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Quantum Dissipation versus Classical Dissipation for Generalized Brownian Motion
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(Received 10 October 1996)

We try to clarify what are the genuine quantal effects that are associated with generalized Brownian
motion. All the quantal effects that are associated with the Zwanzig-Feynman-Vernon-Caldeira-Leggett
model are (formally) a solution of the classical Langevin equation. Nonstochastic, genuine quantum
mechanical effects are found for a model that takes into account either the disordered or the chaotic
nature of some environment. [S0031-9007(97)02879-2]
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The motion of a particle in 1D, under the influence o
an environment, is commonly described in the classic
literature by an appropriate generalization of Langev
equation [1–3]

mẍ 1 h Ùx ­ F . (1)

Herem andh are the mass of the particle and the friction
coefficient, respectively. Implicit is an ensemble averag
over realizations of the random forceF . In the standard
Langevin equation it represents stationary “noise” which
zero upon averaging, and whose autocorrelation functi
is

kF stdF st0dl ­ fst 2 t0d . (2)

This phenomenological description can be derived fo
mally from an appropriate HamiltonianH ­ H0sx, pd 1

Henv , where the latter term incorporates the interactio
with environmental degrees of freedom. The reduced d
namics of the system may be described by the propaga
K sR, PjR0, P0d of the probability density matrix. For the
sake of comparison with the classical limit, one uses th
Wigner functionrsR, Pd in order to represent the latter.
In some cases, using Feynman-Vernon (FV) formalis
[4], an exact path-integral expression for the propag
tor is available [3]. The FV expression is a double sumR R

D x0 D x00 over the path variablesx0std andx00std. It
is convenient to use new path variablesR ­ sx0 1 x00dy2
andr ­ sx00 2 x0d, and to transform the

R R
D RD r in-

tegral into the form [5]

K sR, PjR0, P0d ­
Z R,P

R0,P0

D RK fRg , (3)

whereK fRg is a real functional, which is defined by the
expression,

KfRg ­
Z

D reis1y h̄d sSfree1SFde2s1y h̄2d SN . (4)

The D r integration is unrestricted at the end points, an
the free action functional isSfreefR, rg ­ 2m

Rt
0 dt 3

R̈r . The actionSFfR, rg corresponds to the friction and
the actionSN fR, rg corresponds to the noise. The latte
are, in general, nonlocal functionals of the path variable
(there may be long-time interactions between differe
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paths segments). Still, in practice, it is desirable to fin
a master equation of the form

≠r

≠t
­ L r (5)

that generates essentially the same dynamical behav
Alternatively, it is desirable to find an appropriate Lan
gevin equation of the form (1) that reproduces the reduc
dynamics in phase space.

At this stage it is appropriate to gather few questions th
are of conceptual significance: (a) What are the essen
ingredients that define generic generalized Brownian m
tion (GBM)? (b) What are the necessary requirements
Henv for having generic GBM? (c) IfHbath is strongly
chaotic, what is the minimal number of degrees of free
dom which are required? (d) Is it possible to reproduc
any generic GBM by assuming a coupling to an appro
priate bath that consists of (infinitely many) oscillators
(e) Is it possible to reproduce any generic GBM by an a
propriate master equation? (f) Is it possible to reprodu
any generic GBM by an appropriate Langevin equation
(g) In the latter case, what is the relation between the noi
and the friction, should fluctuation dissipation theorem b
modified? Most frequently, questions (b) and (c) are em
phasized. This Letter intends to introduce partial answe
to the rest, less emphasized questions.

Classically,the answers for all the questions [(a)–(g)
are known [6,7]. Any genericHenv leads to a simple BM
that is described by (1) with friction which is proportiona
to velocity and white noisefstd ­ 2hkBTdstd in con-
sistency with the classical fluctuation-dissipation theorem
The environment should consist of at least3 degrees of
freedom withfastchaotic dynamics.Fast implies that the
classical motion is characterized by a continuous spectru
with high frequency cutoff, such that the motion of the en
vironment can be treated adiabatically with respect to th
slow motion of the system. One can use a bath that co
sists of infinitely many oscillators in order to reproduc
(1). Note that an oscillator bath is obviouslynongeneric
since it consists of nonchaotic degrees of freedom. Thu
the spectral distribution of the oscillators should be chos
in a uniqueway that mimics the generic spectral function
and, consequently, reproduces the simple BM behavior.
© 1997 The American Physical Society
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We are interested in this Letter inquantizedBM. In
order to be consistent with the terminology that preva
in the literature, we shall use the notation “BM mode
in a restricted sense as referring to the quantization
(1) with (2). The notation “GBM” suggests that a satis
factory model should generateadditionalphysical effects.
Referring to question (a), let us try to list the ingredien
that should be associated with GBM: (I) fluctuations du
to noise; (II) dissipation of energy due to friction effec
(III) dissipative diffusion due to competition between fric
tion and noise; (IV) nondissipative diffusion due to “ran
dom walk” dynamics; (V) quantum localization due t
quenched disorder; (VI) destruction of coherence due
dephasing. This list is intended to make a distinction b
tween qualitatively different effects that are associat
with the reduced dynamics, irrespective of the actua
mechanism which is responsible for them.

