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Microfilamentation in Optical-Field-Induced Ionization Process
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A plasma-resonance field-ionization instability of uniform gas breakdown produced by intense la
fields via tunneling ionization of atoms is studied theoretically and by computer simulation. The fie
amplitude and produced plasma are found to be unstable relative to spatial modulation in the direc
of electric field with the spatial period shorter than the wavelength. In a dense gas the process, at
nonlinear stage of instability, becomes explosive and leads to the formation of thin resonance layers
sharp peaks of the field amplitude. [S0031-9007(97)02954-2]
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It is well known that a powerful electromagnetic wav
beam in a medium with positive (focusing) nonlinearit
is subject to filamentation instability with a characte
istic transverse scale large compared to the waveleng
This instability was predicted about thirty years ago bas
on the paraxial approximation for the scalar wave fie
[1]. Its manifestations were repeatedly observed in e
periments with powerful laser and microwave pulses (se
for example, [2,3] and references therein).

A less known fact is the existence of “vector” small
scale instability of the wave in a transparent mediu
with a “defocusing” (ionization-type) nonlinearity. This
instability was originally described based on the vect
wave equation [4], and studied theoretically and expe
mentally [5–7] as one of a wider class of ionization
field (or electrodynamic) instabilities of high-frequenc
and microwave discharges in gases. Further, we will u
the term “plasma-resonance ionization (PRI) instability
revealing the underlying physical mechanism of its ge
eration. The PRI instability results in the filamentatio
of the wave and produced plasma with density gradien
parallel to the wave electric field and with the spatia
period shorter than the wavelength. So, it may be co
sidered as an ionization analog of the known modulati
instability of the field in a collisionless plasma with posi
tive (ponderomotive-force-induced) nonlinearity. How
ever, unlike the latter, it evolves not only in a narrow
plasma resonance region (near the critical-density surfa
but covers the entire transmission medium and affects s
nificantly its electrodynamic characteristics.

The PRI instability, probably, has not yet been ob
served in experiments with powerful ionizing laser pulse
since the majority of the experiments realized the electro
impact (avalanche-type) mechanism of gas ionization; t
characteristic time of instability for this mechanism turn
out to be longer than the time of the avalanche itself or t
time of gas heating. However, advances in the generat
of powerful laser pulses with field amplitudes comparab
to atomic fields have stimulated interest in studies on t
dynamics of the laser breakdown determined by optic
field-induced (tunneling) ionization of gas atoms [8–14
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The growth rate of the PRI instability with this ioniza
tion mechanism, as we find below, can be high enou
so that, at the final stage of the breakdown process i
dense gas, what is produced is not a homogeneous pla
but a lamellar plasma-field microstructure at scales mu
smaller than a wavelength (unlike the usual filamentat
processes) and oriented with the lamella normals pa
lel to the oscillating electric field. Its appearance mu
be accompanied by a number of macroscopic manif
tations (variation in the effective refraction index of th
medium, excitation of higher harmonics, generation of fa
electrons), thus changing drastically the conditions a
possibilities of using laser plasma in applications wide
discussed now, such as the creation of x-ray lasers,
celeration of particles in plasma, and efficient extrem
ultraviolet (XUV) harmonic production. In this Letter, we
find the characteristics for the initial (linear) stage of th
PRI instability in the conditions of tunneling ionization an
present the results of computer simulation of its nonline
stage in the framework of the initial (temporal) evolutio
problem for spatially periodic perturbations in the field of
plane wave.

Our analysis will be based on the Maxwell equatio
for vectors of the electricE and magneticH fields, the
equation for the current of free electronsJ in a plasma
with variable densityn,

≠J y≠t ­ se2nymdE , (1)

and the known static expression (used as the model o
for the rate of tunneling ionization of the hydrogen ato
w [15],

≠ny≠t ­ wsE , nd ­ 6VsNg 2 nd
Ea

jE j
exp

µ
2

Ea

jE j

∂
.

