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The distribution function of transmission matrix eigenvalues for an interface with a high density of
randomly distributed scatterers is calculated from the Schrödinger equation. The distribution function
is universal in the sense that it does not depend on the microscopic parameters. It differs, however,
from the well-known universal distribution for diffusive bulk conductors. [S0031-9007(97)02960-8]
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An important new concept in the theory of electroni
transport coming from the study of phase-coherent co
duction in disordered metals [1] isuniversality, i.e. the
independence of transport properties on the microscop
parameters. The best known example is provided b
the universal conductance fluctuations [2]: the sample
sample fluctuations of the conductance are of the order
e2yh, independent of the sample size, the degree of diso
der, and the dimensionality.

Here we focus on another property that may exhib
universality, namely, the distribution function of transmis
sion matrix eigenvalues. The transmission matrixtty is
the product of the transmission amplitude matrixt and its
Hermitian conjugate. The matrixt collects the transmis-
sion amplitudes of the flux-normalized states on the le
hand side of a scattering region to those on the right ha
side. The distribution function of the eigenvaluesTn of
the matrixtty is defined as

PsT d ;
øX

n
dsT 2 Tnd

¿
, (1)

where the brackets indicate averaging over all possib
realizations of disorder in a given Hamiltonian. This
distribution function can be used (see, for exampl
Ref. [3]) to express the average value of any quantitya
that is described by a linear statisticasTd as

kal ­

øX
n

asTnd
¿

­
Z

dT asT dPsT d . (2)

The conductanceg (in units e2yh) is related to the
transmission matrix by the Landauer formula

g ­ Tr tty ­
X
n

Tn , (3)

and is thus described by the linear statisticgsT d ­ T .
The shot noise powerp (in units 2ejV je2yh with V the
applied voltage) is described by the linear statisticpsT d ­
T s1 2 T d [4]. For a normal metalysuperconductor (NS)
junction the conductancegNS and the shot noisepNS
can also be expressed in terms of the transmission eig
values of the normal-metal region by the linear statistic
gNSsT d ­ 2T2ys2 2 T d2 [5] and pNSsT d ­ 16T2s1 2

T dys2 2 T d4 [6], respectively.
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The distribution function for disordered bulk conduc-
tors in the metallic regime (where1 ø g ø N with N
the number of conduction channels) has been shown to
universal [7–9]:

PsT d ­
kgl
2

1

T
p

1 2 T
, (4)

independent of the shape of the conductor and of th
spatial resistivity distribution. The distribution function
is bimodal: most eigenvalues are either close to1 (“open”
channels) or close to0 (“closed” channels). This is in
contrast to the naive assumption that all eigenvalues a
much smaller than1 for g ø N . It follows directly from
Eq. (4) thatkplykgl ­ 1y3 [10], which is only one-third
of the classical value for a Poisson process for which a
Tn ø 1.

Universality, however, has its limits. Either close to
the localization regime (g ø 1) [8] or close to the ballistic
regime (g & N) [11] Eq. (4) is no longer valid. Even in
the metallic regime where1 ø g ø N the universality
can be broken by extended defects, such as tunnel barrie
grain boundaries, or interfaces [9].

In this Letter we consider transport through dirty
interfaces for which Eq. (4) does not hold. An interface
is a scattering region with a lengthL which is sufficiently
smaller than the Fermi wavelengthlF . The term “dirty”
implies thatg ø N and that the scattering is due to a
random potential. In contrast, the calculations which lea
to Eq. (4) are all in the weak scattering regime where
L ¿ lF .

The main result of the microscopic calculation presente
below is a universal distribution function for a single dirty
interface which differs from Eq. (4) for bulk systems.
In other words, dirty interfaces (L ø lF) belong to a
different universality class than disordered bulk conductor
(L ¿ lF).

Besides the purely theoretical interest in the statistics o
transport, our study of dirty interfaces is also motivated
by experiments on transport through metallic interfaces i
magnetic multilayers exhibiting giant magnetoresistanc
[12,13]. These interfaces strongly scatter electrons in a r
gion with a length comparable to or smaller thanlF [14].
© 1997 The American Physical Society 3015
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Experiments of transport through a narrow disordered
gion in a two-dimensional electron gas are in progre
[15]. With some modifications the present calculation
are also applicable to other scattering problems, such
the transparency of a thin, yet strongly diffusing mediu
to light.

