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We study the effects of mixing of different Landau levels on the energies of one-body states, in
the presence of a strong uniform magnetic field and a random potential in two dimensions. We use a
perturbative approach and develop a systematic expansion in both the strength and smoothness of the
random potential. We find the energies of the extended statesiphifird,and the amount of levitation
is proportional to(n + 1/2)/B? for strong magnetic field, wher® is the magnetic field strength amd
is the Landau level index. [S0031-9007(96)02102-3]

PACS numbers: 71.30.+h, 73.40.Hm

The behavior of extended electronic states of noninterlevitation associated with Landau-level mixing at large
acting electrons in a uniform magnetic figkdwith a ran-  but finite fields, giving theO(B~3) levitation (relative to
dom substrate potentidl(r) is of central importance to the Landau level energy)
the understanding of the integer quantum Hall effect [1]. .

In this Letter, we report a new and rather simple calcula- €,(B) =€, + (n + z)ﬁwc(
tion that exposes the microscopic origin of the so-called

“levitation” of extended states [2,3] in the lardelimit, wheref = /ﬁ/leBI is the “magnetic length.” Heré/r
which has been the subject of recent interest. is the energy scale of Landau-level broadening in the
On the one hand, it is now widely accepted thathigh-field limit [essentially the variance of the fluctuations
in the limit B = 0, there are no extended (delocalized)of v (r)], and ¢ is a characteristic length scale over which
single-electron states at any finite energy [4], while inthe potential varies by this amount. This result is derived
the strong-field limit, there exist discrete energies neaf the limit ¢/¢ < 1 and w.7 > 1, which is always
the center of each disorder-broadened Landau level, @chieved at sufficiently high magnetic fields provided the
which states are extended [5-8]. An appealing (bubpotential is bounded, local, and smoothly varying.
heuristic) scenario, known as the “levitation” of extended The basic idea that leads to the above conclusion is
states, has been proposed to explain how the interpolatiofmmarized in the following three paragraphs. In the limit
between these limiting behaviors might occur [2,3]. This;e . — o [20], i.e., the spacing between Landau levels
holds that one-electron states are localized at all energigs infinite, mixing between different Landau levels is not
except at a discrete séi;(B) = (n + 3)io. + €,(B), allowed, and one can work in theuncated Hilbert space
n =0, wherew. = [eB|/m. The energies,(B) — €.,  of a given Landau level. The problem of localization in
a constant, afB| — o, and increase monotonically 88|  an isolated Landau level has been studied extensively [5—
decreases, in such a way thg}(B) < E, (B) < < for  8,21] and the physics is very well understood, especially
|B| > 0, finally diverging asB — 0. This scenario is the when the potential is smooth. In this limit the Landau
basis of the recently proposed global phase diagram fajuantization becomes exact, the dynamics of cyclotron
the quantum Hall effect [9]. We emphasize the levitation,and “guiding center” motions of electrons decouple, and
€,(B), is definedrelative to the Landau level energy the latter can be treated semiclassically: the electrons
(n + %)ﬁwc, which depends linearly oA. move adiabatically along equipotentials of the potential
While the levitation scenario is appealing, it has appar¥ (r), with the local drift velocity,v, = 2 X VV(r)/eB,
ently not yet been derived from microscopic considerawherez is the direction of the magnetic field. Trugman
tions, and recently there has been considerable interest jA1] (see also Ref. [22]) pointed out that in this limit
testing it experimentally and numerically [10—19], and inthe delocalization of electronic states is associated with
identifying its microscopic origin. The effect must be as-the percolation of equipotential lines, and the energy at
sociated with Landau-level mixing, which gives rise towhich the equipotential lines percolate is determined by the
an apparent paradox: generically, mixing gives rise to gotentials at the saddle points, especiallydtitcal saddle
level-repulsioneffect, which would tend tdower rather  point: e. = V(r.), wherer. is the location of the critical
than raise the energy levels. (This is clear for the cassaddle point. Corrections to this semiclassical behavior
n = 0, but is generally true, as the level repulsion due towill occur when the equipotential line on which a particle
mixing with higher Landau levels is always stronger thanis moving comes close to a saddle point Wfr), and
that from lower ones.) tunneling to a nearby equipotential line at the same energy
In this Letter, we resolve this paradox, and providecan occur [23]. This breakdown is believed to control the
a rather simple explanation of the initial appearance ofjuantum critical behavior whea is close toe. [5]. The
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energy of the extended state is thus clearly determined byoint where the corrections to the effective potential
saddle-point potentials, in this limit. due to Landau-level mixing are negative, the leading

