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The presence of exciton-phonon interactions is shown to play a key role in the exciton superfluidity.
We apply the Landau criterion for an exciton-phonon condensate moving uniformly at zero temperature.
It turns out that there are essentially two critical velocities in the theory. Within the range of these
velocities the condensate can exist only as a bright soliton. The excitation spectrum and differential
equations for the wave function of this condensate are derived. [S0031-9007(97)02937-2]
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The problem of critical velocities in the theory o
superfluidity arose a long time ago when the experimen
with the liquid He showed a substantial discrepancy wi
quantum-mechanical predictions. Later, the effect w
analyzed, and its phenomenological description was giv
(e.g., see [1]). The fact that the liquid He could not b
treated as a weakly nonideal Bose gas was believed
be the main reason for the inconsistency of microscop
theory with experimental data.

For a long time, He has been the only substance wh
the superfluidity can be observed. The recent experime
with the dilute gas of excitons [2,3] provide new possibil
ties for studying different types of superfluidity.

In this series of experiments the Cu2O crystal was
irradiated with laser light pulses of several ns duratio
At low intensities of the laser beam (low concentration o
excitons), the system revealed a typical diffusive behav
of exciton gas. Once the intensity of the beam excee
some value, the majority of particles move together in t
packet. Their common propagation velocity is close
the longitudinal sound velocity, and the packet evolves
a bright soliton.

Some alternative explanations of the phenomena
known. One of them [2] implies that the bright soliton
is a one-dimensional traveling wave which satisfies t
Gross-Pitaevsky (nonlinear Schrödinger) equation [4] f
the Bose-condensate wave functionCsx, td

ih̄
≠C

≠t
­ 2

h̄2

2m
DC 1 nCpC2 (1)

with attractive potential of exciton-exciton interaction
n , 0.

A quantitative treatment given in [5] provides an
iterative solution for the Heisenberg equation with the u
of perturbational methods. In this picture the second ord
interactions, neglected in the Bogoliubov approximatio
contribute to the negative value ofn. However, the
influence of exciton-phonon interactions on the dynami
of the condensed excitons is not treated [5].
0031-9007y97y78(15)y3011(4)$10.00
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Another interpretation is based on a classical mode
[6] where the normal exciton gas is pushed towards th
interior of a sample by the phonon wind emanating from
the surface. Such an explanation has a discrepancy w
the experiment because the signal observed is one order
magnitude longer than the excitation pulse duration [3].

In this Letter we give an alternative and, in our opinion
more intrinsic interpretation of these phenomena. We a
gue that it is a propagation of a superfluidexciton-phonon
condensatewhich is observed experimentally. The pres-
ence of exciton-phonon interactions is crucial for a “soli-
tonlike superfluidity.” This interaction plays a key role
when the propagation velocity approaches the longitudin
sound velocity.

We start with the Hamiltonian of the exciton-phonon
system

H ­ Hex 1 Hph 1 Hint ,

Hex ­ 2
h̄2

2m

Z
ĈpsxdDĈsxddx

1
1
2

Z
ĈpsxdĈpsydnsx 2 ydĈsxdĈsyddxdy ,

Hph ­
Z Ω

1
2r

p̂sxd2 1
c2r

2
sss=ûsxdddd2

æ
dx ,

Hint ­
Z

ssx 2 ydĈpsxdĈsxd sss=ûsydddddxdy , (2)

where Ĉ and û are the operators of the exciton and
phonon fields correspondingly,c is the longitudinal sound
velocity, andr denotes the mass density of the crystal
The field variables obey the following commutation
relations:

fĈsxd, Ĉpsydg ­ h̄dsx 2 yd ,

fp̂isxd, ûjsydg ­ 2ih̄dijdsx 2 yd, i, j ­ 1, 2, 3 .

In (2) we omit the terms with the transverse sound
velocity, since the interaction of excitons with transverse
© 1997 The American Physical Society 3011
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sound waves is much weaker than with the longitudin
ones.

