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Critical Velocities in Exciton Superfluidity
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The presence of exciton-phonon interactions is shown to play a key role in the exciton superfluidity.
We apply the Landau criterion for an exciton-phonon condensate moving uniformly at zero temperature.
It turns out that there are essentially two critical velocities in the theory. Within the range of these
velocities the condensate can exist only as a bright soliton. The excitation spectrum and differential
equations for the wave function of this condensate are derived. [S0031-9007(97)02937-2]
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The problem of critical velocities in the theory of  Another interpretation is based on a classical model
superfluidity arose a long time ago when the experimentf6] where the normal exciton gas is pushed towards the
with the liquid He showed a substantial discrepancy withinterior of a sample by the phonon wind emanating from
guantum-mechanical predictions. Later, the effect washe surface. Such an explanation has a discrepancy with
analyzed, and its phenomenological description was givethe experiment because the signal observed is one order of
(e.g., see [1]). The fact that the liquid He could not bemagnitude longer than the excitation pulse duration [3].
treated as a weakly nonideal Bose gas was believed to In this Letter we give an alternative and, in our opinion,
be the main reason for the inconsistency of microscopienore intrinsic interpretation of these phenomena. We ar-
theory with experimental data. gue that it is a propagation of a superflgigciton-phonon

For a long time, He has been the only substance whereondensatavhich is observed experimentally. The pres-
the superfluidity can be observed. The recent experimenence of exciton-phonon interactions is crucial for a “soli-
with the dilute gas of excitons [2,3] provide new possibili- tonlike superfluidity.” This interaction plays a key role
ties for studying different types of superfluidity. when the propagation velocity approaches the longitudinal

In this series of experiments the £ crystal was sound velocity.
irradiated with laser light pulses of several ns duration. We start with the Hamiltonian of the exciton-phonon
At low intensities of the laser beam (low concentration ofsystem
excitons), the system revealed a typical diffusive behavior H=H. + H. + H
of exciton gas. Once the intensity of the beam exceeds e"z ph nt>
some value, 'Fhe majority of partlclfes move tlog(_ether in theHﬂX __h f G (x) AW (x)dx
packet. Their common propagation velocity is close to 2m
the longitudinal sound velocity, and the packet evolves as 1 . . o
a bright soliton. + = f‘l’*(x)‘lf*(y)v(x — YV (x)V(y)dxdy,

Some alternative explanations of the phenomena are 2
known. One of them [2] implies that the bright soliton Il o CPe
is a one-dimensional traveling wave which satisfies the’’ph = [{Z”(X) + T(V“(X)) }dx’
Gross-Pitaevsky (nonlinear Schrédinger) equation [4] for

the Bose-condensate wave functidnix, r) Hiy = ] olx — )T x)¥(x) (Va(y))dxdy, (2)
. 8‘1’ ﬁz *aTp2
in ot _EA\P A (1) where ¥ and @ are the operators of the exciton and

n phonon fields correspondingly,is the longitudinal sound
velocity, andp denotes the mass density of the crystal.
The field variables obey the following commutation
éelations:

with attractive potential of exciton-exciton interactio
v <O0.

A quantitative treatment given in [5] provides an
iterative solution for the Heisenberg equation with the us
of perturbational methods. In this picture the second order [¥(x), ¥*(y)] = id(x — y),
interactions, neglected in the Bogoliubov approximation, . N . Co.
contribute to the negative value of. However, the [ (%), 2;(y)] = —ihid;;0(x — y). Li=123.
influence of exciton-phonon interactions on the dynamicsn (2) we omit the terms with the transverse sound
of the condensed excitons is not treated [5]. velocity, since the interaction of excitons with transverse
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sound waves is much weaker than with the longitudinal It follows from (5) that the effective potential becomes

ones. attractive whernv exceeds the critical velocity
It is convenient to change the reference system when — JE = 02 mep) 7
we consider a uniform motion of the Bose gas. The vo = Ve — (a5/mop). )

transition to the reference system moving uniformlyBut if v exceeds the sound velocity, the potential
with the velocity v = (v,0,0) is immediate. In new pecomes repulsive again. As for the solution varying

coordinates the classical field equations become in the directionn = (n1, n2, n3), ¥ = f(nx) exp(—iwot),
9 L2 muv? u = ng(nx), the critical velocity isvo(n) = vo/ cog6),
<lﬁ a7 + m A+ N | cog8)| > vo/c, whered is the angle between andyv.
When v is less than the critical velocity (7), Egs. (5)
- f v(x — y) |y, t)|2dy3>¢(x, ) and (6) have the following stable stationary solutions:

¢ = ¢o = N/V = const u = const, (8i)
— 0 [ ol = Va0l @) g

2 2 2 — —
<8_2 PTG Y A>u(x,t) ¢ = potant So(x1 — a)l,
ot atdx; axi

dat) ___00d o g, - a)
- %Vf o(x = y)lp(y.0Pdy. (@ (c2 — vip ’
2 _ .2
wherey(x, 1) = W(x; + vt, x2,x3,1) eXp—imvxy/h). B = Vm_; % ’ (8ii)
The left-hand side (I.h.s.) of Eq. (3) is Galileian invari- h |Cz - v’ )
ant, while the I.h.s. of (4) is Lorentz invariant. As a result, A= < Tp _, >¢2 — ol v’ — v
the system (3), (4) is neither Galileian nor Lorentz invari- (c2 —v?)p 0)%0 070 2 2
ant. As we will see later, it is due to this noninvariance e
that the effective potential of exciton-exciton interactions C=——— .
depends on velocity. (e = v2)p

Let us consider slowly varying solutions of the systemjn (gi), N and v stand for the number of particles in the
(3), (4). In this (long wavelength) limit, one can replace condensate and the volume of the system.

v(x) and o(x) by »06(x) and op5(x), where »o(>0) Whenv exceedss,, we have only one stable stationary
and oy denote the zero-mode Fourier components of theg|ytion,

corresponding potentials. .
Solving (4), one can express the bounded at infin- ¢ = ¢ocosh [Beo(x1 — a)l,

ity time-independent solutioru(x) in terms of ¢ (x). ag(x1) aodd -

The effective potential of the exciton-exciton interac- L= N - Uoz) cosh [ Bepo(x1 — a)],

tion is obtained after substituting this expression into P

(3). The phonon field makes this potential long range, P ad _ wodg v — vh
anisotropic, andv dependent. The potential becomes A= 3 (c2 — v2)p Bl R S U
asymptotically attractive along thedirection and asymp- c— ©)

totically repulsive in directions perpendicular sa It

follows that the stability of the corresponding solutionsTg find the excitation spectrum of the system we expand

¥ = ¢lxi)exp—iwot), ui = 8;1q(x)) is preserved under the field operators near the proper classical solutions:
the one-dimensional reduction of the system (3), (4). The

functionsé¢ (x;), g(x;) obey the following equations: h(x,1) = [p(x)) + F(x,1)]e” ",

h2 (:)2 0-2 ﬁi(X,Z) = 5[ (X ) + Ai(X,t)-
<2_ P /\>¢(x1) = <V0 - ﬁ>¢(x1)3, o 1 _
m dxi ¢ 2” P The Hamiltonian of the system can be written as follows:
/\=—ﬁw0—%+Ca'o, (5) H=Hy+ hH, + ..., (10)
5 whereH, = H(¢e ', q) stands for the classical part of
d9t) _ C — %, (6) H. ltis important thatH, is bilinear in ¥ (x, ), 7(x, 1),
91 (2 —v?)p whereas the linear terms are absent in (10) [since the

where the integration consta€tis fixed by the condition classical fields satisfy the stationary equations (5) and
g — const agx;| — . In the last equationsy assumed (6)]. From now on, we are working in quasiclassical
to be real. This choice does not change the result buapproximation and neglecting the terms of power greater
simplifies our calculations. than one (ink).

3012



VOLUME 78, NUMBER 15 PHYSICAL REVIEW LETTERS 14 ArIL 1997

The quasiclassical Hamiltonian (10) is reduced to thesame continuous spectrua(k). The only new feature is
normal form, that a bounded state appearswat= 0 in the v direction.
P Y This fact has a simple explanation: The family of the so-
H, = Z,: wibibi + const, [, bj]= ;. lutions (8ii) containg an aFr)bitrary translation pgramezter
[bi.b;]=0. (11)  which, in fact, is a collective coordinate. Differentiation
Indeed, since, is a bilinear function ofg, 7, the equa-  Of (8ii) with respect toa then gives the necessary time-
tions of motion are linear in field operators. They coincideindependent solution of (12) and (13). This bounded state
with the corresponding classical equations [i.e., Egs. (3§l0es not affect the quasiclassical excitation spectrum and
and (4) linearized arounds(x,?) = ¢ (x;)exp—iwot),  contributes only to highest approximations (e.g., see [8]).