When/iw, is large but finite, there is finite mixing be- correction at saddle points, which control the energies of
tween different Landau levels, and working in a truncatecextended states, igositive, giving rise to the levitation
Hilbert space with the original (bare) potential misses efeffect. The result (1) follows from an estimate i) at
fects due to such mixing. We develop in the following saddle points as being of ord@r/7£2)?. Our results are
a formalism, which allows us to continue working in the schematically illustrated in Fig. 1.
truncated Hilbert space, and in the mean time taking into We now sketch the technical derivation of (2)—(5). We
account all Landau level mixing effects bhgnormaliz- write the substrate potentid(r) in terms of its Fourier
ing the effectivepotential seen by the electrons in a givencomponentd (q)

Landau level. Thidocally renormalized Landau-level- 1 ~ ‘

dependent effective potentialay be calculated perturba- V(r) = N > Vg, (6)
tively. We may calculate any physical quantities in the a

truncatedHilbert space, using theenormalizedpotential, where for convenience we have imposed (quasi-)periodic
and the results should be the same as obtained from thsundary conditions on an area A that contains an integral
calculation in thefull Hilbert space, using theare po-  number of magnetic flux quanta. We now write

tential. We will demonstrate the validity of our approach igr _ iq-R _ ig-(r-R

by applying it to the specific model of a purely quadratic et = M U(), Ulq) = e, (7)
saddle-point potential, which has been treated by Fertigvhere R is the “guiding center” of the cyclotron orbit
and Halperin [23] exactly. We emphasize, however, out24], which obeys the algebra [24,25]

approach may be applied smy potential that is bounded R, ig"R _ exr[%i(q X q')e*lef@t IR (g)
and smooth.

We find the renormalized effective potential has th
following feature: although it is renormalizetbwnward
almost everywhere due to level repulsion effects, th
renormalization asaddle pointsis neverthelespositive
definite,leading to levitation of extended states.

o(Here q X q' = g.9y — qyq;-) The unitary operator
U(q) acts entirely on the cyclotron orbit (Landau level)
Jariables, and commutes with the guiding center. In the
strong-field limit, the potential term projected into the
Landau level becomes

We find the locally renormalized Landau-level- 1 ~ iqR
dependent effective potential takes the following form: " %V(Q)e U(@nn » )
(n) n
Ver (r) = V(r) + Zz Vi), (2)  whereU(q),w = (n|U(q)|n') (n andn’ are Landau-level

indices): forn = n/, U,(q) is given by

(n) - : - !
where V''(r) « B™™ as B — ». The leadingO(B?) g\ " /
correction is given by (%) L7 (42 exp(— 3¢°€%),  (10)
(n) _ € 2
V2 (r) = 2w, Vvl =0, (3) whereL!(x) is a Laguerre polynomial.
which is independent of the Landau level index, and nega-
tive. This is the generically dominant “level-repulsion” E

term, which indeed causes a downward shift of typical
energy levels. It is proportional to the square of the local
electric field strength, and is the only correction in the
trivially solvable case where the substrate poteriiat)
is that of a uniform electric field.

The crucial observation is thaztz(")(r) vanishesat all
saddle points. Since, is determined by the potential of

saddle points, the dominant correctidvé”)(r) does not
affect the extended state energies.
The next order correction is

Vi) = 3(n + é)(

4
= )u<r>, @

where
u(r) = [V2V(r)]* — det|V;V,;V(r)l,
ij

— (V2 — v2y )2 2

- (YXV V.v V)" + @2V, V)_ = 0. (5) FIG. 1. Density of states and energy of extended states in a
At a saddle point(r) > 0, as the determinant of second given Landau level before (dashed lines) and after (solid lines)
derivatives is negative. Thus, in contrast to a generi¢.andau level mixing is taken into account.
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The problem in the high-field limit is to diagonalize |t is straightforward to expangfén)(ql,(h) in powers of

the projected potential (9), in the subspace of a givery, using (10); we find that, up to terms of ordé, it is
Landau level. When the field strength is strong but finite given by

states in different Landau levels are stilell separated. 5 3 | ) S
Nevertheless, electrons in a given Landau level may bez(d1 * @2)¢” + g(n + 7)[(q1 - q2)” — (@1 X q2)°}¢".
scattered into other Landau levels by the potential, and (14)

will eventually come back due to energy conservationThis corresponds to a gradient expansion of the effective
The effect of such (virtual) processes is renormalize  potential in real space, and gives the leading terms of
the effectivepotential seen by the electrons in this Landaup (p=2) and0(B3) in (2).