(2)
Here e and m are electron charge and mass, respe
tively, V ­ me2yh3 ­ 4.16 3 1016 s21 is the atomic fre-
quency unit,h is Planck’s constant,Ea ­ s2y3dEa0, Ea0 ­
m2e5yh4 ­ 5.14 3 109 Vycm is the field strength at the
first Bohr radius, andNg is the density of neutral atoms o
the gas before the ionization process. Equation (1) is va
© 1997 The American Physical Society
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at any ionization ratew. It is easily deduced from the ki-
netic equation under the realistic assumption that the fr
electrons are born with zero (or isotropically distributed
velocity. Equation (2) is applicable to describe ionizatio
in a laser field of frequencyv and amplitudeE, when
the following conditions are fulfilled:v ø V, I ø q,
and E ø Ea, whereq ­ e2E2y2mv2 is the quiver en-
ergy of electrons andI is the ionization potential of the
atom. Variations in the average plasma density,N ­ knl,
are determined by the expression≠Ny≠t ­ kwsE dl (here
and further the angle brackets denote averaging over
field period,2pyv).

We will deal with the solutions of equations for the
field and plasma density in the following form:Ω

E

H

æ
­

1
2

Ω
Esx, td
Hsx, td

æ
expfikz 2 iwstdg 1 c.c. ,

N ­ Nsx, td , (3)

which describes the evolution of a quasimonochroma
p-polarized wave with a fixed longitudinal wave numbe
k and a slow time-varying frequencyvstd ­ ≠wy≠t and
amplitudesE, H.

The wave propagates in the1z direction and, in the
general case, has transverse and longitudinal compon
of the electric field,E ­ x0Ex 1 z0Ez , and only one
(transverse) component of the magnetic field,H ­ y0Hy.
Field amplitudes and the plasma density are supposed
be a periodical function of the transverse coordinatex:
hEx,z , Hy , Nj sx, td ­ hEx,z , Hy, Nj sx 1 L, td. The period
of these functions,L, and the longitudinal wave number
k, which determines the wavelength in the longitudin
direction, l ­ 2pyk, are constants preset at the initia
instant of time,t ­ 0. The range of interest for these
parameters isLyl , 1. The wave frequency,v, as well
as transverse structures of the field and plasma, m
change significantly in a long (on the scale of1yv) time.

At a sufficiently low ionization rate the stated problem
can be solved within the adiabatic approximation based
the stationary wave equation for the magnetic fieldHy and
relations for the electric field components of ap-polarized
wave (3):

´
≠

≠x

µ
1
´

≠Hy

≠x

∂
1

µ
v2

c2
´ 2 k2

∂
Hy ­ 0 . (4)

v´Ex ­ ckHy , v´Ez ­ ics≠Hyy≠xd . (5)

Here´ ­ 1 2 sNyNcd ­ 1 2 sv2
Lyv2d is the permittiv-

ity of the plasma,Nc ­ mv2y4pe2 is the critical density,
and vL ­ s4pe2Nymd1y2 is the Langmuir frequency.
Using the stationary equation (4) without the terms co
taining temporal derivatives of the amplitude and the de
sity, we actually neglect group lagging in the transver
direction and excitation of natural plasma oscillations
frequencyvL in time-varying plasma. This is valid for
perturbations with the transverse scaleL , l, if a charac-
teristic time of variation in the complex amplitude,te ­
jEjj≠Ey≠tj21, is great compared to the period corre
ee
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sponding to the beat frequency,td ­ sv 2 vLd21. With
the givenx-periodicity condition, the solution of Eq. (4)
determines, at each instant of timet [for known distribu-
tion of the densityNsx, td], the eigenfunctionHysx, td and
eigenvaluevstd. The time-dependent normalization fac
tor in the determination of eigenfunctionHy must be cal-
culated by means of the evolution equation that describ
the variation of the wave energy in a plasma with growin
density:

≠

≠t

Z L

0
jEj2 dx ­ 2

4pe2

mv4

Z L

0
kQldx ,

Q ­
≠n
≠t

µ
≠E

≠t

∂2

. (6)

This equation is a generalization of the intensity tran
port equation obtained earlier for a homogeneo
quasimonochromatic wave [10,12], with transver
modulations of the field and density taken into accou
It may be derived directly from Poynting’s theorem fo
the quasimonochromatic field by using the equation f
the electron current (1) and thex-periodicity condition
for the fields. The right-hand side of the equatio
determines energy losses caused by energy transfe
newly born electrons [8,10,12]. Direct energy losses
the electrons’ detachment, as well as collision losses,
be neglected in the validity region of the static formu
(2) sI ø qd and at small collision frequency of electron
sn ø wNc ø vd.