The scattering properties of an interface for states
the Fermi energyEF follow directly from the Schrödinger
equation∑

2
h̄2

2m
=2 1 V sx, $rd

∏
csx, $rd ­ EFcsx, $rd , (5)

wherem is the electron mass. For arbitrary dimensiond,
$r is thed 2 1 dimensional position vector orthogonal to
the x direction. The scattering potential at the interfac
is modeled by short range scatterers with strengthga at
position $ra in the planex ­ 0:

V sx, $rd ­
X
a

gadsxdds $r 2 $rad . (6)

The free electron states on both sides of the interface c
be labeled by thed 2 1 dimensional parallel componen
of the wave vector$kk. The perpendicular part of the wave
vector k' is then defined in terms of the Fermi wav
vector kF ­

p
2mEFyh̄ as k2

' ­ k2
F 2 k2

k . From the
Schrödinger equation (5) all transmission and reflecti
amplitudes corresponding to an incoming state$k0

k can
be obtained [16]. The present calculations are in t
regime where the transverse dimensions of the interfa
are much larger thanlF . Scattering to evanescent state
with imaginaryk' is disregarded, since they affect onl
the conductanceg and not the distribution function in the
regime that is of interest here [17]. The transmissio
amplitudes can be expressed directly in terms of t
scattering potential ast ­ fI 1 iGg21. I is the unit
matrix and the elements of the Hermitian matrixG are
given by

G $kk, $k0
k

­
m
h̄2

X
a

ga

A
e2is$kk2$k0

kd $ra
1p

k'k0
'

, (7)

where A is the d 2 1 dimensional cross section of the
interface.

From the expansion oft in powers ofG

t ­
X̀

M­0

s2iGdM , (8)

the relationstty ­ st 1 tydy2 andtt ­ s1 1 m≠y≠mdt
can be derived. These so-called Ward identities relate
two-particle propagators to the single particle propagato
and can be used to express higher powers oftty in terms
of t andty which simplifies the calculations enormously
The distribution functionPsT d can be rewritten in terms
of a power series in the transmission matrix by expressi
the d function in Eq. (1) as a Fourier integral and
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subsequently expanding the exponent expsiqttyd:

PsTd ­
Z dq

2p
e2iqT

X̀
n­0

siqdn

n!
Trksttydnl . (9)

By using the Ward identities repeatedly and applying
a slightly modified Stieltjes transform in the paramete
h ­ m2, this expression can be rewritten for0 , T , 1
as [11]

PsT d ­
1
p

1
T s1 2 T d

Im

∑ø
g

µ
hT

T 2 1
2 i01

∂
2 gs`d

¿∏
,

(10)

with gshd ­ Tr tty and 01 a positive infinitesimal. By
calculatingktl we obtain the conductance fromkgshdl ­
RefTrktlg. Average quantities are obtained by configura
tional averaging over the random impurity positions$ra

that are uniformly distributed.
The elements of the Green function matrixG1 are

related to the transmission amplitudes by [18]

t$kk ,$k0
k

­ i
h̄2

m

q
k'k0

' G1
$kk,$k0

k

. (11)

The elements of the unperturbed Green function matr
G1s0d are given by

G
1s0d
$kk,$k0

k

­ G
1s0d
$kk

d$kk,$k0
k

­ 2i
m
h̄2

1
k'

d$kk,$k0
k

. (12)

From Eqs. (8) and (11) an expansion for the Green fun
tion is obtained. The configurational averages of the di
ferent terms in this expansion can be calculated usin
diagrammatic perturbation theory [16]. The irreducible
self-energy matrixS relates the configurationally aver-
aged Green function to the unperturbed Green functio
by the Dyson equationkG1l ­ G1s0d 1 G1s0dSkG1l.
All internal Green functions in the complete perturba
tion expansion of the irreducible self-energy are fully
renormalized.

Configurational averaging restores translational invar
ance parallel to the interface andS is diagonal in$kk. In
the strong scattering regime (g ø N) the self-energy is
much larger than the inverse of the unperturbed Gree
function. In this limit the Dyson equation can be ex-
panded as

kG1
$kk,$k0

k

l ­ 2
1

S$kk

∑
1 1

1

G
1s0d
$kk

S$kk

1 · · ·

∏
d$kk ,$k0

k
. (13)

The leading term in the expansion of the Green functio
depends only on the self-energy and does not contain t
unperturbed Green function or the effective mass explic
itly. In the self-energy diagrams, all internal propagator
must be renormalized and according to Eq. (13) lose a
dependence on the electron mass in the strong scatter
limit. It follows directly that the self-energy is indepen-
dent of m. This general property for the self-energy in
the strong scattering regime is what makes it possible
calculatePsT d exactly in the present model.
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The average conductance in the strong scatter
regime can be calculated from Eqs. (3), (11), and (13) a

kgshdl ­
h̄2

p
h

X
$kk

2ImfS$kk
gk'

jS$kk
j2

, (14)

and is thus proportional to1yp
h. Substitution of Eq. (14)

into Eq. (10) and usinggs`d ­ 0 yields

PsTd ­
kgl
p

1

T3y2
p

1 2 T
, (15)

which is the main result of this Letter. The distributio
function of the transmission matrix eigenvalues for dirt
interfaces is universal in the sense that it does not depe
on the microscopic parameters or on the dimensiond, but
only on the macroscopic conductance.