level [see Fig. 2], which we calculate below. ~ We find that the leading term in the gradient expansion
The trick we will use to characterize the renormaliza-of the term of orderO[V3/(fiw.)?] is of order ¢* [this,

tion is to develop a perturbative expansionVifiw., and  in fact, follows directly from the general properties of
rewrite the effecit(lnv)e Hamiltonian in the form (9), but with fén)((h,qz,(h) mentioned above]. This means that its
a renormalizedVes; (q), which can then be expanded in jeading contribution to the effective potential B4,
powers of¢ as well as inl//iw,, to give a truel/B eX-  and it does not contribute to the leading terms. Higher-
pansion. We then carry out the Fourier transform to findgrder terms inv /i@, vanish even faster at large
the renormalized/é?f)(r) that this corresponds to. Fertig and Halperin [23] (FH) considered the quantum
Using standard perturbative renormalization formalismmechanical problem of tunneling through cuadratic
we find the leadingO(V?/hiw,.) term in the effective saddle-point potential,V(x,y) = Vo — U.x? + U,y?,
Hamiltonian is which they were able to treat exactly. By applying our
1 Z V(Q)V(q) iR iqR 1 Unw (@Uwn(q) apprpach to this specifi(_: potential, one may che_ck the
e T he. €€ Z (n_—n,) : validity of our results against the exact solution, which we
aq ¢ n illustrate below. For particles which are asymptotically
(11)  in the nth Landau level, FH calculated the transmission
The primed sum means that the singular terfr= n is  coefficient and found the energy; at which reflection
excluded. We must now express this term in the form (9)and transmission coefficients are equal. Expansion of
using the contraction (8). The gene@lV™/(hiw.)" ']  their result in powers of /fiw,. gives

contribution toV (r) may be written (form > 1) in the Ef=Vo+ (n+ %)[ﬁwc + (U, — U]

formhw 1 V(ge T +(n+ 1)€—4[2U U, — 3(U, — U,
A—mc Z (l_[ T)f,(#)(QI»’Qm)» (12) 2 ﬁwc ey 2 . Y
Ao A + 0((hwe) ™). (15)
Wherefr(,f')(ql, ...,qm) IS a symmetricand analytic func-

In the limit iw. — oo, where Landau levels decouple, we

tion of the {q;¢} [it is derived from theU,, (q), which X ,
'on © tg;¢) [itis derived from (@), whic may writeE; = (n + %)hwc + €, where

are analytic]. It is alsaotationally invariant,and must

vanish as any of thg; — 0, as addition of a spatially € =V, + (n+ %)‘;Wv(xc) + 0(£%) (16)
constant term (g = 0 Fourier component) to the poten-

tial cannot affect the nonlinear termsﬂéff) (r). Theterm
fé”)(ql, q2) is the symmetric part of
eiq]><q2€2/2 / Unn’(ql)Un’n(qZ)
Um(qr + q2) 45 (n — n')

[where the correction term@(¢*) and above are absent
for the purely quadratic saddle-point potential of [23]].
The formula (15) is exactly reproduced when (16) is
evaluated using theenormalized(and no longer purely

guadratic) potentialve(?f)(r). Thus our results are fully
consistent with those of Ref. [23], as we are able to re-
produce the exact result using a formula that is valid in
n n n n the truncatedHilbert space,and renormalizedhotential.

(13)

B = B + Such tunneling effects, however, do not affect our con-
off clusion (1) since the configurationally averaged levitation
Va v of E, has the same dependence wrand B as that of
Ver? (%),
) We emphasize that the perturbative approach we use
n n n . . S .
D‘"“ _____ D o h_ere is valid only when the magnetic field is strong,
different Landau levels are well separated, and Landau
\Y \Y level mixing is weak. In this regime our results clearly
FIG. 2. Schematic perturbative expansion of the effectiveSupport the levitation scenario [2,3]. Nevertheless in
potential seen by electrons in théh Landau level. this regime the quantized Hall conductanicereases,
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as B decreases, because the decreasing of Landau levelTo summarize: We have used a perturbative approach

energies dominates the levitation effects. Other possible® study the effects of mixing between Landau levels in

scenarios [16] atveak magnetic field, however, are not a two-dimensional noninteracting electron system, due to

ruled out here. a random substrate potential. In high magnetic fields,
In the following we discuss the experimental implica- we find that although most of the states in the Landau

tions of our results, and their relation with existing work. level with indexn are pushed to lower energy by such
Our result shows that the leading effect in this limit mixing, the energy of extended states shifts upward, and

is an O(B~%) downwardsmotion of the mean energy of the amount of this shift is proportional fa + 1/2)/B>.

the Landau level, while the extended statestatic to We thank R.N. Bhatt, H.A. Fertig, S.M. Girvin,

this order, and only levitates t0(B~3). In this limit at  D. Shahar, and S. L. Sondhi for helpful discussions. This

least, experimental evidence [11-13] that the extendedork was supported by NSF Grant No. DMR-9400362.
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states, but the lowering of localized state energies due to
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