It is convenient to change the reference system wh
we consider a uniform motion of the Bose gas. Th
transition to the reference system moving uniform
with the velocity v ­ sy, 0, 0d is immediate. In new
coordinates the classical field equations becomeµ

ih̄
≠

≠t
1

h̄2

2m
D 1

my2

2

2
Z

nsx 2 yd jcsy , tdj2dy3

∂
csx, td

­ csx, td
Z

ssx 2 yd f=usy , tdgdy , (3)µ
≠2

≠t2 2 2y
≠2

≠t≠x1
1 y2 ≠2

≠x2
1

2 c2D

∂
usx, td

­
1
r

=
Z

ssx 2 yd jcsy , tdj2dy , (4)

wherecsx, td ­ Csx1 1 yt, x2, x3, td exps2imyx1yh̄d.
The left-hand side (l.h.s.) of Eq. (3) is Galileian invari

ant, while the l.h.s. of (4) is Lorentz invariant. As a resul
the system (3), (4) is neither Galileian nor Lorentz invar
ant. As we will see later, it is due to this noninvarianc
that the effective potential of exciton-exciton interaction
depends on velocity.

Let us consider slowly varying solutions of the syste
(3), (4). In this (long wavelength) limit, one can replac
nsxd and ssxd by n0dsxd and s0dsxd, where n0s.0d
and s0 denote the zero-mode Fourier components of t
corresponding potentials.

Solving (4), one can express the bounded at infi
ity time-independent solutionusxd in terms of csxd.
The effective potential of the exciton-exciton interac
tion is obtained after substituting this expression in
(3). The phonon field makes this potential long rang
anisotropic, andy dependent. The potential become
asymptotically attractive along thev direction and asymp-
totically repulsive in directions perpendicular tov. It
follows that the stability of the corresponding solution
c ­ fsx1d exps2iv0td, ui ­ di1qsx1d is preserved under
the one-dimensional reduction of the system (3), (4). T
functionsfsx1d, qsx1d obey the following equations:µ

h̄2

2m
≠2

≠x2
1

2 l

∂
fsx1d ­

µ
n0 2

s
2
0

sc2 2 y2dr

∂
fsx1d3 ,

l ­ 2h̄v0 2
my2

2
1 Cs0 , (5)

≠qsx1d
≠x1

­ C 2
s0fsx1d2

sc2 2 y2dr
, (6)

where the integration constantC is fixed by the condition
q ! const asjx1j ! `. In the last equations,f assumed
to be real. This choice does not change the result b
simplifies our calculations.
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It follows from (5) that the effective potential becomes
attractive wheny exceeds the critical velocity

y0 ­
p

c2 2 ss2
0yn0rd . (7)

But if y exceeds the sound velocityc, the potential
becomes repulsive again. As for the solution varyin
in the directionn ­ sn1, n2, n3d, c ­ fsnxd exps2iv0td,
u ­ nqsnxd, the critical velocity isy0snd ­ y0y cossud,
j cossudj . y0yc, whereu is the angle betweenn andv.

When y is less than the critical velocity (7), Eqs. (5)
and (6) have the following stable stationary solutions:

f ­ f0 ­
p

NyV ­ const, u ­ const, (8i)

and

f ­ f0 tanhfbf0sx1 2 adg ,

≠qsx1d
≠x1

­ 2
s0f

2
0

sc2 2 y2dr
cosh22fbf0sx1 2 adg ,

b ­

s
mn

h̄2

jy
2
0 2 y2j

jc2 2 y2j
, (8ii)

l ­

µ
s

2
0

sc2 2 y2dr
2 n0

∂
f2

0 ­ n0f2
0

y2 2 y
2
0

c2 2 y2
,

C ­
s0f

2
0

sc2 2 y2dr
.

In (8i), N andV stand for the number of particles in the
condensate and the volume of the system.

Wheny exceedsy0, we have only one stable stationary
solution,

f ­ f0 cosh21fbf0sx1 2 adg ,

≠qsx1d
≠x1

­ 2
s0f

2
0

sc2 2 y2dr
cosh22fbf0sx1 2 adg ,

l ­
f

2
0

2

µ
s

2
0

sc2 2 y2dr
2 n0

∂
­

n0f
2
0

2
y2 2 y

2
0

c2 2 y2
,

C ­ 0 . (9)

To find the excitation spectrum of the system we expan
the field operators near the proper classical solutions:

ĉsx, td ­ ffsx1d 1 x̂sx, tdge2iv0t ,

ûisx, td ­ di1qsx1d 1 ĥisx, td .

