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Dense Nuclear Matter in a Strong Magnetic Field
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We investigate in a relativistic Hartree theory the gross properties of cold symmetric nuclear matter
and nuclear matter in beta equilibrium under the influence of strong magnetic fields. If the field
strengths are above the critical values for electrons and protons, the respective phase spaces are strongly
modified. This results in additional binding of the systems with distinctively softer equations of state
compared to the field free cases. For magnetic field,1020 G and beyond, the nuclear matter in beta
equilibrium practically converts into a stable proton-rich matter. [S0031-9007(97)02880-9]
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Large magnetic fieldsBm  1012 1014 G have been
associated with the surfaces of supernovas [1] and neu
stars [2,3]. On the other hand, extremely large fields co
exist in the interior of a star. It is presumed from the sca
virial theorem [4] that the interior field in neutron sta
could be as high as,1018 G. Besides, the matter densit
in the neutron star core could exceed up to a few times
nuclear matter density. At such high fields and/or mat
density, constituents of matter are relativistic. Moreov
the energy of a charged particle changes significantly
the quantum limit if the magnetic field is comparable
or above a critical value. The critical field is define
as that value where the cyclotron quantum is equal
or above the rest energy of the charged particle, wh
for electrons isB

sed scd
m  4.4 3 1013 G, and for protons it

is B
spd scd
m , 1020 G. Theoretical studies of free electro

gas in intense magnetic fields relevant to the neutron
crust have been carried out by several authors using
Dirac theory [4] as well as Thomas-Fermi and Thoma
Fermi-Dirac models [5]. The intense fields were shown
drastically reduce photon opacities and greatly accele
the cooling rates in neutron stars [6]. It has been a
demonstrated [7,8] that the magnetic fields have signific
effects on the weak interaction rates and the abundan
of light elements in the early Universe. The influence
extremely large fields on neutron matter [9] relevant to t
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neutron star interior and on the thermodynamic properti
of strange quark matter and baryon inhomogeneity in th
early Universe [10] have been also investigated.

Motivated by the existence of strong magnetic field
which quantize the motion of the electrons, we investiga
in this Letter its influence on the gross properties of den
nuclear matter appropriate to the interior of a neutro
star. This may have profound implications on coolin
rates, mass-radius relationship of neutron stars. It
also instructive to extend the calculations to values
Bm $ 1020 G where along with the electron, the proton
motion is strongly quantized. Fields of such magnitud
appropriate to the neutron star interior, could largel
modify the proton phase space in the quantum limi
Though such a high field is hitherto unestimated, it ma
possibly exist in the core of the neutron star.

We therefore consider strong magnetic field effec
on nuclear matter and a system composed of neutro
protons, and electrons (n-p-e system) in beta equilib-
rium within a relativistic Hartree approach in the linea
s-v-r model [11]. In the beta equilibrium case, the
electrons are assumed to move freely in the stron
magnetic field, whereas the produced neutrinos/antine
trinos escape from the system. In a uniform magnet
field Bm along the z axis, the Lagrangian is given
by
L  c

∑
igmDm 2 m 2 gss 2 gvgmvm 2

1
2

grgmt ? rm

∏
c 1

1
2

s≠msd2 2
1
2
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ss2

2
X

kv,r

∑
1
4

s≠mV k
n 2 ≠nV k

md2 2
1
2

m2
ksV k

md2

#
, (1)
ng

ay
a

in the usual notation [11]. Here,Dm  ≠m 1 iqAm,
where the choice of gauge corresponding
the constant Bm along the z axis is A0  0,
A ; s0, xBm, 0d. The general solution for protons i
csrd ~ e2ieH t1ipyy1ipz zfpy ,pz sxd, where fpy ,pz sxd is the
four-component spinor solution. The Dirac-Hartre
equation for protons in a magnetic field is then given b
o
f 2 iax≠y≠x 1 ayspy 2 qBmxd

1 azpz 1 bmp 1 UH
0,pgfsrd

py ,pz
sxd  eHfsrd

py ,pz
sxd . (2)

The equation of motion for neutrons is obtained by setti
the chargeq  0 and replacingUH

0;p by UH
0;n in Eqs. (1)

and (2); the corresponding solution is a plane wave. It m
be mentioned that the Dirac theory for free electrons in
© 1997 The American Physical Society
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homogeneous magnetic field was first studied by Rabi [
and can be obtained by puttingUH