ui(x, 1) = 8;1q(x1)]: If the velocity v exceeds (7), the characteristic poly-
EY K2 nomial (14) has complex roots, and there is no stable
<i’i 5 om A=A+ Cop + constant solutions. The condensate (i.e., classical) wave
’ function turns into the (bright) soliton (9) of the one-
{25—02 — 2vo}¢(x)2>/\/ — dimensional nonlinear Schr@dinger Qquation (5). This SO-
(c v3)p lution decreases exponentially. This allows us to obtain

vod(x)2x* — oo (x)(Vn) = 0, (12) the continuous spectrum from asymptotics of (12) and
82 62 82 (13) We have
<62A -2 — +2v — —2>1] + H2k2
dxi dtox; 9t hiwk) = A + ——
g « Zm
FV[¢(X)(X +x)]1=0. (13)

for the exciton branch of the model, and

The quantitiesw; in (11) are characteristic frequencies of _
the system (12), (13). (k) = ck + vk

Let us consider the homogeneous Bose gas movintpr the phonon branch. As in the previous case, we get
uniformly with velocity v < vo. The condensate wave a bounded state at zero energy. We skip the question of
function is given by (8i). The differential equations existence of other bound states, since it is not essential for
(12) and (13) have constant coefficients so that the&ur purposes.
characteristic frequencies(k) are determined as roots of ~ The spectrum now has gap in the exciton branch

the following characteristic polynomial: which is equal to. In a sense, the situation is similar to
h2k? the BCS theory: The exciton-phonon interaction makes
2 232 2 2 _ h . . . .
(€ ck )[h (@ + vk) m X the effective exciton-exciton potential attractive, and the
e 2 excitation spectrum acquires a gap.
<— + {2;,0 - 2‘77‘)2}%)} - The transition to the ballistic regime is accompanied by
2m (¢ —v?)p the symmetry breakdown: A new condensate wave func-

i2k2 ol pik? tion (9) is no longer translationally invariant. However,
om p =0, (4 j pontains a free tran;lation parameter. We can interpret
where Q = w(k) — vk, are the excitation frequen- thiS as a phase transition of the second order. _
cies in the crystal reference frame. In the limit The valued, is readily computed from the normaliza-

oo — 0, one gets the Bogoliubov [7] spectrubm (k) =  tion condition [ ¢(x)’dx = N, and X is then obtained
ey from (9),

\/’;—,’,‘lz(’z—f + 2wod) for the exciton gas as well as the ®) 2, o 212

free phonon spectrurfd = ck. When we switch on an A = myoN <U — v0> ‘ (16)

exciton-phonon interaction, the spectrunik) becomes 8h2S2 \ ¢2 — v2

v dependent, and the Landau criterion of superfluidity;, (16), S denotes the packet cross section in the;

for t_h_e homogeneous Bose gas [1] has to be prOperl\élane. Wherv approaches the longitudinal sound veloc-
modified. . ) .. ity ¢, the gap magnitude increases and the soliton becomes
The transition to the normal state occurs if there exists; ore stable. The soliton energy can be estimated from

suchk # 0 for a given velocity that) < 0, i.e., @)
minfw (k) — vk ] =0. (15) 2 o )
. k . . . myyN* (v* — vj)
Analyzing (14), we obtain the value of the critical velocity E = N YAI2SE (o2 = p2)3
v, for the homogeneous exciton-phonon gas, (e v?) muv?
v = \/(Vo¢(2)/m)[1 — (a3 /vopc?)] X (v* + 3v%c? + vic? — 5viv?) + - } +
= (WvoN/mV /[c)vy . It follows from the last formula thakE — < asv — c.

The quantization near the translationally noninvariantRoughly speaking, the soliton effective mass tends to
classical solution (8ii) in the regiom < v, yields the infinity when its speed approaches the longitudinal sound
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velocity. Then its motion is less subjected to the externaby = 0.5¢ — 0.7¢. These estimates are in agreement
forces. with the experimental data.

The onset of ballistical regime is determined by the To observe the critical velocitw,., the presence of
condition v > vg, while the frictionless propagation of interior friction is important. Under these conditions, the
the packet is possible only if the condition miim (k) —  relations betweens. and the characteristic width of the
vk;] > 0 holds. The relation between the threshold speedoliton! is given by
v, for the frictionless propagation and the numb&w..)

of excitons in the packet at this speed follows from (15), ve = fi/ml.
ve(c? — v?) _ vy N(v.) In the present work we have discussed the properties
v — vl T oF S of the system at zero temperature. The extension of our
c

) ~_ results to finite temperatures seems to be a more difficult

where the functioV(v)/S depends on the characteristics proplem.

of the light source. As a consequeneg,> vy, and the We are very grateful to Y. Berest for valuable remarks,

velocity v, is also dependent on these characteristics.  gnd to L. Vinet and Y. Lépine for stimulating discussions.
Thus the frictionless soliton motion is observed overye are also grateful to A. Mysyrowicz for drawing our

the rangev. < v < c. In principle, it is also possible atiention to the work [10] and useful comments.
to observe the onset of soliton propagation for some

close tov,. with vy < v < v, but the packet should

disintegrate at later stages of the propagation.
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