The dynamics of a homogeneous breakdown (in t
absence of space modulations) produced by the field o
linearly polarized transverse waveE ­ x0E0std cosfkz 2

wstdg in the case ofjEj ø Ea is described by smooth
functionsE0std, vstd, andvLstd [14]. The average rates
of ionization, kwl, and dissipation,kQl, in Eq. (6) and
the long-time asymptotic solution are determined in th
case by the following expressions:kwl ­ wsE0d

p
E0yEa,

kQl ­ kws≠E y≠td2l ­ kwlv2E3
0yEa, v

2
Lstd ­ v2std 2

v2s0d , t2y3, and E0std , sln vd21. Let us study the
stability of this process with respect to small perturbatio
that modulate the wave amplitude and plasma density
the x direction. Representing the expressions for fie
components and plasma density asEx ­ E0std 1 E1sx, td
and N ­ N0std 1 N1sx, td, and linearizing Eqs. (2), (4),
and (5) against the homogeneous (but nonstationa
backgroundE0 andN0, we obtain the following equations
for the small perturbationsE1 and´1 ­ 2N1yNc:

≠2E1

≠x2
1

E0

´0

≠2´1

≠x2
1

µ
v

c

∂2

´1E0 ­ 0 ,

≠´1

≠t
1 g0´1 1 aE1 ­ 0 , (7)

where ´0 ­ 1 2 sN0yNcd, a ­ N21
c sdkwlydE0d, and

g0 ­ kwl sNg 2 N0d21. For perturbations having the
form of E1, ´1 , coss2pxyLd exp

R
gstddt, we find,

based on the system (7), the following expression for t
2969
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growth rate of the instabilityg:

g ­ g0

∑
Ng 2 N0

Nc 2 N0

Ea

E0

µ
1 2

L2

l2

∂
2 1

∏
. (8)

It follows from Eq. (8) that perturbations with the spa
tial period L shorter than the length of the electromag
netic wave,l ­ 2pyk, can be unstablesg . 0d. The
instability is caused, in fact, by a plasma resonance ph
nomenon and can be understood in the framework of
simple quasistatic (“plane capacitor”) model which i
valid for the small scaleL ø l. As the undercritical
plasma densityN , Nc increases in a thin plane layer, the
normal field component increases according to the qu
sistatic relationEx ­ consty´. It results in the growth of
the ionization ratekwl and the further growth of the den-
sity. At the same time, defocusing of the wave by th
dense plasma is negligible on this small scale (but it su
presses the instability with the scaleL . l). When the
condition of sNg 2 N0dEa ¿ sNc 2 N0dE0 is fulfilled,
the maximum ofg reached in the limit ofLyl ! 0 is
gmax ­ kwlEayNcE0´0. The lower limit of the instabil-
ity scale,Lmin, cannot be found in the framework of the
local relations (1) and (2), and, probably, must be dete
mined either by the amplitude of electron oscillations i
the optical field or by the Debye lengths. In a gas wit
high densitysNg . Ncd the value ofg grows infinitely as
the densityN0 approaches the critical valueNc. However,
it begins to exceed the growth rate of the homogeneo
backgroundsg . kwlyN0d even at the values of the back-
ground densityN0S which are much smaller than the criti-
cal one:N0SyNc . E0yEa ø 1. If, at such values ofN0,
the electron or neutral density fluctuations or an extern
random source of ionization produce a “seed” small-sca
perturbation with a sufficiently great valueN1S, then the
spatial modulation of the plasma densityNsxd may be-
come significant even in the region of´ , 1, i.e., much
earlier than the point of plasma resonance is achieve
For example, in the case ofN1SyN0S ­ E0yEa ­ 0.1, the
FIG. 1. Spatiotemporal evolution of the field and plasma at the nonlinear stage of PRI instability: (a) Transverse,Exsxd, and
longitudinal,Ezsxd, field components; (b) dimensionless plasma density,N sxd ­ NyNc0, and permittivity,´sxd, at various instants
of time; the curves 1–6 correspond to the values ofVt 3 1023 ­ 0, 7.39, 7.96, 8.45, 10.2, and25, respectively. The period of
initial transverse modulation isL ­ ly3.
2970
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value ofN1s0, td calculated by means of the above linea
theory becomes of the order ofN0std at N0yNc . 0.3.