0;p  0 in Eq. (2). Since
we confine to cold systems (T  0), only positive energy
spinors are considered. These in the chiral representa
[13] are of the forms

fs1d
py ,pz

sxd  Nn

26664
seH

n 1 pzdIn;py sxd
2i

p
2nqBm In21;py

sxd
2mpIn;py sxd

0

37775 , (3)

fs2d
py ,pz

sxd  Nn

26664
0

2mpIn21;py sxd
2i

p
2nqBm In;py

sxd
seH

n 1 pzdIn21;py
sxd

37775 , (4)

where Nn  1y
p

2eH
n seH

n 1 pzd, and eH
n 

eH 2 UH
0;p  sp2

z 1 mp2 1 2nqBmd1y2 is the effec-
tive Hartree energy, withn the Landau principal quantum
number which can take all possible positive integ
values including zero. The functionIn;py sxd is similar
in form as in Ref. [13]. The effective nucleon ma
mp  m 1 UH

S , where the nucleon rest mass is taken
r

r

e

g

2]

ion

r

s

m  mn  mp  939 MeV, and UH
S  2sgsymsd2nS .

The total scalar density isnS  n
snd
S 1 n

s pd
S , with

n
snd
S 

mp

2p2

24mp
nO 1y2

n 2 mp2 ln

8<:mp
n 1 O

1y2
n

mp

9=;
35 , (5)

n
spd
S 

mpqBm

2p2

n
spd
maxX

n0

gn ln

24 mp
p 1 O

1y2
p,n

smp2 1 2nqBmd1y2

35 , (6)

where On  mp2
n 2 mp2 and Op,n  mp2

p 2

mp2 2 2nqBm. The interaction energy den-
sity UH

0 for protons and neutrons is given b
UH

0;p  sgvymvd2nB 1 sgrymrd2r3y4 and UH
0;n 

sgvymvd2nB 2 sgrymrd2r3y4, where r3  np 2 nn.
The total baryon number density isnB  nn 1 np, with

nn  O
3y2
n y3p2 andnp 

qBm

2p2

Pn
spd
max

n0 gnO
1y2
p,n . Herenmax

is the largest integer not exceedingsmp2
p 2 mp2dys2qBmd,

and the effective chemical potentialmp
p is eH

n at the Fermi
surface. The Landau level degeneracy factorgn is 1 for
n  0 and 2 forn . 0. The total energy density of the
system is given by
e 
g2

s

2m2
s

n2
S 1

g2
v

2m2
v

n2
B 1

g2
r

8m2
r

r2
3 1

1
8p2

242mp3
n O 1y2

n 2 mp2mp
nO 1y2

n 2 mp4 ln

8<:mp
n 1 O

1y2
n

mp

9=;
35

1
qBm

4p2

n
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maxX

n0

gn

24mp
pO 1y2

p,n 1 mp2
p,n ln

8<:mp
p 1 O

1y2
p,n

mp
p,n

9=;
35 1

qBm

4p2

n
sed
maxX

n0

gn

24meO 1y2
e,n 1 m2

e,n ln

8<:me 1 O
1y2
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me,n
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35 . (7)
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Here Oe,n  m2
e 2 m2

e 2 2nqBm and mp2
i,n 

mp2
i 1 2qnBm, wheremp

i s denotemps(mes) for i  psed.
The first three terms of Eq. (7) correspond to the inte
action energy densities fors, v, and r mesons. The
last three terms are the expressions for kinetic ene
densities forn, p, e. The total pressure is given by
P  n2

B≠sEyAdy≠nB, whereEyA is the total energy per
baryon. For symmetric nuclear matter (SNM), whe
nn  np  nBy2, mp is evaluated self-consistently for a
given nB and Bm. On the other hand, then-p-e system
under the beta equilibrium and the charge neutrality co
ditions is in particular important for the neutron star. Fo
these two cases, whenBm $ B

sed scd
m , the charge neutrality

conditionnp  ne gives
n

spd
maxX

n0

gnO 1y2
p,n 

n
sed
maxX

n0

gnO 1y2
e,n . (8)

