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Landau Level Mixing and Levitation of Extended States in Two Dimensions
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We study the effects of mixing of different Landau levels on the energies of one-body state
the presence of a strong uniform magnetic field and a random potential in two dimensions. We
perturbative approach and develop a systematic expansion in both the strength and smoothnes
random potential. We find the energies of the extended states shiftupward,and the amount of levitation
is proportional tosn 1 1y2dyB3 for strong magnetic field, whereB is the magnetic field strength andn
is the Landau level index. [S0031-9007(96)02102-3]
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The behavior of extended electronic states of nonint
acting electrons in a uniform magnetic fieldB with a ran-
dom substrate potentialV srd is of central importance to
the understanding of the integer quantum Hall effect [
In this Letter, we report a new and rather simple calcu
tion that exposes the microscopic origin of the so-cal
“levitation” of extended states [2,3] in the large-B limit,
which has been the subject of recent interest.

On the one hand, it is now widely accepted th
in the limit B ­ 0, there are no extended (delocalize
single-electron states at any finite energy [4], while
the strong-field limit, there exist discrete energies n
the center of each disorder-broadened Landau level
which states are extended [5–8]. An appealing (b
heuristic) scenario, known as the “levitation” of extend
states, has been proposed to explain how the interpola
between these limiting behaviors might occur [2,3]. Th
holds that one-electron states are localized at all ener
except at a discrete setEc

nsBd ­ sn 1
1
2 dh̄vc 1 ensBd,

n $ 0, wherevc ­ jeBjym. The energiesensBd ! ec,
a constant, asjBj ! `, and increase monotonically asjBj

decreases, in such a way thatEc
nsBd , Ec

n11sBd , ` for
jBj . 0, finally diverging asB ! 0. This scenario is the
basis of the recently proposed global phase diagram
the quantum Hall effect [9]. We emphasize the levitatio
ensBd, is defined relative to the Landau level energy
sn 1

1
2 dh̄vc, which depends linearly onB.

While the levitation scenario is appealing, it has app
ently not yet been derived from microscopic conside
tions, and recently there has been considerable intere
testing it experimentally and numerically [10–19], and
identifying its microscopic origin. The effect must be a
sociated with Landau-level mixing, which gives rise
an apparent paradox: generically, mixing gives rise to
level-repulsioneffect, which would tend tolower rather
than raise the energy levels. (This is clear for the c
n ­ 0, but is generally true, as the level repulsion due
mixing with higher Landau levels is always stronger th
that from lower ones.)

In this Letter, we resolve this paradox, and provi
a rather simple explanation of the initial appearance
0031-9007y97y78(2)y298(4)$10.00
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levitation associated with Landau-level mixing at larg
but finite fields, giving theOsB23d levitation (relative to
the Landau level energy)

ensBd ­ ec 1 sn 1
1
2 dh̄vc

√
s,yjd2

vct

!2

1 OsB24d , (1)

where, ­
p

h̄yjeBj is the “magnetic length.” Herēhyt

is the energy scale of Landau-level broadening in
high-field limit [essentially the variance of the fluctuation
of V srd], andj is a characteristic length scale over whic
the potential varies by this amount. This result is deriv
in the limit ,yj ø 1 and vct ¿ 1, which is always
achieved at sufficiently high magnetic fields provided t
potential is bounded, local, and smoothly varying.

The basic idea that leads to the above conclusion
summarized in the following three paragraphs. In the lim
h̄vc ! ` [20], i.e., the spacing between Landau leve
is infinite, mixing between different Landau levels is n
allowed, and one can work in thetruncated Hilbert space
of a given Landau level. The problem of localization
an isolated Landau level has been studied extensively
8,21] and the physics is very well understood, especia
when the potential is smooth. In this limit the Landa
quantization becomes exact, the dynamics of cyclot
and “guiding center” motions of electrons decouple, a
the latter can be treated semiclassically: the electr
move adiabatically along equipotentials of the potent
V srd, with the local drift velocity,vd ­ ẑ 3 =V srdyeB,
where ẑ is the direction of the magnetic field. Trugma
[21] (see also Ref. [22]) pointed out that in this lim
the delocalization of electronic states is associated w
the percolation of equipotential lines, and the energy
which the equipotential lines percolate is determined by
potentials at the saddle points, especially thecritical saddle
point: ec ­ V srcd, whererc is the location of the critical
saddle point. Corrections to this semiclassical behav
will occur when the equipotential line on which a partic
is moving comes close to a saddle point ofV srd, and
tunneling to a nearby equipotential line at the same ene
can occur [23]. This breakdown is believed to control t
quantum critical behavior whene is close toec [5]. The
© 1997 The American Physical Society
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energy of the extended state is thus clearly determined
saddle-point potentials, in this limit.

