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Inertial- and Dissipation-Range Asymptotics in Fluid Turbulence
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We propose and verify a wave-vector-space version of generalized extended self-similarity
Benzi et al., Europhys. Lett.32, 709 (1995)] and broaden its applicability to uncover intriguing,
universal scaling in the far dissipation range by computing high-order (#20) structure functions
numerically for (1) the three-dimensional, incompressible Navier-Stokes equation (with and witho
hyperviscosity) and (2) the Gledzer-Ohkitani-Yamada shell model for turbulence. Also, in case (
with Taylor-microscale Reynolds numbers4 3 104 # Rel # 3 3 106, we find that the inertial-range
exponents (zp) of the order-p structure functions do not approach their Kolmogorov valuepy3 as Rel
increases. [S0031-9007(97)02862-7]
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Kolmogorov’s pioneering work (K41) [1] on homoge
neous isotropic turbulence used the cascade picture to
dict simple scaling forms for velocity structure function
(see below). These forms hold for distancesr in the in-
ertial range that lies betweenL, the forcing scale, and
hd , the dissipation scale at which viscosity starts mod
fying the invariant energy cascade. Subsequent stud
[2–11] have refined K41, as we outline below, but ha
concentrated principally on the inertial range. In this Le
ter we use recently developed generalizations of su
scaling [2,5] to elucidate the crossover from inertial-
dissipation-range behaviors in fluid turbulence.

The order-p velocity structure functionsSpsrd ;
kjvisx 1 rd 2 visxdjpl, where i s 1, 2, or 3d denotes
components, scale asSpsrd , rzp at high Reynolds
numbers Rel and for the inertial range20hd & r ø L
(where l is the Taylor microscale). The K41 resul
zp  py3 works well for p & 4; but for largep, most
studies [2–11] find multiscaling, i.e.,zp  py3 2 dzp,
a nonlinear increasing function withdzp . 0. Also,
a procedure called extended self-similarity (ESS) [5
in which zp is obtained fromSp , S

zp

3 , extendsthe
apparent inertial range down tor . 5hd . A more
recent technique, generalized extended self-similar
(GESS) [2], uses the dimensionless structure functio
Gpsrd ; SpsrdyfS3srdgpy3 and suggests that the form
Gp , fGqgrpq , with rp,q  fzp 2 pz3y3gyfzq 2 qz3y3g,
holds down to the lowest resolvable values ofr . GESS
has been tested [2] to some extent (p, q # 6). We show
that ESS and GESS provide us with sensitive ways
studying the crossover of structure functions from the
inertial- to dissipation-range forms.

Specifically, we show how GESS is modified at su
ficiently small r by computing wave-vector-space (k-
space) analogs of high-order (#20) structure functions for
(1) the three-dimensional, incompressible Navier Stok
equation (3D NS), with and without hyperviscosity, an
(2) the Gledzer-Ohkitani-Yamada (GOY) shell model fo
turbulence [9–12] (where we attain both large Rel and
k ¿ kd ; h

21
d ). We further propose ak-space GESS
0031-9007y97y78(15)y2964(4)$10.00
re-
s

i-
ies
e
t-
ch
o

t

],

ity
ns

of
ir

f-

es
d
r

[2], show that it holds forL21 ø k & 1.5kd , but then
crosses over to another form in the far dissipation range.
To study this we postulatek-space ESS [for real-space
structure functions we use the symbolsS andG and for
their k-space analogs (not Fourier transforms) the symbols
S andG]:

Sp ; kjvskdjpl ø AIpsS3dz 0
p , L21 ø k & 1.5kd ,

Sp ; kjvskdjpl ø ADpsS3dap , 1.5kd & k ø L , (1)

where AIp and ADp are, respectively, nonuniversal am-
plitudes for inertial and dissipation ranges andL21 the
(molecular) length at which hydrodynamics fails (see [5,6
for real-space analogs). Our study shows (Figs. 1 and

