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Universality of Transport through Dirty Interfaces
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The distribution function of transmission matrix eigenvalues for an interface with a high density of
randomly distributed scatterers is calculated from the Schrodinger equation. The distribution function
is universal in the sense that it does not depend on the microscopic parameters. It differs, however,
from the well-known universal distribution for diffusive bulk conductors. [S0031-9007(97)02960-8]
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An important new concept in the theory of electronic The distribution function for disordered bulk conduc-
transport coming from the study of phase-coherent contors in the metallic regime (where < g < N with N
duction in disordered metals [1] isniversality,i.e. the the number of conduction channels) has been shown to be
independence of transport properties on the microscopigniversal [7—9]:
parameters. The best known example is provided by
the universal conductance fluctuations [2]: the sample to P(T) = o 1 4
sample fluctuations of the conductance are of the order of 2 TV1—-T°

2 . . . _
ge/rhé?ﬁ?ﬁ:ﬁ?ﬁ%?ﬂ;ﬁ;mple size, the degree Ofdlsorindependent of the shape of the conductor and of the

Here we focus on another property that may exhibitSpatial resistivity distribution. The distribution function
universality, namely, the distribution function of transmis- |shb|m0(|jal: mOTt elg;e(;lv?hljes z,r,e (;lther ?IOSQT(?F’?” .
sion matrix eigenvalues. The transmission mattik is channels) or close (cose' channe S)'. IS 1S 1N
the product of the transmission amplitude matriand its contrast to the naive assumption that all _elgenvalues are
Hermitian conjugate. The matrixcollects the transmis- much4srt1;]altler than f(_)rlg 3<<11(\)]' Itrl:pllhoyvs dllrectly ff[?]md
sion amplitudes of the flux-normalized states on the lefEd: “4) a{p)/<g> = 1/3] ]'.W ICh 1S only one-thir
hand side of a scattering region to those on the right han f the classical value for a Poisson process for which all

. L . - . < 1.
side. The distribution function of the eigenvaluEs of noe . o ,
the matrixtt! is defined as 9 Universality, however, has its limits. Either close to

the localization regimeg( = 1) [8] or close to the ballistic
P(T) = <Z 8(T — Tn)>, (1) regime g < N) [11] Eqg. (4) is no longer valid. Even in
P the metallic regime wheré < g < N the universality
where the brackets indicate averaging over all possibl&2" be broken by extended defects, such as tunnel barriers,
realizations of disorder in a given Hamiltonian. This 9rain boundaries, or interfaces [9].

distribution function can be used (see, for example, !N this Letter we consider transport through dirty
Ref. [3]) to express the average value of any quantity interfaces for which Eq. (4) does not hold. An interface

that is described by a linear statisti¢T) as is a scattering region with a lengthwhich is sufficiently
smaller than the Fermi wavelengily. The term “dirty”
(a) = <Z a(Tn)> = ] dT a(T)P(T). (2) implies thatg < N and that the scattering is due to a
n random potential. In contrast, the calculations which lead

The conductanceg (in units ¢2/h) is related to the !0 Eq.(4) are all in the weak scattering regime where

transmission matrix by the Landauer formula L> Ap. _ _ _ _
The main result of the microscopic calculation presented
g =Trttt = Z T,, (3) below is a universal distribution function for a single dirty
n interface which differs from Eq. (4) for bulk systems.

and is thus described by the linear statisgi@) = T.  In other words, dirty interfacesL(< Ar) belong to a
The shot noise powep (in units 2¢|V|e?/h with V the  different universality class than disordered bulk conductors
applied voltage) is described by the linear statigit) = (L > Ap).

T(1 — T) [4]. For a normal metdkuperconductor (NS) Besides the purely theoretical interest in the statistics of
junction the conductancgns and the shot noisens  transport, our study of dirty interfaces is also motivated
can also be expressed in terms of the transmission eigeby experiments on transport through metallic interfaces in
values of the normal-metal region by the linear statisticsnagnetic multilayers exhibiting giant magnetoresistance
gns(T) =2T%/(2 — T)*> [5] and pns(T) = 16T%(1 —  [12,13]. These interfaces strongly scatter electrons in a re-
T)/(2 — T)* [6], respectively. gion with a length comparable to or smaller thgn[14].
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Experiments of transport through a narrow disordered resubsequently expanding the exponent(éxt’):

gion in a two-dimensional electron gas are in progress dg . < (iq)"