When h̄vc is large but finite, there is finite mixing be
tween different Landau levels, and working in a truncat
Hilbert space with the original (bare) potential misses
fects due to such mixing. We develop in the followin
a formalism, which allows us to continue working in th
truncated Hilbert space, and in the mean time taking i
account all Landau level mixing effects byrenormaliz-
ing theeffectivepotential seen by the electrons in a give
Landau level. Thislocally renormalized Landau-level
dependent effective potentialmay be calculated perturba
tively. We may calculate any physical quantities in t
truncatedHilbert space, using therenormalizedpotential,
and the results should be the same as obtained from
calculation in thefull Hilbert space, using thebare po-
tential. We will demonstrate the validity of our approac
by applying it to the specific model of a purely quadra
saddle-point potential, which has been treated by Fe
and Halperin [23] exactly. We emphasize, however, o
approach may be applied toany potential that is bounded
and smooth.

We find the renormalized effective potential has t
following feature: although it is renormalizeddownward
almost everywhere due to level repulsion effects,
renormalization atsaddle pointsis neverthelesspositive
definite,leading to levitation of extended states.

We find the locally renormalized Landau-leve
dependent effective potential takes the following form:

V
snd
eff srd ­ V srd 1

X
m$2

V snd
m srd , (2)

where V
snd
m srd ~ B2m as B ! `. The leadingOsB22d

correction is given by

V
snd
2 srd ­ 2

,2

2h̄vc
j=V srdj2 # 0 , (3)

which is independent of the Landau level index, and ne
tive. This is the generically dominant “level-repulsion
term, which indeed causes a downward shift of typic
energy levels. It is proportional to the square of the lo
electric field strength, and is the only correction in t
trivially solvable case where the substrate potentialV srd
is that of a uniform electric field.

The crucial observation is thatV
snd
2 srd vanishesat all

saddle points. Sinceen is determined by the potential o
saddle points, the dominant correctionV

snd
2 srd does not

affect the extended state energies.
The next order correction is

V
snd
3 srd ­

3
8 sn 1

1
2 d

√
,4

h̄vc

!
usrd , (4)

where
usrd ­ f=2V srdg2 2 det

ij
j=i=jV srdj ,

; s=2
xV 2 =2

yV d2 1 s2=x=yV d2 $ 0 . (5)
At a saddle pointusrd . 0, as the determinant of secon
derivatives is negative. Thus, in contrast to a gene
by
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point where the corrections to the effective poten
due to Landau-level mixing are negative, the lead
correction at saddle points, which control the energies
extended states, ispositive, giving rise to the levitation
effect. The result (1) follows from an estimate ofusrd at
saddle points as being of ordersh̄ytj2d2. Our results are
schematically illustrated in Fig. 1.

We now sketch the technical derivation of (2)–(5). W
write the substrate potentialV srd in terms of its Fourier
components̃V sqd

V srd ­
1
A

X
q

Ṽ sqdeiq?r , (6)

where for convenience we have imposed (quasi-)perio
boundary conditions on an area A that contains an inte
number of magnetic flux quanta. We now write

eiq?r ­ eiq?RUsqd, Usqd ­ eiq?sr2Rd, (7)

where R is the “guiding center” of the cyclotron orb
[24], which obeys the algebra [24,25]

eiq?Reiq0?R ­ expf 1
2 isq 3 q0d,2geisq1q0d?R. (8)

(Here q 3 q0 ; qxq0
y 2 qyq0

x.) The unitary operato
Usqd acts entirely on the cyclotron orbit (Landau leve
variables, and commutes with the guiding center. In
strong-field limit, the potential term projected into th
Landau leveln becomes

1
A

X
q

Ṽ sqdeiq?RUsqdnn , (9)

whereUsqdnn0 ; knjUsqdjn0l (n andn0 are Landau-leve
indices): forn $ n0, Unn0sqd is given by√

sqx 1 iqyd,
p

2

!n2n0

Ln2n0

n0 s 1
2 q2,2d exps2 1

4 q2,2d , (10)

whereLm
n sxd is a Laguerre polynomial.

