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Multinucleon transfer reactions have been used, for the first time, to populate high-spin bands of
alternating parity states iR'$??%222Rn and 2*>2?*2?6Ra. The behavior of the angular momentum
alignment with rotational frequency for the Rn isotopes is very different when compared with Ra
and Th isotopes withv = 134, indicating a transition from octupole vibrational to stable octupole
deformation. Throughout the measured spin range the valug66,| remain constant fot’>’Ra and
226Ra and have a very small value f&fRa, suggesting that the charge and mass distributions are not
affected appreciably by rotations. [S0031-9007(97)02928-1]

PACS numbers: 21.10.Re, 23.20.Lv, 25.70.Gh, 27.90.+b

Of all nuclear species, radiun (= 88) and thorium reaction was chosen in order to make spectroscopic mea-
(Z = 90) isotopes withV = 134 show the best evidence surements of the heavy products.
for octupole instability in their ground state [L—3]. These High-spin states irf!3220222Rn and??>??422°Ra were
nuclei have low-lying negative-parity states and relativelysimultaneously populated following multinucleon transfer
strongB(E1) values for the transitions between the bandsetween'3®Xe and?*>Th. The!3¢Xe projectile was accel-
of opposite parity; for the single case®fRa largeB(E3)  erated to an energy of 833 MeV by the 88 in. cyclotron
values have been measured consistent with its interpr&t Lawrence Berkeley National Laboratory. This bom-
tation as a rotating pear shape [4]. The inaccessibilitpparded &*?Th target of thicknes36 mg/cn?. Deexcita-
of these nuclei has, however, meant that there are largé&n gamma rays emitted from reaction products were col-
gaps in our knowledge of octupole effects in heavy nudected for 49 h with the Gammasphere spectrometer which
clei. Comprehensive measurements of the high-spin besonsisted of 73 large-volume-(75% relative efficiency)
havior of the yrast octupole band exist only for the isotopesCompton-suppressed germanium detectors [7,8], yielding
of thorium. For the radium isotopes such measurements total of1.1 X 10'° unpacked triple coincidences.
are available for the weakly quadrupole couptétF*°Ra The data were analyzed by examining the energy rela-
and the strongly coupletf®Ra. There is only a limited tionships ofy rays in a triple or quadruple coincidence
amount of data od**Ra and virtually no information ex- with the aid of theLEVIT8R code [9]. Figure 1 contains
ists for?*?Ra. The scarce data do, however, suggest carrepresentative spectra: Figures 1(a) and 1(b) show, re-
cellation effects for the electric dipole moment féfRa  spectively, coincident transitions #H®Rn and in***Ra.
[5] which do not occur in the thorium isotopes. This effect The inset to Fig. 1(b) shows the efficiency and internal-
is not properly established as the spin-dependent behaviopnversion corrected intensities of the depopulating tran-
for 2?Ra has not yet been measured. There are almositions abovel = 6/ in >*Ra. These intensities, which
no data on the octupole structures for the radon isotopesare normalized such that tHé to2* transition has a total
Systematic measurement of the variation of angular momtensity of 100, were determined from spectra generated
mentum with rotational frequency of the octupole bandsusing several different coincidence relationships. Energy
should provide an insight into the nature of the strength ofevel schemes could be obtained for several nuclei by ex-
the octupole interactions in these nuclei. tending the decay schemes of low-lying states established
In order to populate the nuclei of interest the proper-in previous work. The level schemes 8fRn, 22°Rn,
ties of multinucleon transfer reactions have been exploitecand ?>’Rn are shown in Fig. 2. The dashed-line boxes
Previously, yields have been mapped out following theon each decay scheme contain transitions which were ob-
bombardment of a thick*>Th target with various projec- served in previous work [10,11]. Energy sums and inten-
tiles [6]. Asthe reactio®®®Xe + 23?Th offered the largest sity balance arguments were used to establish these decay
yield for radon and radium isotopes witfi = 134, this  schemes. The intensities of the transitions in each band
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states [4,5,12,13] in these nuclei is also highlighted us- 2! 5, zlﬁ‘g_ﬁgﬁ;:gfg mol o I
. . 166.5 .| - . .
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level schemes have been extended from= 127 (117) $220222 22 324926

t0 26* (257) and 18+ (177) to 28% (27°), respectively. F!G:- 2. The level schemes of®2212Rn and 2222Ra.