[15]. With some modifications the present calculations P(T) = f 7. ¢ ar TRt (9)

are also applicable to other scattering problems, such as & n=0 M

the transparency of a thin, yet strongly diffusing mediumBYy using the Ward identities repeatedly and applying

to light. a slightly modified Stieltjes transform in the parameter
The scattering properties of an interface for states ay = m?, this expression can be rewritten for< 7 < 1

the Fermi energyr follow directly from the Schrédinger as [11]

equation 1 1 nT . +> B ﬂ
P ) ) ) PO = a1 Im[<g<T —1 T 0) s
|29 4 V) [ ) = Erd ). () (10)
with g(n) = TrttT and0™ a positive infinitesimal. By

\ivherem is the e_Iectron mass. F.or arbitrary dimensifjn calculating(t) we obtain the conductance froa()) =
p is thed — 1 dimensional position vector orthogonal to pa1y(t)].~ Average quantities are obtained by configura-
the x direction. The scattering potential at the interface;jgng| averaging over the random impurity positiops
is queted_by short range scatterers with strengthat 15t are uniformly distributed.
position, in the planex = 0: The elements of the Green function matgkt are
related to the transmission amplitudes by [18]
V(.p) = 2 7a6(x)8(5 ~ pa). (6) e
@ g = 0 ko k' G,{” E (11)
The free electron states on both sides of the interface can
be labeled by the/ — 1 dimensional parallel component The elements of the unperturbed Green function matrix

of the wave vectok;. The perpendicular part of the wave G " are given by

vector k, is then defined in terms of the Fermi wave O _ O 1 5 - 12
vector kr = «2ZmEr/h as ki = kr — kj. From the Grir =Gy Oty = ~igz PR (12)

Schrédinger equation (5) all transmission and reerctionF £ 8) and (11 ion for the G f
amplitudes corresponding to an incoming staﬁecan rom Egs. (8) and (11) an expansion for the Green func-

be obtained [16]. The present calculations are in th ion is obtained. The configurational averages of the dif-
regime where the transverse dimensions of the interfac erent terms in this expansion can be calcu'lated using
are much larger thany. Scattering to evanescent states lagrammatic pgrturbatlon theory [161' The irreducible
with imaginaryk, is disregarded, since they affect only self-energy matrlx_E relates the configurationally aver-
the conductancg and not the distribution function in the age;jh Grgen functlont_t?(g\% u_ruzfit(g)rtire%%?;?(;ff;lctlon
regime that is of interest here [17]. The transmissionby e Dyson equation o ’
amplitudes can be expressed directly in terms of th .” internal Qreen funcfuons in the complete perturba-
scattering potential as = [I + iT']"!. I is the unit ion expansion of the irreducible self-energy are fully

matrix and the elements of the Hermitian matlixare renorm_allzed_. . . . .
given by Configurational averaging restores translational invari-

ance parallel to the interface aiis diagonal inl§||. In
r- . = m Z Ya itk ) the strong scattering regimg & N) the self-energy is
I . Vi K much larger than the inverse of the unperturbed Green
function. In this limit the Dyson equation can be ex-
where A is the d — 1 dimensional cross section of the panded as

interface. . 1 1
From the expansion dfin powers ofl Gra) = _E_°[1 t oot "'}512|,;2(~ (13)
o0 ki G];H 27‘“
— _TWM
t= MZ:O( i)~ (8) The leading term in the expansion of the Green function

depends only on the self-energy and does not contain the
the relationstt™ = (t + tt)/2 andtt = (1 + ma/am)t  unperturbed Green function or the effective mass explic-
can be derived. These so-called Ward identities relate thily. In the self-energy diagrams, all internal propagators
two-particle propagators to the single particle propagatormust be renormalized and according to Eq. (13) lose all
and can be used to express higher powertt bfin terms  dependence on the electron mass in the strong scattering
of t andtt which simplifies the calculations enormously. limit. It follows directly that the self-energy is indepen-
The distribution functionP(T) can be rewritten in terms dent of m. This general property for the self-energy in
of a power series in the transmission matrix by expressinghe strong scattering regime is what makes it possible to
the & function in Eq. (1) as a Fourier integral and calculateP(T) exactly in the present model.
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The average conductance in the strong scattering 1.0
regime can be calculated from Eqgs. (3), (11), and (13) as
0.8
K2 —Im[2 Tk,
(== —~p > (14)
NG kzl 1%, 12 _ 08
and is thus proportional tb/,/%. Substitution of Eq. (14) <] 04
into Eq. (10) and using(x) = 0 yields |
<g> 1 02 =
P(T) = =25 ————, 15 my:
which is the main result of this Letter. The distribution 0'%_0 02 o4 06 o8 1.0
function of the transmission matrix eigenvalues for dirty T

interfaces is universal in the sense that it does not depends 1 The functionQ(T) given by Eq. (16), obtained from
on the microscopic parameters or on the dimengipbut  numerical calculations (symbols) and from the analytical results
only on the macroscopic conductance. for a dirty interface (solid line) and for a disordered bulk