FIG. 1. Density of states and energy of extended states
given Landau level before (dashed lines) and after (solid lin
Landau level mixing is taken into account.
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The problem in the high-field limit is to diagonaliz
the projected potential (9), in the subspace of a giv
Landau level. When the field strength is strong but fini
states in different Landau levels are stillwell separated.
Nevertheless, electrons in a given Landau level may
scattered into other Landau levels by the potential, a
will eventually come back due to energy conservatio
The effect of such (virtual) processes is torenormalize
theeffectivepotential seen by the electrons in this Land
level [see Fig. 2], which we calculate below.

The trick we will use to characterize the renormaliz
tion is to develop a perturbative expansion inVyh̄vc, and
rewrite the effective Hamiltonian in the form (9), but wit
a renormalizedṼ

snd
eff sqd, which can then be expanded i

powers of, as well as in1yh̄vc, to give a true1yB ex-
pansion. We then carry out the Fourier transform to fi
the renormalizedV

snd
eff srd that this corresponds to.

Using standard perturbative renormalization formalis
we find the leadingOsV 2yh̄vcd term in the effective
Hamiltonian is

1
A2

X
qq0

Ṽ sqdṼ sq0d
h̄vc

eiq?Reiq0?R
X
n0

0 Unn0sqdUn0nsq0d
sn 2 n0d

.

(11)
The primed sum means that the singular termn0 ­ n is
excluded. We must now express this term in the form (
using the contraction (8). The generalOfVmysh̄vcdm21g
contribution toV

snd
eff srd may be written (form . 1) in the

form

h̄vc

Am

X
q1...qm

√
mY

i­1

Ṽ sqideiqi ?r

h̄vc

!
f snd

m sq1, . . . , qmd , (12)

wheref
snd
m sq1, . . . , qmd is a symmetricand analytic func-

tion of the hqi,j [it is derived from theUnn0 sqd, which
are analytic]. It is alsorotationally invariant, and must
vanish as any of theqi ! 0, as addition of a spatially
constant term (aq ­ 0 Fourier component) to the poten
tial cannot affect the nonlinear terms inV

snd
eff srd. The term

f
snd
2 sq1, q2d is the symmetric part of

eiq13q2,2y2

Unnsq1 1 q2d

X
n0

0 Unn0sq1dUn0nsq2d
sn 2 n0d

. (13)

FIG. 2. Schematic perturbative expansion of the effect
potential seen by electrons in thenth Landau level.
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It is straightforward to expandf
snd
2 sq1, q2d in powers of

,, using (10); we find that, up to terms of order,4, it is
given by

1
2 sq1 ? q2d,2 1

3
8 sn 1

1
2 d fsq1 ? q2d2 2 sq1 3 q2d2g,4.

(14)
This corresponds to a gradient expansion of the effect
potential in real space, and gives the leading terms
OsB22d andOsB23d in (2).

We find that the leading term in the gradient expansi
of the term of orderOfV 3ysh̄vcd2g is of order ,4 [this,
in fact, follows directly from the general properties o
f

snd
3 sq1, q2, q3d mentioned above]. This means that i

leading contribution to the effective potential isOsB24d,
and it does not contribute to the leading terms. High
order terms inVyh̄vc vanish even faster at largeB.