WhenBm $ B
sed scd
m , but appreciably smaller thanB

spd scd
m ,

a large number of Landau levels are populated and the
lations are almost similar to the field-free case. Howev
when Bm significantly affects the electrons so thatnmax

is small (ø0), the protons are also affected. Employin
Eq. (8) in conjunction with theb-equilibrium condition
mn  mp 1 me, one can obtainmp self-consistently for a
givennB andBm. The proton and neutron chemical poten
-

y

-

e-
r,

tials mp andmn are related to their respective Fermi mo

mentak
spd
F and k

snd
F by mp  UH

0;p 1 fks pd2
F 1 mp2

p,ng1y2

and mn  UH
0;n 1 fksnd2

F 1 mp2g1y2. Therefore, the neu-
tral r meson field affects the chemical composition insid
the neutron star through the different proton and neutr
vector potentialUH

0 in the asymmetricn-p-e system.
In the present calculation the parameters for th

coupling constants and mesons masses are taken f
Horowitz and Serot [14] to beg2

ssmymsd2  357.47,
g2

vsmymvd2  273.87, and g2
rsmymrd2  97. This

yields nuclear matter saturation density a
n0  0.1484 fm23 with a binding energy of 15.75 MeV
and a bulk symmetry energy of 35 MeV. In the to
panel of Fig. 1, the variation of effective nucleon mas
mpym with baryon densitynByn0 is displayed. Curves
a andb represent the SNM case forBm  0 andB

spd scd
m ,

respectively. It is found that forBm  0, mp decreases
gradually withnB while for B

spd scd
m , the decrease is rela-

tively much faster beyondnB ø n0. This is attributed to
the drastic reduction in the proton Fermi momentumk

spd
F ,

whereas the neutron Fermi momentumk
snd
F is unaffected

by Bm and is identical to the Fermi momentumkF for
Bm  0. Consequently, at anynB, mp

p is smaller than
mp

n. These are reflected in the larger value ofnS and
2899
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hence in the magnitude ofUH
S for nonzero magnetic field,

in contrast to the field free case. By further increasin
Bm to 10B

spd scd
m , mpym for SNM (curve c) undergoes a

further reduction beyond the density,3n0.
For a n-p-e system, curved in the top panel of Fig. 1

shows the variation ofmpym at Bm  0. If Bm , B
s pd scd
m ,

the variation ofmp remains virtually unaltered from the
field free case (not shown in the figure). If the field
is further increased toB

s pd scd
m and 10B

spd scd
m , the mpym

values are significantly reduced as evident from curvese
and f of the figure. Furthermore, in the presence ofBm,
the mp values here are found to be much smaller tha
those for SNM. This may be attributed to the neutron
proton asymmetry in the system.

The energy per baryonEyA with varying baryon
density nByn0 is exhibited in Fig. 2. Curvesa and b,
respectively, correspond toBm  0 and 10B

s pd scd
m for

SNM. It is observed that the strong magnetic fiel
Bm $ B

spd scd
m causes additional binding of the nuclea

matter withEyA ø 241 MeV for Bm  10B
s pd scd
m . The

usual binding energy curve forn-p-e system in absence
of magnetic field (curvec) shows no binding. When the
field is slightly quantizing, the system is still unbound
as indicated by curved for Bm  104B

sed scd
m ; it is only

sightly softer thanc. However, when both protons and
electrons are strongly quantized byBm, the n-p-e system
is strongly bound, and the binding increases withBm

FIG. 1. The variations of effective nucleon massmpym (top
panel) and proton fractionYp (bottom panel) with baryon
densitynByn0 for different values of magnetic fieldBm.
2900
g

n
-

d
r

as exhibited by curvese and f for Bm  B
s pd scd
m and

10B
s pd scd
m , respectively. In contrast to theBm  0 case,

for nonzeroBm, even though the contribution from the
scalar density is increased, the relatively larger decrea
in kinetic energy density especially for protons results
in the excess binding. Furthermore, it is observed tha
with increasingBm, the minima of the binding energy
curves, where the pressureP  0, shift towards higher
densities. This is clearly seen in the inset of Fig. 2 wher
the pressureP is displayed as a function of energy density
´; curvesa to f correspond to the same values ofBm as in
Fig. 2. The causality condition≠Py≠´ # 1 is fulfilled by
all the cases considered here. It is evident from Eq. (7
that the kinetic energy density for protons is strongly
suppressed, and thes meson term is strongly enhanced
in the magnetic field. The latter term has a negativ
contribution to the pressure. On the other hand,v and
r meson terms (r3  0 for SNM) which increase with
nB, compensate the reduction in the kinetic energy an
the scalar meson terms in the pressure at higher dens
to produce zero pressure compared to theBm  0 cases.
For the n-p-e system, considerable suppression ofk

spd
F

andmp in the magnetic field accentuates the above effec
as a consequence, it is more bound with the minimum
occurring at a higher density than the SNM.