Also for dirty interfaces universality has its limits. If conductor (dashed line). For the squares the microscopic

3 ; ; arameters were 6000 impuritied, = 40, > , v, = 0, and
the self-energy has no imaginary part the conductanc’%y/ﬁzﬂ — 10 which yielded(g) — 030. For the diamonds

vanishes in lowest order. A real self-energy is, for . \;sed 200 impuritiesy = 20, . y. = 0, andmy/R2m =

example, characteristic for a tunnel barrier. To obtaing which yielded(g) = 0.20. Configurational averaging was
a finite conductance in that case higher order terms ione using 5000 (squares) and 10000 (diamonds) realizations

the expansion (13) should be taken into account, whiclef the disorder. Both calculations are clearly in the regime
gives rise to nonuniversal results. This loss of universality? < N.
is analogous to the situation considered by Nazarov [9]
who finds that universal behavior in bulk disordered o ) i
conductors is destroyed by a nontransparent tunnel barrier, Both distribution functions (4) and (15) are bimodal.
To confirm the analytical results, we perform the For dirty interfaces there is, however, relatively more
configurational averaging numerically by calculating for Weight for small7,. This is reflected in the values for
many realizations of the impurity positions the eigenval-the physical quantities. The ratip)/(g), for example,
ues of the matrixI + T'T which equall/T,. The nu- equals1/2 for dirty interfaces compared tb/3 for dis-
merical calculations are restricted th=2 and y, = ordered bulk conductors. In the case of a bulk disor-
++. The distribution function is not a convenient func- déred normal metal in contact with a supercondu¢dQs)

tion to calculate numerically because of the divergence§duals the conductance in the normal state and the ratio
atT = 0andT = 1. Instead ofP(T) we calculate the (PNs)/{gns) = 2/3, which s twice the normal state result.
well-behaved integrated quantity In contrast, for a dirty interface in a normal metal in series

1 T with a superconductofgns) and(g) are no longer equal
or) = - [ dT'T'P(T), (16)  ((gns) = 3v2(g)) and the ratic pxs)/(gns) = 3/4, less

(g) Jo than twice the normal state result. These differences
which is a smooth function off. Q(T) is the rela- should be observable experimentally.
tive contribution to the conductance of all channels For disordered bulk conductors, the bimodal distribu-
with T, < T. From Egs. (4) and (15) it follows that tion function (4) has been related to the occurrence of
Q(T) =1 — +/1 — T for a metallic bulk conductor and universal conductance fluctuations [19]. Despite the fact
o) = %arccoﬁ — 2T) for a dirty interface. Figure 1 that P(T) is bimodal for a dirty interface, numerical cal-
shows the numerically calculate@(T) for two differ-  culations [17] show that the fluctuations are not universal.
ent sets of microscopic parameters compared with thénstead, the variance @fincreases linearly wittv as ex-
analytical results. Figure 1 shows excellent agreement bgsected from classical arguments. Also close to the ballis-
tween analytical and numerical configurational averagingtic regime g < N) the fluctuations display nonuniversal
Note that the numerical results differ significantly from behavior [20].
the analytical result for bulk systems. Numerically, uni- In the above analytical treatment there is no distinc-
versal behavior is confirmed for a broad range of microtion between the regimes> 1 andg < 1, i.e., no local-
scopic parameters such as the number of scatterers, timtion transition is observed. This is confirmed by the
scattering strength, and the number of evanescent modesimerical calculations [17]. The absence of localization
[17]. Universality breaks down only when the averagefollows from the well-behaved maximally crossed dia-
scattering strength’, v, becomes larger than some criti- grams [11] and can be understood from the fact that for an
cal value, which can be ascribed to a vanishing imaginarynterface the region of scattering has no spatial extent in
part of the self-energy to lowest order in the expansiorthe transport direction so there is no space available where
(13), as mentioned above. the wave functions can localize.
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