FIG. 1. Log-log plots (base 10) ofSp versus S3 for 3D
NS (p  17 for runs NS1-4) and GOY [run G1 in inset
(a)] models showing ourk-space ESS [Eq. (1)]; full lines are
the SL prediction [4]. Inset (b):z 0

p (circles) from run NS4; the
line is z 0

p  2szp 1 3py2dy11, with the zp  z SL
p . Note the

deviation of our data points from SL lines at smallS3, i.e., in
the dissipation range; this shows clearly only for NS3 on this
scale, but is also present in runs NS1 and NS2 (Fig. 3).
© 1997 The American Physical Society
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FIG. 2. Inertial- and dissipation-range exponentszp and ap
(extracted from plots like Fig. 1) versusp for GOY and
NS runs and their comparison with the SL formula [4] an
py3. We obtainzp from our measuredz 0

p and the formula
zp  11z 0

py2 2 3py2; this amplifies the error bars relative to
Fig. 1(b). Error bars forap are shown but not apparent since
they are comparable to the symbol sizes.

that Eq. (1) holds with two different exponentsap and
z 0

p. In the GOY modelz 0
p  zp, but we find explici-

tly [Fig. 1(b)] that, for the 3D NS case,z 0
p  2szp 1

3py2dy11 [i.e., Spskd , k2szp13py2d in the inertial range
[13] ]; the difference between the two arises because
phase-space factors.Both zp and ap (Fig. 2) seem uni-
versal [the same for all GOY and 3D NS runs (Table
[14] ]. zp agrees fairly with the She-Leveque (SL) [4
formula z SL

p  py9 1 2f1 2 s2y3dpy3g for the ranges of
p and Rel in Fig. 2; andap is close to, butsystematically
less than, py3. The k dependences of the inertial- and
dissipation-range asymptotic behaviors follow now from
the dependence ofS3 on k: We find

S3 ø BIk2z329y2, L21 ø k & 1.5kd , (2)

S3 ø BDkd exps2ckykdd, 1.5kd & k ø L , (3)

where BI and BD are, respectively, nonuniversal ampli
tudes [Eq. (2) holds [13] for 3D NS; for GOY the fac
tor 9y2 is absent]. Thus, in the far dissipation range
all Sp , kup exps2capkykdd for 1.5kd & k ø L, with
up  apd, a form not easy to verify numerically for large
p, given the rapid decay at largek, and suggested hith-
erto [15] only for S2. In Eq. (3), d, c, kd are not uni-
versal, but we extract the universal part of the crossov
via our k-space GESS: DefineGp ; SpysS3dpy3; log-
log plots of Gp versusGq yield curves [Figs. 3(a) and
3(b)] with asymptotes which haveuniversal, but differ-
ent,slopes in inertial and dissipation ranges. The inertia
range asymptote has a slopersp, qd (as in real-space
d
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]
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GESS [2] which follows from the formulas above); the
resultingzp are in fair agreement with the SL formula [4].
The dissipation-range asymptote has a slopevsp, qd ;
fap 2 py3gyfaq 2 qy3g. The slopes of these asymp-
totes are universal, but the point at which the curv
veers off from the inertial-range asymptote depends o
the model (GOY, NS, etc.). However, a simple trans
formation yields auniversal crossover scaling function
[different for eachsp, qd pair because of multiscaling]:
Define log10sHpqd ; Dpq log10sGpd and log10sHqpd ;
Dqp log10sGqd; the scale factorsDpq  Dqp are nonuni-
versal, but plots of log10sHpqd versus log10sHqpd show
data from all GOY and 3D NS runs collapsing onto
one universal curvewithin our error bars [Fig. 3(c) for
p  6 and q  9] for all k and Rel. (This transforma-
tion holds the G1-8 GESS plots fixed and stretches the N
plots, without changing their slopes, until the asymptote
match.) Both ESS (Fig. 1) and GESS (Fig. 3) remov
the exponentialcontrolling factor [16] from the leading
asymptotic behaviorof Sp in the far dissipation range and
expose the remaining power-law dependence onk. Also,
it is easy to see analytically that GESS plots (Fig. 3) am
plify slope differences between inertial- and dissipation
range asymptotes relative to ESS plots (Fig. 1).