The dynamics of the field and plasma at the nonline
stage of instability (at largé 1 and E1) was studied by
computer simulation. The system of Eqs. (2), (4)–(6) wa
integrated numerically in the interval0 , x , L with the
periodic boundary conditions and the following initial con
ditions: Nsx, 0d ­ N00 1 N10 coss2pxyLd, Hys0, 0d ­
H0, and≠Hyy≠xs0, 0d ­ 0; at smallN00 andN10 the field
at the initial instantt ­ 0 is an almost transverse wave
with amplitudesEx . Hy . H0 and frequencyv0 . kc.
The results of numerical calculations for the value
of dimensionless parametersNc0yNg ­ 0.8, lyL ­
2pykL ­ 3, H0yEa ­ 8.25 3 1022, N00yNc0 ­ 0.1,
and N10yNc0 ­ 0.01 fNc0 ­ Ncsv0dg are shown in
Figs. 1 and 2.

Figures 1(a) and 1(b) present spatial distributions of th
electric field componentsExsxd andEzsxd, the plasma den-
sity Nsxd, and permittivity´sxd at various time moments
t. We see that the nonlinear stage is characterized by
formation of sharp maxima in the transverse field and de
sity; the electric field in a thin layer with́ ø 1 increases
significantly, whereas outside this layer it significantly de
creases as compared to the initial unperturbed value,E0s0d.
At a certain point, this process acquires the explosion cha
acter and goes on until the gas is almost completely io
ized at the maximum point, where the differencev 2 vL

reduces to the minimum (positive) value. Thereafter, th
produced layer with increased density extends slowly, a
the field maximum becomes lower.

Figure 2 shows, as time functions, the frequencyvstd,
field energyKstd, and average energy fluxPstd (related
to their initial values), and the real part of the effective
permittivity, ´effstd ­ sckyvd2, which determines the
characteristics of average (over thex coordinate) fields.
These dependencies are rather steep at the stage of
growth of the field and density, and slow down sharpl
after ionization is saturated at the maximum point.
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FIG. 2. Wave frequencyvyv0, energy KyK0, energy flux
PyP0, and effective permittivitý eff (curves 1–4, respectively)
as time functions.

The studied numerical example may correspond to t
ionization of H2 gas by the laser pulses with the inten
sity S . 1014 Wycm2, duration tp . 200 fs, and wave
band l , 3 10 mm, conforming to the approximations
used above. Gas pressures corresponding to these b
boundaries (at the given relationNc0yNg ­ 0.8) are, re-
spectively, 6 and 0.6 atm. An analysis of the calculatio
results shows that the condition of validity of adiabati
approximation (4)–(6) is fulfilled approximately in this
casestdyte . 0.1 2 0.3d. Note, however, that the maxi-
mum rate of the explosion process that is achieved ne
N ­ Ng grows as the parameterNgyNc0 increases; thus
at a sufficiently high gas density (actually, starting from
NgyNc0 . 2) the adiabaticity condition,te ¿ td , must
be inevitably violated near the sharpening point. By tha
probably, the shock excitation of a reflected wave and th
generation of intense plasma oscillations will take plac
In this case, the theory developed makes it possible on
to conclude that the explosion process is inevitable and
describe the first (adiabatic) stage of the process culmin
ing in the formation of contrast plasma-field structures.