A consideration of internal conversion supports the as:l’ransl_tlon energies have errors which range from 0.2 keV for
. . _Supp fransitions between low-lying states in the ground state band to

signment of electric, rather than magnetic, character to thg 5 kev for5~ to 3~ and7~ to 5~ transitions and transitions

interband transitions if*?Ra. For example, the intensity between the highest spin states observed.
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of the 6" to 4™ transition must be greater than or equalwhich might be expected to be small, is neglected. The
to the sum of the7~ to 6" and 8" to 6% intensities insets in Fig. 3(a) are plots of the difference jn(positive
after efficiency and internal-conversion correction. Thisparity) andi, (negative parity)Ai, as a function ofiw.
condition can be satisfied if thg~ to 6 transition is  For??%??2Rn the value ofAi, is approximately three with
assigned 1 multipolarity. some variation about this value throughout the whole
Figure 3(a) shows the experimental alignmeéntas a  frequency range. A larger variation is observed¥8Rn,
function of rotational frequencyfiw) for the positive- but overall the behavior ofAi, for the radon isotopes
parity band in three sets of isotones in the light-actiniddgs consistent with the description of the negative-parity
region. The plots were produced using experimentabtates in terms of the coupling of an octupole phonon to
data for 218Rn, ?*°Rn, ??’Rn, ?*?Ra, and?**Ra from the positive-parity states, where the phonon quickly aligns
the present work and?’Ra, ?*2Th, ??*Th and 2*Th  with the rotational axis a8w increases. Thus the radon
from previous work [14,15]. The rotational frequen- isotopes are octupole vibrational in nature despite their
cies were calculated using the expressibe = E,/  having interleaved positive- and negative-parity states (see
[VIUI + 1) — /I —2)(I —1)]. A variable moment Rohozirski [17] for an explanation of this phenomenon,
of inertia reference with Harris parameters [16] ofwhich is also apparent if**!¥%Ba—see [18] for level
Jo =312 MeV~! and J; = 26h* MeV~? has been schemes). In contrast, fof>?**Ra and?***?°Th [see
subtracted. Any mass dependence in these parameteRg. 3(a)] and for’*’Ra Ai,becomes small<1%) as/iw
increases, becoming close to zero fow > 0.2 MeV.
These nuclei have very different behavior compared both

20 (a) with the radon isotopes and with heavier isotopes of
s %«1 3 AL =136 radium and thorium, which strongly suggests that they
<€x12: 010 0.14 018 022 ° A Th behave as rotating octupole-deformed systems. This
~ o fho interpretation is supported by the experimental trend of

-5 the excitation energies of the low-lying negative parity
= 12 states [1]. Additionally, both self-consistent [19] and
= ol macroscopic-microscopic calculations [3] predict a deeper

5 octupole deformation energy minimum far = 88 and

20 t Z = 90 nuclei than forZ = 86 nuclei. The persistence
—~ 15} . .
£ 10 of the well-ordered alternating parity sequence observed

. 0.10 0.14 0.18 0.22 0.26

S [nd - in 22°Ra (see Fig. 2) is at variance with recent calculations
.00 005 040 015 020 025 [20] using the coherent state model which predicts a
' ' " hoMeV) ' breaking of this structure faf™ > 18*.
(b) Figure 3(a) also shows that the alignment for the
6 positive-parity bands in thorium and radium isotopes ex-
I . 2Ra hibits smooth behavior up to high rotational frequencies.
_ H I . 2'pa In contrast, all three isotopes of radon display sudden
=gl ) . PR changes in alignment atw = 0.20 MeV. Cranked
*: 1 a shell model (CSM) calculations performed with the
% I Woods-Saxon deformed shell model potential [21] with
S T 3¢ } }{ “universal” parametrization [22] and deformation parame-
52 3 ters of the three radon isotopes taken from Ref. [23]
I II I 1 predict a strong interaction between the ground band and
. . T I I an alignedj;s,» neutron band at a rotational frequency of
0 . . . . . . ho =~ 0.25 MeV and a weak interaction with an aligned
1 5 9 ;?h) 17 21 25 i13/2 proton band atiw =~ 0.25 MeV for each nucleus.