The Hamiltonian of the system can be written as follows

H ­ H0 1 h̄H2 1 . . . , (10)

whereH0 ­ Hsfe2iv0t, qd stands for the classical part of
H. It is important thatH2 is bilinear in x̂sx, td, ĥsx, td,
whereas the linear terms are absent in (10) [since th
classical fields satisfy the stationary equations (5) an
(6)]. From now on, we are working in quasiclassica
approximation and neglecting the terms of power greate
than one (inh̄).
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The quasiclassical Hamiltonian (10) is reduced to th
normal form,

H2 ­
X

i

vi b̂
p
i b̂i 1 const, fb̂i , b̂p

j g ­ dij ,

fb̂i , b̂jg ­ 0 . (11)
Indeed, sinceH2 is a bilinear function ofx̂ , ĥ, the equa-
tions of motion are linear in field operators. They coincid
with the corresponding classical equations [i.e., Eqs. (
and (4) linearized aroundcsx, td ­ fsx1d exps2iv0td,
uisx, td ­ di1qsx1d]:µ

ih̄
≠

≠t
1

h̄2

2m
D 2 l 1 Cs0 1Ω

s
2
0

sc2 2 y2dr
2 2n0

æ
fsxd2

∂
x 2

n0fsxd2xp 2 s0fsxd s=hd ­ 0 , (12)µ
c2D 2 y2 ≠2

≠x2
1

1 2y
≠2

≠t≠x1
2

≠2

≠t2

∂
h 1

s0

r
=ffsxd sx 1 xpdg ­ 0 . (13)

The quantitiesvi in (11) are characteristic frequencies o
the system (12), (13).

Let us consider the homogeneous Bose gas mov
uniformly with velocity y , y0. The condensate wave
function is given by (8i). The differential equations
(12) and (13) have constant coefficients so that t
characteristic frequenciesvskd are determined as roots o
the following characteristic polynomial:

sV2 2 c2k2d
∑

h̄2sV 1 yk1d2 2
h̄2k2

2m
3µ

h̄2k2

2m
1

Ω
2n0 2

s
2
0

sc2 2 y2dr

æ
f2

0

∂∏
2

h̄2k2

2m
s

2
0f

2
0k2

r
­ 0 , (14)

where V ­ vskd 2 yk1 are the excitation frequen-
cies in the crystal reference frame. In the lim
s0 ! 0, one gets the Bogoliubov [7] spectrum̄hvskd ­q

h̄2k2

2m s h̄2k2

2m 1 2n0f
2
0d for the exciton gas as well as the

free phonon spectrumV ­ ck. When we switch on an
exciton-phonon interaction, the spectrumvskd becomes
v dependent, and the Landau criterion of superfluidi
for the homogeneous Bose gas [1] has to be prope
modified.

The transition to the normal state occurs if there exis
suchk fi 0 for a given velocity thatV , 0, i.e.,

min
k

fvskd 2 yk1g ­ 0 . (15)

Analyzing (14), we obtain the value of the critical velocit
yL for the homogeneous exciton-phonon gas,

yL ­
p

sn0f2
0ymd f1 2 ss2

0yn0rc2dg

­ s
p

n0NymVycdy0 .
The quantization near the translationally noninvaria
classical solution (8ii) in the regiony , y0 yields the
e

e
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same continuous spectrumvskd. The only new feature is
that a bounded state appears atv ­ 0 in the v direction.
This fact has a simple explanation: The family of the s
lutions (8ii) contains an arbitrary translation parametera,
which, in fact, is a collective coordinate. Differentiation
of (8ii) with respect toa then gives the necessary time
independent solution of (12) and (13). This bounded sta
does not affect the quasiclassical excitation spectrum a
contributes only to highest approximations (e.g., see [8]

