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Inertial- and Dissipation-Range Asymptotics in Fluid Turbulence
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We propose and verify a wave-vector-space version of generalized extended self-similarity [R.
Benzi et al., Europhys. Lett32, 709 (1995)] and broaden its applicability to uncover intriguing,
universal scaling in the far dissipation range by computing high-orée20) structure functions
numerically for (1) the three-dimensional, incompressible Navier-Stokes equation (with and without
hyperviscosity) and (2) the Gledzer-Ohkitani-Yamada shell model for turbulence. Also, in case (2),
with Taylor-microscale Reynolds numbetsx 10* = Re, = 3 X 10°, we find that the inertial-range
exponents {,) of the orderp structure functions do not approach their Kolmogorov vagi/é as Re
increases. [S0031-9007(97)02862-7]

PACS numbers: 47.27.Gs, 05.45.+b, 05.70.Jk, 47.27.Eq

Kolmogorov’s pioneering work (K41) [1] on homoge- [2], show that it holds forL™! < k < 1.5k,, but then
neous isotropic turbulence used the cascade picture to prerosses over to another form in the far dissipation range
dict simple scaling forms for velocity structure functions To study this we postulaté-space ESS [for real-space
(see below). These forms hold for distaneem thein-  structure functions we use the symbdlsand G and for
ertial range that lies betweerl, the forcing scale, and theirk-space analog$16t Fourier transforms) the symbols
n4, the dissipation scale at which viscosity starts modi-S andGJ:
fying the invariant energy cascade. Subsequent studies _ N d ~1
[2—11] have refined K41, as we outline below, but have Sp = (IVII) = App($:)7, L7 < k< 15k,
concentrated principally on the inertial range. In this Let- S, = ([v(k)[”) = Ap,(S3)", 15ks =k < A, (1)
ter we use recently developed generalizations of suc
scaling [2,5] to elucidate the crossover from inertial- to
dissipation-range behaviors in fluid turbulence.

The orderp velocity structure functionsS,(r) =
{vi(x + r) — v;(x)|?), wherei (= 1,2, or 3) denotes
components, scale as,(r) ~ r% at high Reynolds

m/hereAlp and Ap, are, respectively, nonuniversal am-
plitudes for inertial and dissipation ranges aand! the
(molecular) length at which hydrodynamics fails (see [5,6]
for real-space analogs). Our study shows (Figs. 1 and 2)

: . 6z () x  NST
numbers Rg and for the inertial rang@0n, < r < L P
(where A is the Taylor microscale). The K41 result 4 ° Nsz
¢, = p/3 works well for p < 4; but for large p, most ot o NS4 NS3
studies [2—11] find multiscaling, i.ef, = p/3 — 8¢, 2 — gL o NS4
a nonlinear increasing function witlh{, > 0. Also, ~ 0 p

a procedure called extended self-similarity (ESS) [5],

in which ¢, is obtained fromS, ~ S5, extendsthe o 100 [
apparent inertial range down te = 5n;. A more O
recent technique, generalized extended self-similarity
(GESS) [2], uses the dimensionless structure functions
Gy(r) = S,,(r)/[53(r)]p/3 and suggests that the form -200 |

0 5 10 156 20

Gy ~ (G with ppy = ¢, — p&a/31/E, — ads/3), ot
holds down to the lowest resolvable valuesrof GESS \ s p=16
has been tested [2] to some extept{ = 6). We show 0 *01000 S
that ESS and GESS provide us with sensitive ways of -300 b= . . 9.
studying the crossover of structure functions from their 50 -40 30 -20 -10 0 10
inertial- to dissipation-range forms. Iog 83