These band interactions are presumably responsible for
FIG. 3. (a) Plot of aligned angular momentumas a function the observed upbend in the experimental alignment plots.
of rotational frequencyiw for the positive-parity bands. The Such sudden increases in alignment are not seen in the
insets are plots of the difference in alignmeht, between  54ium and thorium isotones, perhaps because of the

the positive- and negative-parity bands as a functionof. . . .
The value ofAi, was calculated by subtracting from the value Eff€Ct of the stronger octupole interaction between high-

of i, for each negative-parity state an interpolated, smoothe@nd low-spin orbitals [24] in these nuclei. Itis interesting
value for the positive-parity states at the same valugief ~ to note that in*’Ra and***Th the alignment of the
(b) Plot of the ratio of the absolute magnitude of the intrinsicintruder orbits interferes with the octupole correlations for

electric dipole and quadrupole moment®{/Qol) as afunction 5, ~ (2 MeV as evidenced by the higher alignment of
of spin for transitions deexciting states of sgiin 2’Ra,?**Ra, h ) " ¥ that at
and 2°Ra. Upper limits for high-spin states #*Ra were e even spin sequencai, becomes negative), so that a

obtained using two standard deviations in the background courtufficiently high frequencies the nuclei can become reflec-
as the intensity of thé&1 transitions. tion symmetric [14]. Alignment effects have also been
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observed in octupole-vibrational nuclei in the lanthanideof rotational frequency for these nuclei reveal contrast-
region [18,25]. ing behavior for the different nuclear systems. The radon
In Fig. 2 one can see that interbahAd transitions de- isotopes behave like octupole vibrators, while the radium
populate states up tb” = 15~ (possibly177) in ???Ra  isotopes (together witf?*?*6Th) display, by implication,
and/™ = 18%(20") in 22°Ra but although the yrast band behavior which is characteristic of nuclei having stable
in 22*Ra has been observed upf® = 26%(28%), no in-  octupole deformation. The observed rapid increases in
terbandE1 transitions have been observed abd7e=  alignment of the positive-parity band in the radon isotopes
77(97) in this nucleus. The absolute magnitude of theis also expected if they have weaker octupole correlations.
ratio of the intrinsic electric dipole momenbg) and in- In 22>?2°Ra the extracted value dD,/Qo| is approxi-
trinsic electric quadrupole momen§) was extracted mately independent of spin, while in the case¢dRa the
from B(E1)/B(E2) values using the rotational model [23]. cancellation of contributions to the intrinsic electric dipole
These values are plotted in Fig. 3(b). The values meamoment persists to high spins. The observation of the be-
sured for the transitions #*Ra are much lower than those havior of D, implies that the reflection-asymmetric charge
in ???Ra and?*’Ra. Weighted mean values fb,/Qo| and mass distributions are hardly affected by rotations in
for 2’Ra, ??*Ra, and**°Ra were found to be, respec- the radium isotopes. For all three radon isotopes the val-
tively, 4.02(11), 0.47(2), an@.39(8) X 10~ fm~'. For  ues ofD, are small in comparison with>’Ra and**°Ra.
222Ra, ***Ra, and®*°Ra the mean values from the present This research was supported by the U.K. Engineering
measurements are consistent with the previous measurand Physical Sciences Research Council, the Finnish
ments where available [1], but fér> 8% our data do not Academy, the U.S. Department of Energy, and the Polish
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226Ra. Macroscopic-microscopic calculations [23] give aacknowledge the receipt of EPSRC studentships.
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