If the velocity y exceeds (7), the characteristic poly
nomial (14) has complex roots, and there is no stab
constant solutions. The condensate (i.e., classical) wa
function turns into the (bright) soliton (9) of the one
dimensional nonlinear Schrödinger equation (5). This s
lution decreases exponentially. This allows us to obta
the continuous spectrum from asymptotics of (12) an
(13). We have

h̄vskd ­ l 1
h̄2k2

2m

for the exciton branch of the model, and

vskd ­ ck 1 yk1

for the phonon branch. As in the previous case, we g
a bounded state at zero energy. We skip the question
existence of other bound states, since it is not essential
our purposes.

The spectrum now has agap in the exciton branch
which is equal tol. In a sense, the situation is similar to
the BCS theory: The exciton-phonon interaction mak
the effective exciton-exciton potential attractive, and th
excitation spectrum acquires a gap.

The transition to the ballistic regime is accompanied b
the symmetry breakdown: A new condensate wave fun
tion (9) is no longer translationally invariant. However
it contains a free translation parameter. We can interp
this as a phase transition of the second order.

The valuef0 is readily computed from the normaliza
tion condition

R
fsxd2dx ­ N , and l is then obtained

from (9),

l ­
mn

2
0N2

8h̄2S2

µ
y2 2 y

2
0

c2 2 y2

∂2

. (16)

In (16), S denotes the packet cross section in thex2x3

plane. Wheny approaches the longitudinal sound veloc
ity c, the gap magnitude increases and the soliton becom
more stable. The soliton energy can be estimated fro
(2),

E ­ N

Ω
mn

2
0N2

24h̄2S2

sy2 2 y
2
0d

sc2 2 y2d3

3 sy4 1 3y2c2 1 y2
0c2 2 5y2

0y2d 1
my2

2

æ
1 . . . .

It follows from the last formula thatE ! ` as y ! c.
Roughly speaking, the soliton effective mass tends
infinity when its speed approaches the longitudinal sou
3013
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velocity. Then its motion is less subjected to the extern
forces.

The onset of ballistical regime is determined by th
condition y . y0, while the frictionless propagation of
the packet is possible only if the condition minkfvskd 2

yk1g . 0 holds. The relation between the threshold spe
yc for the frictionless propagation and the numberNsycd
of excitons in the packet at this speed follows from (15)

ycsc2 2 y2
c d

y2
c 2 y

2
0

­
n0

2h̄
Nsycd

S
,

where the functionNsydyS depends on the characteristic
of the light source. As a consequence,yc . y0, and the
velocity yc is also dependent on these characteristics.

Thus the frictionless soliton motion is observed ov
the rangeyc , y , c. In principle, it is also possible
to observe the onset of soliton propagation for somey

close to yc with y0 , y , yc, but the packet should
disintegrate at later stages of the propagation.

It is easy to see that the solution (9) is the most sta
in the class of one-dimensional traveling waves movi
uniformly with given ys.y0d and N. We argue that
(9) is also the most stable solution in the class of
solutions with givenys.y0d andN, because the effective
exciton-exciton potential is attractive in thev direction
and repulsive in the perpendicular directions. We wou
like to stress that effective one-dimensional solutio
of three-dimensional nonlinear Schrödinger equations
with attractive potentials do not have similar propertie
In particular, the stability of such solutions is doubtful [9

When the crystal has no impurities, and the bounda
friction is absent (the experiments with Cu2O are carried
out under these conditions, cf. [2,3]), the propagation
solitons is observed at the critical velocity (7).

The corresponding value ofs0 is estimated from the
deformation potential of Cu2O. As a result, we obtain
3014
l

d

r

e

ll

s
)
.

y

f

y0 . 0.5c 2 0.7c. These estimates are in agreement
with the experimental data.

To observe the critical velocityyc, the presence of
interior friction is important. Under these conditions, the
relations betweenyc and the characteristic width of the
soliton l is given by

yc ­ h̄yml .

In the present work we have discussed the propertie
of the system at zero temperature. The extension of ou
results to finite temperatures seems to be a more difficu
problem.
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