Specifically, we show how GESS is modified at suf-
ficiently small » by computing wave-vector-spacé&-( FIG. 1. Log-log plots (base 10) of, versusS; for 3D
space) analogs of high-ordex20) structure functions for NS (p = 17 for runs NS1-4) and GOY [run G1 in inset
(1) the three-dimensional, incompressible Navier Stoke&)] models showing ouk-space ESS [Eq. (1)]; full lines are
equation (3D NS), with and without hyperviscosity, andt e SL prediction [4]. Inset (b), (circles) from run NS4; the

o line is ¢! = 2(¢, + 3p/2)/11, with the £, = /5%, Note the
(2) the Gledzer-Ohkitani-Yamada (GOY) shell model fOI'deviatior’a of ouf data points from SL Iinpes atpsm&jl, i.e., in

turbulence [?le] (where we attain both large,Rend  the dissipation range; this shows clearly only for NS3 on this
k> ks = n; ). We further propose &-space GESS scale, but is also present in runs NS1 and NS2 (Fig. 3).
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GESS [2] which follows from the formulas above); the
resultingZ,, are in fair agreement with the SL formula [4].
The dissipation-range asymptote has a slafde, g) =
[ap — p/3]/[ay — q/3]. The slopes of these asymp-
totes are universal, but the point at which the curve
veers off from the inertial-range asymptote depends on
the model (GOY, NS, etc.). However, a simple trans-
formation yields auniversal crossover scaling function
[different for each(p, g) pair because of multiscaling]:
Define logy(H,s) = D,,100,,(G,) and log,(H,,) =
Dy, 109,,(G,); the scale factor®,, = D,, arenonuni-
versal but plots of log,(H,,) versus log,(H,,) show
data fromall GOY and 3D NS runs collapsing onto
one universal curvewithin our error bars [Fig. 3(c) for
p = 6 andg = 9] for all £k and Rg. (This transforma-
' tion holds the G1-8 GESS plots fixed and stretches the NS
0 5 10 15 20 plots, without changing their slopes, until the asymptotes
p match.) Both ESS (Fig. 1) and GESS (Fig. 3) remove
the exponentiatontrolling factor [16] from the leading
FIG. 2. Inertial- and dissipation-range exponetifsand a, asymptotic behavioof S, in the far dissipation range and
(extracted from plots like Fig. 1) versup for GOY and expose the remaining power-law dependencé .omlso,
NS runs and their comparison with the SL formula [4] andit jg easy to see analytically that GESS plots (Fig. 3) am-
p/3. We obtain{, from our measured, and the formula — ir, jone differences between inertial- and dissipation-

{, = 11! /2 — 3p/2; this amplifies the error bars relative to . -
Fli)g. l(b).p Error bars fow, are shown but not apparent since range asymptotes refative to ESS plots (Fig. 1).

they are comparable to the symbol sizes. How robust is the fair agreement df, (Fig. 2) with
the SL formula? Some studies [17—-19] suggest that, as

Rey — »,6{, = (p/3 — {,) — 0. Numerical solutions
that Eq. (1) holds with two different exponends, and of the 3D NS equation can at best achieve [7-20]
g;]. In the GOY mode|§lg = ¢,, but we find explici- Re, < 220, too small, by far, to resolve this issue, so
tly [Fig. 1(b)] that, for the 3D NS casel, = 2({, + We address it for the GOY model by studying the range
3p/2)/11 [ie., S,(k) ~ k~&*3r/2 in the inertial range 4 * 10* = Re, = 3 X 10°. We find (Fig. 4) thats{,
[13]]; the difference between the two arises because ofi0€S not vanish with increasing Rebut rises marginally
phase-space factorsBoth ¢, anda, (Fig. 2) seem uni- 21]. Systgmatlc experiments at high Rean check if the
versal [the same for all GOY and 3D NS runs (Table |)tre\?vds of Fig. E’ obr:aln '.r; the NS case. he hi h
[14]]. ¢, agrees fairly with the She-Leveque (SL) [4] W€ remark that it =we assume fhe Hhierarchy
fOfmUlaggL — p/9 + 2[1 _ (2/3)]1/3] for the ranges of [(§p+1/Gp] = [Gp/Gp—l] [|Im,,_,x G,ﬁ—l/.Gp] . with
p and Ra in Fig. 2; ande, is close to, busystematically 7’ =2/3 (whose regl-space analog is equw.ale_nt .[2]
lessthan, p/3. The k dependences of the inertial- and to the SL moment hierarchy for the energy dissipation