The proton fraction in neutron star matter is crucial in
determining the direct URCA process which leads to th
cooling of neutron stars [15,16]. In the bottom panel o
Fig. 1, the proton fractionYp  npynB is shown for the

n-p-e system forBm  0 (solid line) and for104B
sed scd
m

(dashed line). The proton fraction is observed to b

FIG. 2. The energy per baryonEyA as a function ofnByn0 for
different values ofBm. In the inset, the pressureP is shown as
a function of energy densitý for different values ofBm.
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enhanced in the latter case. For the direct URCA proce
the inequalityk

sed
F 1 k

s pd
F $ k

snd
F , which corresponds to

Yp $ 0.11 for Bm  0 [16], should be satisfied. In the
linear s-v-r model withBm  0, this condition is satis-
fied atnB $ 1.5n0 and thus rapid cooling by direct URCA
process can occur. On the other hand, forBm  B

s pd scd
m ,

the proton fraction shown by the dotted line in the figu
is found to be considerably enhanced. The drastic fall
the proton Fermi momentum entails a substantialn ! p
conversion; as a result, the system is converted to a hig
proton-rich matter. Moreover, it has been demonstrated
Fig. 2 that such systems are energetically more favorab
Therefore, if the magnetic field is strong enough,1020 G,
possible existence of stable “proton matter” may be e
visaged. If the field is further increased to10B

s pd scd
m , the

proton fraction (shown by the dash-dotted line) satura
to a value of 0.98 atnB $ 2n0.

When Bm $ B
sed scd
m , n

sed
max for various values ofnB

and Bm is found to follow the relationshipn
sed
max ø

f1ysBmyB
sed scd
m dg fI snByn0d 2 J snByn0d2g, where for

symmetric nuclear matter, I  101 217.12 and
J  5458.64, and for then-p-esystem in beta equilibrium
I  46 571.24 and J  562.35. Thus for a fixednB,
n

sed
max decreases monotonically with increasingBm. For all

nB values of interest,n
sed
max  0 when Bm * 106B

sed scd
m ,

and this is found to be in conformity with the value
Bm $ B

sed scd
m smeymed2y2 predicted in Ref. [17]. As a

consequence of charge neutrality,n
s pd
max  n

sed
max  0 and

k
s pd
F  k

sed
F [see Eq. (8) and Ref. [4] ]. Therefore in suc

strong fields, the direct URCA process in stars would occ
if Yp $ sX1y3 2 X21y3y3dd, which corresponds to the
real positive root of the above mentioned inequality co
dition. In this expressionX  h1 1 s1 1 4y27dd1y2jy2d
and d  64p4n2

By3sqBmd3. Interestingly, Yp depends
not only onnB but also onBm. Comparing the values of
the proton fraction obtained from the model calculatio
(Fig. 1) and the inequality condition, we find the thresho
for direct URCA process is not reached forBm $ B

s pd scd
m .

The effect of intense fields on the neutron star profil
is obtained by applying the equation of state to sol
the Tolman-Oppenheimer-Volkoff equation [18]. Fo
magnetic fieldsBm  0, 104B

sed scd
m , B

s pd scd
m , and10B

s pd scd
m ,

the maximum masses of the stars are found to beMmax 
3.10MØ, 2.99MØ, 2.91MØ, and 2.86MØ, respectively.
The corresponding radii areRMmax  15.02, 14.95, 12.25,
and 12.00 km. These values suggest that the neut
star masses are practically insensitive to the effects
the magnetic fields, whereas the radii decrease in inte
fields, leading to their compactness.

In this Letter, we primarily focused on the new qual
tative features that arise out of nuclear matter in a stro
magnetic field within a relativistic Hartree approach in
simple linears-v-r model. We believe that these fea
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tures will survive even in more sophisticated calculation
with a more refined equation of state. It will be worth in-
vestigating the influence of a quantizing field on the quar
matter in a relativistic Hartree-Fock model.
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