions for the vacuum

amplitudes with respect to this coherent state

nA  cos2 x cos2 c , (13)

$V  sin2x sincs2 cosu cosf, 2 cosu sinf, sinud ,
(14)

$̃
V  sin2x coscfcosu2ûsu, fd 2 sinu2f̂sfdg , (15)

where û and f̂ are the local unit vectors in theu
andf directions,û  ssinu cosf, sinu sinf, cosud and
f̂  ssinf, 2 cosf, 0d. The identity becomes

1 
Z

dms $V, $̃
Vd jVṼl kVṼj


2

p4

Z py2

0
dx

Z py2

0
dc

Z 2p

0
du2 (16)

3
Z 2p

0
df

Z py2

2py2
du cosujVṼl kVṼj .

By taking expectation values with regard tojVṼl
(classical limit), we find theOs3d invariant version of the
mean-field theory of Chubukov and Morr. Minimization
of the classical energy with regard to the coherent sta
angles yields

cos2x0 
J2

J1z
1 O sB2d , (17)

sinc0 
B

J1z

s
J1z 2 J2

J1z 1 J2
1 O sB2d , (18)

with u and f fixed such that $V points in the direction
of the magnetic field. We recover the classical orde
disorder transition atJ2  J1z, where bothṼ and the
induced magnetizationV vanish according to Eqs. (14)
and (15).
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The derivation of the path integral is standard [7
Using the Trotter formula, the evolution operator i
imaginary time is written as (Nt is the number of time
slices,dt the imaginary time interval,Ntdt  b),

Z  lim
Nt!`

dt !0

Tr t

NtY
l1

e2dt

P
i
Hi . (19)

Inserting the identity (16) at every intermediary time an
expandingZ to lowest order indt,

Z  lim
Nt !`

dt !0

Z
D m

NtY
l1

Y
i

fkVṼstl , id j VṼstl11, idl

2 dtkVṼstl , idjHijVṼstl , idlg , (20)

where the integration measureD m is given byQNt
l1 dmsh $Vlj, h $̃

Vljd, while htlj is the set of interme-
diary times in the imaginary time interval [0, b]. The
kinetic term in the action follows from the first term
inside the square brackets,Y

i

kVṼstl , id jVṼstl11, idl  1 1 idtFstld 1 O sd2
t d ,

(21)

with

F 
X

i

sin2xi sincissinul≠tfi 1 ≠tu2id

 2
X

i

sin2xi
$Oi ? ≠t

$̃Oi

Õi
3

$̃Oi

Õi
, (22)

where $O  $Vy sin2x and $̃O  $̃
Vy sin2x, so O2 1

Õ2  1.
The potential energy is (B  0),

V 
J1

2

X
ki,jl

sin2xi sin2xjs $Oi ? $Oj 1
$̃Oi ?

$̃Ojd

1
1
4

J2

X
i

s1 2 4Õ2
i cos2 xid . (23)

Taking the time continuum limit, the path integra
becomesZ 

R
D me2SM , with the real-time action

SM 
Z T

0
dx0f2Fsx0d 1 V sx0dg . (24)

To derive the long wavelength theory,$O and $̃O are
separated into a slowly varying order-parameter part a
a rapidly fluctuating part which will be integrated out
The fluctuations inx are massive because of the explic
symmetry breaking, and can be neglected. We are l
with

$̃Oi  his $̃mi 1 a $̃Lkid 1 a $̃L'i , (25)

$Oi  $mi 1 a $Li . (26)

The (staggered) fluctuation$̃Lki is parallel to the order
parameter$̃mi (hi  61 depending on the sublattice).$L
has a component along$m, but is perpendicular to$̃m
].
n

d

l

nd
.
it
eft

because of the constraint$Oi ?
$̃Oi  0. As we already

indicated, despite the fact that the order-parameter p
of $O is zero in the absence of a magnetic field, th
fluctuations in this quantity are actually producing th
stiffness in the time direction and should be carefull
integrated out. We expand to second order in the latti
constanta, which will be taken to zero at the end of
the calculation. Using the constraintO2

i 1 Õ2
i  1, the

fluctuation $̃Lki is eliminated from the action. Different
from the single-layer system, two canting fields resul
$̃L'i and $Li, which have to be integrated out. The forme
does not influence the long wavelength behavior, whi
the latter is responsible for the kinetic term in the effectiv
action.

After expanding ina and eliminating $̃Lk, the kinetic
term becomes

F  2
X

i

sin2xi
a

m̃2
i

$Li ? ≠0
$̃mi 3 $̃mi 1 stagg. terms.