LG : . [4]) and use [22]G, (k) = C,kP», we get a difference
Sdzsé%iztgonnd;lgee (Sg Sg;"kp_to\}\'/‘; l?iigawors follow now fromequation forg, identicalto the SL one (ourB,, is their

—7,/3). This, when solved with the boundary conditions
Sy~ Bk 572 L'« k=15ks, (2 Bo=pB3=0 and lim_(B,+1 — By) = 2/9, yields
. s the SL formula (vial, = —8, + p{3/3). However,
S3 = Bpk eX[i_Ck/kd), 1.5k Sk < A, (3) our GESS yleldS[GPfl/Gp] ; C;,[Gp/Gp—l]Y" with
where B; and By are, respectively, nonuniversal ampli- Y, = ({,+1 — ¢, — 1/3)/({, — {,—1 — 1/3). Super-
tudes [Eq. (2) holds [13] for 3D NS; for GOY the fac- ficially, this might seem to violate the hierarchy assumed
tor 9/2 is absent]. Thus, in the far dissipation range,above, but it turns out to be consistent with our GESS
all S, ~ k% exp(—ca,k/ky) for 1.5k, = k < A, with ~ form, if Y, =y —2(1 — v)/[9(, — {—1 — &/3)],
6, = a,48, aform not easy to verify numerically for large which is precisely the SL difference equation. Of
p. given the rapid decay at large and suggested hith- course, our GESS form can hold wit # {3"; Fig. 2
erto [15] only for S,. In Eg. (3), §,c, ks are not uni- shows the quality of agreement between our measured
versal, but we extract the universal part of the crossovef, and {,?L.
via our k-space GESS: Defing, = S,,/(S3)P/3; log- We use a pseudospectral method [7] to solve the
log plots of G, versusG, yield curves [Figs. 3(a) and incompressible 3D NS equation. We force the first two
3(b)] with asymptotes which haveniversal, but differ- & shells, use a box with sidéz = 7 and 64 modes.
ent,slopes in inertial and dissipation ranges. The inertial-Our dissipation term—(v + vyk?)k*> allows for both
range asymptote has a slopdp,q) (as in real-space viscosity » and hyperviscosityy. For time integration
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TABLE |. Parameterss (viscosity), vy (hyperviscosity), Re (Taylor-microscale Reynolds number), (box-size eddy-turnover
time), 7., (averaging time)s, (transient time), and, (dissipation-scale wave number) for our 3D NS runs NS%;4.(= 64) and
GOY-model runs G1-8k(.x = 2%2k,). The step sizedt) used is 0.02 for NS1-4,0~* for G1-4, and2 X 107> for G5-8. Note
7. = 87/, the integral time for our NS runs.

Run v vy Re, T./8t T/ Te Tav/Te kmax /ka
NS1 5% 1074 0 =3.5 =3 X 10* =] 2 =4
NS2 2 X 1074 0 =8 =3 X 10* =] =25 =23
NS3 5% 1074 5% 107° =3.5 =3 X 10* =] =] =6.5
NS4 5% 1074 1076 =22 =3 X 10° =10 =7 =2
G1-4 5% 1076-1077 0 4 X 10*-3 X 10° =(1.5-2.0) X 10* =500 =2500 =25-23
G5-8 5% 1078-107° 0 3.5 X 10°-3 X 10° =(0.7-1) X 10° =500 =2500 =23—1
we use an Adams-Bashforth scheme (step sbze ivn =iC, — vkiv, + fn, (4)
[7]. Parameters for our 3D NS runs NS1-4 are given dt

in Table I, wherer, = Lg/vms is the box-size eddy- where v is the kinematic viscosity, f, the ex-
turnover time andr,, the averaging time, after initial ternal force —on shell n, C, = (akyvyi1vas2 +
transients have decayed over a peripd We use Rg =  Pkn—1Vn-1Vn+1 + cky—2vp-1v,—2)", and a, b, and
vmsA/v, Where A =[[i E(k)dk/ [ K*E(k)dk]'/?, ¢ can be fixed up to a cczrll/s3tant by demanding [11],
vims = [(2/3L3) ff; E(k)dk]"?, and E(k) ~ S)(k)k2. for. v, f, =0, that v, ~ kn be a stgtior_lary So-
All S, (k) are averaged over shells of radius Care must lution of Eq. (4), and the GOY-model kinetic energy
be exercised in choosingr and the forcing amplitude, and helicity be conserved. We adopt the conven-
otherwise there is a slow but systematic stretching ofional parameters [10,11ko =27%, ¢ =2, a =1,