How robust is the fair agreement ofzp (Fig. 2) with
the SL formula? Some studies [17–19] suggest that,
Rel ! `, dzp ; spy3 2 zpd ! 0. Numerical solutions
of the 3D NS equation can at best achieve [7–20
Rel & 220, too small, by far, to resolve this issue, so
we address it for the GOY model by studying the rang
4 3 104 & Rel & 3 3 106. We find (Fig. 4) thatdzp

does not vanish with increasing Rel, but rises marginally
[21]. Systematic experiments at high Rel can check if the
trends of Fig. 4 obtain in the NS case.

We remark that if we assume the hierarchy
fGp11yGpg  fGpyGp21ggflimp!` Gp11yGpg12g with
g3  2y3 (whose real-space analog is equivalent [2
to the SL moment hierarchy for the energy dissipatio
[4]) and use [22]Gpskd ø Cpkbp , we get a difference
equation forbp identical to the SL one (ourbp is their
2tpy3). This, when solved with the boundary conditions
b0  b3  0 and limp!`sbp11 2 bpd  2y9, yields
the SL formula (viazp  2bp 1 pz3y3). However,
our GESS yieldsfGp11yGpg ø C0

pfGpyGp21gYp with
Yp  szp11 2 zp 2 1y3dyszp 2 zp21 2 1y3d. Super-
ficially, this might seem to violate the hierarchy assume
above, but it turns out to be consistent with our GES
form, if Yp  g 2 2s1 2 gdyf9szp 2 zp21 2 z3y3dg,
which is precisely the SL difference equation. O
course, our GESS form can hold withzp fi z SL

p ; Fig. 2
shows the quality of agreement between our measur
zp and z SL

p .
We use a pseudospectral method [7] to solve th

incompressible 3D NS equation. We force the first tw
k shells, use a box with sideLB  p and 643 modes.
Our dissipation term2sn 1 nHk2dk2 allows for both
viscosity n and hyperviscositynH . For time integration
2965
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TABLE I. Parametersn (viscosity),nH (hyperviscosity), Rel (Taylor-microscale Reynolds number),te (box-size eddy-turnover
time), tav (averaging time),tt (transient time), andkd (dissipation-scale wave number) for our 3D NS runs NS1-4 (kmax  64) and
GOY-model runs G1-8 (kmax  222k0). The step size (dt) used is 0.02 for NS1-4,1024 for G1-4, and2 3 1025 for G5-8. Note
te . 8tI , the integral time for our NS runs.

Run n nH Rel teydt ttyte tav yte kmaxykd

NS1 5 3 1024 0 .3.5 .3 3 104 .1 2 .4
NS2 2 3 1024 0 .8 .3 3 104 .1 .2.5 .2.3
NS3 5 3 1024 5 3 1026 .3.5 .3 3 104 .1 .1 .6.5
NS4 5 3 1024 1026 .22 .3 3 103 .10 .7 .2
G1-4 5 3 1026 1027 0 4 3 104 3 3 105 .s1.5 2.0d 3 104 .500 .2500 .25 23

G5-8 5 3 1028 1029 0 3.5 3 105 3 3 106 .s0.7 1d 3 105 .500 .2500 .23 1
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we use an Adams-Bashforth scheme (step sizedt)
[7]. Parameters for our 3D NS runs NS1-4 are give
in Table I, wherete ; LByyrms is the box-size eddy-
turnover time andtav the averaging time, after initial
transients have decayed over a periodtt . We use Rel 
yrmslyn, where l  f