Also for dirty interfaces universality has its limits. If
the self-energy has no imaginary part the conductan
vanishes in lowest order. A real self-energy is, fo
example, characteristic for a tunnel barrier. To obta
a finite conductance in that case higher order terms
the expansion (13) should be taken into account, whi
gives rise to nonuniversal results. This loss of universal
is analogous to the situation considered by Nazarov
who finds that universal behavior in bulk disordere
conductors is destroyed by a nontransparent tunnel barr

To confirm the analytical results, we perform th
configurational averaging numerically by calculating fo
many realizations of the impurity positions the eigenva
ues of the matrixI 1 GG which equal1yTn. The nu-
merical calculations are restricted tod ­ 2 and ga ­
6g. The distribution function is not a convenient func
tion to calculate numerically because of the divergenc
at T ­ 0 and T ­ 1. Instead ofPsT d we calculate the
well-behaved integrated quantity

QsTd ­
1

kgl

Z T

0
dT 0T 0PsT 0d , (16)

which is a smooth function ofT . QsT d is the rela-
tive contribution to the conductance of all channelsn
with Tn , T . From Eqs. (4) and (15) it follows that
QsT d ­ 1 2

p
1 2 T for a metallic bulk conductor and

QsT d ­
1
p arccoss1 2 2T d for a dirty interface. Figure 1

shows the numerically calculatedQsT d for two differ-
ent sets of microscopic parameters compared with t
analytical results. Figure 1 shows excellent agreement
tween analytical and numerical configurational averagin
Note that the numerical results differ significantly from
the analytical result for bulk systems. Numerically, un
versal behavior is confirmed for a broad range of micr
scopic parameters such as the number of scatterers,
scattering strength, and the number of evanescent mo
[17]. Universality breaks down only when the averag
scattering strength

P
a ga becomes larger than some criti

cal value, which can be ascribed to a vanishing imagina
part of the self-energy to lowest order in the expansio
(13), as mentioned above.
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FIG. 1. The functionQsT d given by Eq. (16), obtained from
numerical calculations (symbols) and from the analytical resu
for a dirty interface (solid line) and for a disordered bul
conductor (dashed line). For the squares the microsco
parameters were 6000 impurities,N ­ 40,

P
a ga ­ 0, and

mgyh̄2p ­ 10 which yieldedkgl ­ 0.30. For the diamonds
we used 200 impurities,N ­ 20,

P
a ga ­ 0, andmgyh̄2p ­

30 which yieldedkgl ­ 0.20. Configurational averaging was
done using 5000 (squares) and 10 000 (diamonds) realizati
of the disorder. Both calculations are clearly in the regim
g ø N .

Both distribution functions (4) and (15) are bimoda
For dirty interfaces there is, however, relatively mo
weight for smallTn. This is reflected in the values for
the physical quantities. The ratiokplykgl, for example,
equals1y2 for dirty interfaces compared to1y3 for dis-
ordered bulk conductors. In the case of a bulk diso
dered normal metal in contact with a superconductorkgNSl
equals the conductance in the normal state and the r
kpNSlykgNSl ­ 2y3, which is twice the normal state result
In contrast, for a dirty interface in a normal metal in serie
with a superconductorkgNSl and kgl are no longer equal
(kgNSl ­

1
2

p
2 kgl) and the ratiokpNSlykgNSl ­ 3y4, less

than twice the normal state result. These differenc
should be observable experimentally.

For disordered bulk conductors, the bimodal distrib
tion function (4) has been related to the occurrence
universal conductance fluctuations [19]. Despite the fa
that PsTd is bimodal for a dirty interface, numerical cal
culations [17] show that the fluctuations are not univers
Instead, the variance ofg increases linearly withN as ex-
pected from classical arguments. Also close to the bal
tic regime (g & N) the fluctuations display nonuniversa
behavior [20].

In the above analytical treatment there is no distin
tion between the regimesg . 1 andg , 1, i.e., no local-
ization transition is observed. This is confirmed by th
numerical calculations [17]. The absence of localizatio
follows from the well-behaved maximally crossed dia
grams [11] and can be understood from the fact that for
interface the region of scattering has no spatial extent
the transport direction so there is no space available wh
the wave functions can localize.
3017
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The distribution function (15) for a dirty interface is
identical toPsT d for two identical tunnel barriers in series
with the distance between the two tunnel barriers mu
larger thanlF [21], despite the fact that the two physica
systems are very different. At this moment we have n
physical argument for this correspondence.

BecausePsT d for a dirty interface does not depend o
the microscopic details, its calculation seems well suit
for methods of random matrix theory [8]. Continuity o
the wave functions on both sides of the scattering regi
gives rise to an additional constraint on the scatteri
matrix which we expect to be sufficient to describe th
difference between interfaces and bulk systems.

In summary, based on an exact microscopic calculati
we have shown thatPsT d for a dirty interface is universal
but differs from PsT d for disordered bulk conductors.
Dirty interfaces belong to a different universality clas
than diffusive bulk conductors. It remains a challeng
to test these results theoretically by random matrix theo
and experimentally by transport studies of intentional
disordered metallic point contacts and wide quantu
wires.
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