the points along the asymptotes in Figs. 1 and 3 witlh = ¢ = —1/2, and use f, =5 X 107(1 + i)8,.1,
increasingr,, (over the time scales of our low-ReNS  i.e., we force the first shell [23]. The GOY-model
runs). Fortunately, this hardly affects our exponentsstructure functions areS, , = (|v,|?) ~ kn e [9—
Any attendant systematic errors in Fig. 2 are certainlyll];, reliable values of{, obtain [11] if we use
less than the random errors indicated. All our NS runsX, , = {|lIm[v,v,+1v,+2 + Vn1UnUns+1/4]1P73)  since
use quadruple-precision arithmetic and we have checkeithis removes an underlying three cycle. We have used
that halving our integration time step does not affect our2, , to obtain Fig. 4 [24], butS,, in Figs. 1-3 for
results perceptibly. Note also that sample fluctuationgonsistency with 3D NS. We use an Adams-Bashforth
over even a few orders of magnitude are unimportantscheme [10] (step sizér) to integrate Eq. (4). The
given the range of our log-log plots like Fig. 1. Also, average of the time scale associated with the smallest
the agreement between our GOY and NS runs confirmgave number (Jvi|k;)~!' gives the “box-size” eddy
our results. Our GOY-model data are, of course, ofturnover time. Table | lists other parameters for our
much better quality. Here Fourier components of theB GOY-model runs G1-8, for which we use (cf. [10])
velocity are labeled by a discrete set of wave vectorE(k) = S,a2/kn, A = 27 /ko[2Sn2/2nk2S,2]"/?, and

k, = kog". The dynamical variables are tr®mplex, vms = [ko2,Sa2/7]"/2. This yields Rg ~ v~ 5, as
scalar velocities v,, for each shelln; v, is affected expected [25] at large Re Our GOY model runs are
directly only by the velocities in nearest and next-nearestione using double-precision arithmetic, but we have
shells. This model yields scaling properties [9—12] akinrepeated run Gl in quadruple precision and checked that
to experimental ones. The GOY-model equations are  our results are unchanged.

= *
(a) & (L) o (€ o
. o o
° °l = sL b | —= Fa
s G1-8 s > ‘ 5;18 N ga%u
4 @ * NS1 £ Iy " o A
9, O, o N2 . T o NS2 R
g g o NS3 e <3 " NS3 =
] 3 " 8 : .
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FIG. 3. Log-log (base 10) plots d@¥s versus (a)G;s and (b)Gy illustrating ourk-space GESS; (clso VersusHys showing the
universal inertial- to dissipation-range crossover (see text). The line shows the SL, inertial-range prediction.
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FIG. 4. Log-log plot (base 10) oB{, versus the Taylor-
microscale Reynolds number Réor our GOY runs (G1-8)
with p = 6,8...,20 (from bottom to top). The dottech(= 6)
and dashedy = 8) lines show the SL results [4]. Error bars
are shown but are often smaller than the symbol sizes.

Experimental evidence for the slope change in the
dissipation range in real-space analogs of Fig. 1 was
given by Stolovitzky and Sreenivasan [6], who postulated

Sy ~ S;” in the dissipation range and suggesteg =
(&p2 + p/2)/(Lo2 + 3/2). We have not been able to
obtain a simple relation between our, and their a),
(unlike [13] that betweeny, and ¢}) sinceS, does not
have a power-law dependence énin the dissipation
range.

In conclusion, then, we have used okwspace ESS
and GESS to obtain universal inertial-to-dissipation-rang
crossover in structure functions. It would be interestin
to test this novelniversalityof dissipation-range asymp-

totics in diferent flows. The multiscaling we find in the [17
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