Fertig and Halperin [23] (FH) considered the quantu
mechanical problem of tunneling through aquadratic
saddle-point potential,V sx, yd ­ V0 2 Uxx2 1 Uyy2,
which they were able to treat exactly. By applying o
approach to this specific potential, one may check
validity of our results against the exact solution, which w
illustrate below. For particles which are asymptotical
in the nth Landau level, FH calculated the transmissio
coefficient and found the energyEp

n at which reflection
and transmission coefficients are equal. Expansion
their result in powers of1yh̄vc gives

Ep
n ­ V0 1 sn 1

1
2 d fh̄vc 1 sUy 2 Uxd,2g

1 sn 1
1
2 d

,4

h̄vc
f2UxUy 2

1
2 sUx 2 Uyd2g

1 Ossssh̄vcd22ddd . (15)

In the limit h̄vc ! `, where Landau levels decouple, w
may writeEp

n ­ sn 1
1
2 dh̄vc 1 ep

n, where

ep
n ­ V sxcd 1 sn 1

1
2 d ,2

2 =2V sxcd 1 Os,4d (16)

[where the correction termsOs,4d and above are absen
for the purely quadratic saddle-point potential of [23]
The formula (15) is exactly reproduced when (16)
evaluated using therenormalized(and no longer purely
quadratic) potentialV

snd
eff srd. Thus our results are fully

consistent with those of Ref. [23], as we are able to
produce the exact result using a formula that is valid
the truncatedHilbert space,and renormalizedpotential.
Such tunneling effects, however, do not affect our co
clusion (1) since the configurationally averaged levitati
of Ep

n has the same dependence onn and B as that of
V

snd
eff sxcd.
We emphasize that the perturbative approach we

here is valid only when the magnetic field is stron
different Landau levels are well separated, and Land
level mixing is weak. In this regime our results clear
support the levitation scenario [2,3]. Nevertheless
this regime the quantized Hall conductanceincreases,
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as B decreases, because the decreasing of Landau
energies dominates the levitation effects. Other poss
scenarios [16] atweak magnetic field, however, are no
ruled out here.

In the following we discuss the experimental implic
tions of our results, and their relation with existing wor

Our result shows that the leading effect in this lim
is an OsB22d downwardsmotion of the mean energy o
the Landau level, while the extended state isstatic to
this order, and only levitates toOsB23d. In this limit at
least, experimental evidence [11–13] that the exten
state rises relative to the mean energy of the Lan
level would be demonstrating not levitation of extend
states, but the lowering of localized state energies du
level repulsion between Landau levels. We also note
evidence of levitation of extended states has been fo
in previous numerical work, in both the continuum syst
[8,10], and the tight binding model [17], although there
controversy in the latter case [16,18].

Recently Shahbazyan and Raikh [14] (see a
Ref. [15]) used an extension of the network model
to simulate the continuum system in the presence o
smooth random potential. They considered the effe
of strongly localized orbitals of different Landau leve
with energies close to the saddle-point energies o
particular Landau level, and find that resonant tunne
into such orbitals resultson averagein a reduction of
the transmission rate through the saddle points, imply
an upward shift of the energy of extended states.
note that in order for this effect to be important, the
must be significant overlap in the density of states (DO
of different Landau levels; while it is clear from ou
results that levitation occurs even if there is no over
in the DOS of different Landau levels (which is th
case whenB is large). Later, Gramada and Raikh [1
studied the effects of a short-range impurity poten
on the transmission rate through a nearby saddle p
and again find a reduction of the transmission rateon
average. They estimate the upward shift of the extend
state energy due to this effect to be of orderB24 for large
B. We believe theOs1yB3d levitation we identify here is
the dominant one, at largeB.

There are recent observations [12,26] of apparently
rect transitions from quantum Hall states with largen

to insulating states at veryweak magnetic field, which
appears to be inconsistent with the conventional o
electron extended-state-levitation picture and the glo
phase diagram [9]. We note at very weak magnetic fi
electron-electron interactions may become important
the one-body picture may not be sufficient. However
quantitative validation of the levitation scenario for no
interacting electrons in theB ! 0 limit clearly urgently
needs to be attempted.
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To summarize: We have used a perturbative approa
to study the effects of mixing between Landau levels
a two-dimensional noninteracting electron system, due
a random substrate potential. In high magnetic field
we find that although most of the states in the Land
level with index n are pushed to lower energy by suc
mixing, the energy of extended states shifts upward, a
the amount of this shift is proportional tosn 1 1y2dyB3.
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