The important feature of the resulting structures is
long lifetime. After filamentation, the ionization process
is actually stopped both in the dense layers (where t
gas is fully ionized) and in the spacing between the
(where the electric field and ionization probability decreas
drastically). This makes possible the realization and d
tection of the filamentation in a sufficiently wide range
of the pulse intensitys,1014 1016 Wycm2d and duration
s,100 fs 10 nsd. In the above example, the structure
arises in 200 fs and lives (until full ionization of the spac
ing) about 10 ns. In the case of double pressure (1.2 a
for l ­ 10 mm), the electric field decreases in the spac
ing by an order of magnitude. If this process occur
for example, at a smooth leading edge of the Gaussi
shaped ps laser pulse, the contrast structure (formi
at a field E0yEa , 0.05 0.1) is conserved throughout
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the pulse, even though the fieldE0 increases by several
times (with the corresponding increase in intensity up
1015 1016 Wycm2) in the pulse maximum. As for the
preferable way for detection of structures, it is probabl
a scattering diagnostic with a wavelength far shorter tha
that of the driving laser.

In conclusion, we have shown that in the process
optical-field-induced ionization the field and plasma can
not stay homogeneous even on scales small compared
the wavelength. Because of the effect of PRI instability
on such scales the development of the periodic plasm
field microstructure occurs with gradients parallel to th
wave electric field. At a sufficiently high gas density
the sharpening regime is realized at the nonlinear stage
the instability, the process acquires the explosion chara
ter and leads to the formation of thin resonance layers,
which the electric field of the wave concentrates. In th
regime the processes of scattering and the generation
higher radiation harmonics must be strongly intensifie
and this is highly important for problems of production
and diagnostics of laser plasmas with high density. In fu
ture work, attention should be paid to the effect of realist
pulse shapes rather than the constant amplitude (in thez
direction) oscillating laser field considered here.

This work was supported by the International Scientifi
Foundation (Grant No. R8A300), and the Russian Bas
Research Foundation (Grant No. 96-02-17467).

[1] V. I. Bespalov and V. I. Talanov, JETP Lett.3, 307 (1966).
[2] S. Wilks, P. E. Young, J. Hammer, M. Tabak, and W. L

Kruer, Phys. Rev. Lett.73, 2994 (1994).
[3] A. G. Litvak, in Reviews of Plasma Physics,edited

by M. A. Leontovich (Consultants Bureau, N.Y., 1980)
Vol. 10, p. 293.

[4] V. B. Gil’denburg and A. G. Litvak,Proceedings of the
VII Symposium on Wave Diffraction and Propagation
Rostov-na-Donu(AN, SSSR, 1977) (in Russian), Vol. 1,
p. 278.

[5] V. B. Gil’denburg and A. V. Kim, Sov. Phys. JETP47, 72
(1978).

[6] R. R. Kikvidze and A. A. Rukhadze, Sov. J. Plasma Phy
13, 140 (1987).

[7] A. L. Vikharev et al., Sov. Phys. JETP67, 724 (1988).
[8] P. B. Corkum, N. H. Burnett, and F. Brunel, Phys. Rev

Lett. 62, 1259 (1989).
[9] M. C. Downer, W. M. Wood, and J. T. Trisnadi, Phys. Rev

Lett. 65, 2832 (1990).
[10] V. B. Gil’denburg, A. V. Kim, and A. M. Sergeev, JETP

Lett. 51, 104 (1990).
[11] W. P. Leemanset al., Phys. Rev. A46, 1091 (1992).
[12] V. B. Gil’denburg et al., IEEE Trans. Plasma Sci.21, 34

(1993).
[13] S. C. Rae, Opt. Commun.104, 330 (1994).
[14] A. J. Mackinnonet al., Phys. Rev. Lett.76, 1473 (1996).
[15] L. D. Landau and E. M. Lifshitz,Quantum Mechanics

(Pergamon, London, 1978), 3rd ed.
2971