(27)
Using $̃mi 2 $̃mj . a≠i!j

$̃mi , it can be seen that the
staggered terms give contributions which are of thir
order in a. The expression forF is identical to that for
the single-layer system, apart from the factor sin2x and
the absence of a topological term.Within the limitations
of the semiclassical expansion, the above derivation is
principle valid for any dimension, including the1 1 1
dimensional two leg spin ladder systems. The usu
argument for the irrelevance of topological terms in thes
systems are based on the proximity of Néel order on bo
chains separately: the topological terms in the two row
cancel each other. Here we find that this holds regardle
of the strength of the local fluctuations. We notice tha
according to Haldane’s conjecture [8], the spectrum of th
two leg ladder has to be gapped for anyJ2 fi 0.

The potential term is written in the form

V  J1

X
ki,jl

sin2xi sin2xj

3

∑
a2

4
s≠i!j

$̃mid2 1 a2sL2
i 1 L̃2

'id 2 2

∏
1 J2

X
i

a2L2
i cos2 xi 2

J2

4

X
i

s1 2 4 cos2 xid .

(28)
In the continuum limit (a ! 0), the summations over sites
are replaced by integrations over space,

P
i ! a2d

R
ddx.

TheO s1d term in Eq. (28), corresponding with the mean
field energy for the bilayer model, acquires a larg
prefactora2d and can be integrated by steepest desce
This yields the mean-field expression forx, Eq. (17).

After integrating over the fluctuations$L and $̃L' we
recover the effective action responsible for the lon
wavelength fluctuations, which is theOs3d QNLS,

SM 
1
2

Z
dd11x

∑
x's≠0

$̃md2 2 rs

dX
a1

s≠a
$̃md2

∏
.

(29)
3021
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Although the form of Eq. (29) is dictated by symmetry
the parameters appearing in the effective theory have
quite different meaning in terms of the microscopic mod
than is the case in single layer problems. Taking th
saddle-point values, the perpendicular susceptibility a
the spin stiffness become, respectively,

x'  a2d J1z 2 J2

J2
1 z2

, (30)

rs  a22d J1

2

µ
1 2

J2
2

J2
1 z2

∂
. (31)

Both the susceptibility and the spin stiffness vanish
the classical transition atJ2  zJ1. The spin-wave ve-
locity ys 

p
rsyx' remains finite at the transition, and

no divergencies occur on the Gaussian level [4]. The s
bility of the classical state against quantum melting i
however, controlled by the dimensionless coupling co
stantu  a12dyp

rsx', which is found todivergeat the
classical transition asu , 1yJp

2 , whereJp
2 is the reduced

interlayer couplingJp
2  sJ1z 2 J2dyJ2. In any finite

dimension, theOs3d QNLS quantum critical transition
occurs at a finite value of the coupling constant and
follows that the long wavelength fluctuations destroy th
Ṽ type Néel order before the classical critical point i
reached. Accordingly, the quantum critical transition o
the bilayer model is of theOs3d QNLS kind, and the clas-
sical transition exists only in infinite dimensions.

This theory is even quantitatively reasonable. One loo
renormalization theory for the QNLS in2 1 1 dimen-
sions puts the critical coupling atup  4p [9]. Using
the saddle-point values for the spin stiffness and susce
tibility [Eq. (31)], we find the quantum transition to oc-
cur at Jc

2 yJ1  3.3. Given that1yS-like corrections are
neglected [5], the agreement with the value of 2.5–2.6 o
tained from quantum Monte Carlo [3] and series expa
sions [2] is reasonable.

In summary, we have clarified the origin of the quan
tum critical transition of the bilayer Heisenberg problem
The key aspect is that the order parameter structure as
covered by Chubukov and Morr [4] is unusual. Althoug
this order parameter is macroscopically of the usualOs3d
vector kind, and therefore described by theOs3d quantum
nonlinear sigma model, its microscopic status is unco
ventional. The operators acquiring a vacuum amplitud
(S̃) are not the ones expressing the global SUs2d invari-
3022
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ance of the problem. This kind of order parameter stru
ture arises naturally in the present context and we expe
it to be quite common in the general context of quantu
magnetism [10]. Our main result is the discovery of a ne
type of spin coherent state which allows for the requan
zation of such order parameter structures. As applied
the bilayer problem, the novelty is that in any finite di
mension the classical theory becomes highly pathologic
the bare coupling constant of the field theory diverges
the classical transition, explaining why the quantum tran
sition obeysOs3d QNLS universality.
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