R`

0 Eskd dky
R`

0 k2Eskd dkg1y2,
yrms  fs2y3L3

Bd
R`

0 Eskddkg1y2, and Eskd , S2skdk2.
All Spskd are averaged over shells of radiusk. Care must
be exercised in choosingdt and the forcing amplitude,
otherwise there is a slow but systematic stretching
the points along the asymptotes in Figs. 1 and 3 w
increasingtav (over the time scales of our low-Rel NS
runs). Fortunately, this hardly affects our exponent
Any attendant systematic errors in Fig. 2 are certain
less than the random errors indicated. All our NS ru
use quadruple-precision arithmetic and we have check
that halving our integration time step does not affect o
results perceptibly. Note also that sample fluctuatio
over even a few orders of magnitude are unimporta
given the range of our log-log plots like Fig. 1. Also
the agreement between our GOY and NS runs confir
our results. Our GOY-model data are, of course,
much better quality. Here Fourier components of th
velocity are labeled by a discrete set of wave vecto
kn  k0qn. The dynamical variables are thecomplex,
scalar velocities yn for each shelln; yn is affected
directly only by the velocities in nearest and next-neare
shells. This model yields scaling properties [9–12] ak
to experimental ones. The GOY-model equations are
FIG. 3. Log-log (base 10) plots ofG6 versus (a)G15 and (b)G9 illustrating ourk-space GESS; (c)H6,9 versusH9,6 showing the
universal inertial- to dissipation-range crossover (see text). The line shows the SL, inertial-range prediction.
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yn  iCn 2 nk2
nyn 1 fn , (4)

where n is the kinematic viscosity, fn the ex-
ternal force on shell n, Cn  saknyn11yn12 1

bkn21yn21yn11 1 ckn22yn21yn22dp, and a, b, and
c can be fixed up to a constant by demanding [11
for n, fn  0, that yn , k

21y3
n be a stationary so-

lution of Eq. (4), and the GOY-model kinetic energy
and helicity be conserved. We adopt the conven
tional parameters [10,11]k0  224, q  2, a  1,
b  c  21y2, and use fn  5 3 1023s1 1 iddn,1,
i.e., we force the first shell [23]. The GOY-model
structure functions areSn,p ; kjynjpl , k

2z p
n [9–

11]; reliable values of zp obtain [11] if we use
Sn,p  kjImfynyn11yn12 1 yn21ynyn11y4gjpy3l since
this removes an underlying three cycle. We have use
Sn,p to obtain Fig. 4 [24], butSn,p in Figs. 1–3 for
consistency with 3D NS. We use an Adams-Bashfort
scheme [10] (step sizedt) to integrate Eq. (4). The
average of the time scale associated with the smalle
wave number sjy1jk1d21 gives the “box-size” eddy
turnover time. Table I lists other parameters for ou
8 GOY-model runs G1–8, for which we use (cf. [10])
Eskd  Sn,2ykn, l  2pyk0fSnSn,2ySnk2

nSn,2g1y2, and
yrms  fk0SnSn,2ypg1y2. This yields Rel , n20.5, as
expected [25] at large Rel. Our GOY model runs are
done using double-precision arithmetic, but we hav
repeated run Gl in quadruple precision and checked th
our results are unchanged.
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FIG. 4. Log-log plot (base 10) ofdzp versus the Taylor-
microscale Reynolds number Rel for our GOY runs (G1-8)
with p  6, 8 . . . , 20 (from bottom to top). The dotted (p  6)
and dashed (p  8) lines show the SL results [4]. Error bars
are shown but are often smaller than the symbol sizes.

Experimental evidence for the slope change in th
dissipation range in real-space analogs of Fig. 1 w
given by Stolovitzky and Sreenivasan [6], who postulate

Sp , S
a0

p

3 in the dissipation range and suggesteda0
p .

sz3py2 1 py2dysz9y2 1 3y2d. We have not been able to
obtain a simple relation between ourap and their a0

p
(unlike [13] that betweenzp and z 0

p) sinceSp does not
have a power-law dependence onk in the dissipation
range.

In conclusion, then, we have used ourk-space ESS
and GESS to obtain universal inertial-to-dissipation-ran
crossover in structure functions. It would be interestin
to test this noveluniversalityof dissipation-range asymp-
totics in diferent flows. The multiscaling we find in the
far dissipation range might, at first sight, seem surprisi
because dissipation dominates here, but, as has been n
earlier [15], the intermittency seen in the far dissipatio
range can plausibly enhance mean nonlinear transfer e
at low Rel. Our dissipation-range multiscaling is a man
ifestation of such intermittency. Preliminary studies [26
yield similar phenomena in MHD turbulence.
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