Quantum mechanically, it would be desirable to deriv
first, as in the classical theory, a general description of B
and only later to address question (d). However, this tu
out to be impossible, unless uncontrollable approximatio
are made. Therefore we shall take the other way arou
Referring to question (d), it is natural to discuss first th
standard model for BM, where linear coupling to a larg
set of harmonic oscillators is assumed [2]. This mod
has been used extensively in the literature. Caldeira a
Leggett (CL) and followers [3] have used it to analyz
“quantum BM” that corresponds to (1) with (2). There, i
the limit of high temperatures,fstd ­ 2hkBTdstd which
coincides with the classical limit. The friction action
functional is

SF ­ 2h
Z t

0
dt ÙRr , (6)

and the noise functional is

SN fR, rg ­
1
2

Z t

0

Z t

0
dt1 dt2 fst2 2 t1drstdrst0d .

(7)

In the absence of noise theD r integration is easily per-
formed, leading toK fRg ­

Q
t dsmR̈ 1 h ÙRd. Further-

more, FV have observed [4] thatSN can be interpreted as
arising from averaging over the realizations of the classi
c-number random forceF . Thus, the reduced dynamic
of the particle can be reproduced by the classical Lange
equation (1) with appropriatefstd. Note, however, that
fstd will depend onh̄ in accordance with the fluctuation
dissipation theorem. In particular, the suppression of “no
mal” diffusion at low temperatures [3] can be interpreted
arising from negative noise autocorrelations [8]. Also, th
relaxation of a quantal harmonic oscillator to its groun
state, the dynamics of quantal parametric oscillator w
dissipation, and the dynamics of the quantal kicked rota
with dissipation can be simulated by assuming the sa
type of noise (the latter case is analyzed in [9]). The
is a somewhat more transparent way to observe that
FV-CL path-integral expression is formally identical wit
s
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its classical limit [for a givenfstd]. With (6) and (7),
expression (4) forKfRg becomes invariant under the re
placementh̄ ! lh̄. This replacement is compensated b
the scaling transformationr ! lr of the auxiliary path
variable.

The observation that quantum BM (in the restricte
sense discussed above) is formally equivalent to the
lution of a classical Langevin equation with colored nois
is probably not new, though there is no obvious referen
for it. This is probably the reason for the existence of e
tensive literature which utilizes rather lengthy “quantu
mechanical formalism” in order to derive essentially cla
sical results. However, there is a deeper reason for c
sidering “quantum dissipation” as distinct from “classic
dissipation” which is concerned with the extensive usa
of the master equation approach. In this approach the co
monly used Markovian approximation generates “noncla
sical” correction. It is frequently left either unnoticed o
unclarified, as in a recent publication [10], that the resulta
nonclassical feature is anartifact of the formalismrather
than of the model itself. In the Appendix this point is il
lustrated by considering a specific example.

The standard BM motion that is modeled by (1) with (2
is not rich enough to generate effects that are associa
with the possibly disordered nature of the environme
[ingredients (IV) and (V)]. In [5] we have introduced a
unified model for the study of diffusion localization an
dissipation (DLD). The DLD model is defined in terms o
the path-integral expression (3) with

SF ­ h
Z t

0
dt w0sssrstdddd ÙRstd (8)

for ohmic friction. The general expression for the nois
action functional is

SN fx0, x00g ­
1
2

Z t

0

Z t

0
dt1 dt2 fst2 2 t1d

3 fwsx00
2 2 x00

1 d 1 wsx0
2 2 x0

1d
2 2wsx00

2 2 x0
1dg , (9)

wherexi is a short notation forxstid. (For white noise, see
the simplified expression (13) below.) Both functiona
depend on the normalized spatial-autocorrelation funct
wsx 2 x0d of the disordered environment. For definitene
we have assumed

wsx 2 x0d ­ ,2 exp

∑
2

1
2

µ
x 2 x0

,

∂2∏
. (10)

The various derivations of the DLD model are discuss
in [5]. Here we note its various limits: (A) In the classi
cal limit it constitutes a formal solution of (1), where
F sx, td ­ 2U0sx, td and

kUsx, tdUsx0, t0dl ­ fst 2 t0dwsx 2 x0d . (11)

(B) In the limit , ! ` it reduces to the standard BM
model. (C) By dropping the friction functionalSF , one
2879
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obtains the case of the nondissipative noisy disorder
environment. (D) By further taking the limit offstd ­
const, one obtains the case of quenched disorder.

The classicalDLD model is similar to the BM model
for short-time correlated noise,such thatfstd can be
approximated by a delta function (white noise approx
mation). However, for short-time correlated noise wit
negative correlationsf

R`

0 dt fstd ! 0g, one cannot avoid
considering the interplay with the disorder. This is th
case of “superohmic” noise and also of low-temperatu
“ohmic noise.” In the latter casefstd ­ 2sCypd s1yt2d
for tc , t, where tc is a very short time scale and
C ­ h̄h. For BM (no disorder) the spatial spreading i
sspatial , fsCyh2d s2ypd ln tg1y2 with a Gaussian profile,
while for the DLD model in the same circumstances [5]

KsRjR0d ­ const3 exp

0BB@2
jR 2 R0jh

4
q

2
p

≥
1

h2,

¥
C

i
1CCA . (12)

HereP0 ­ 0, and an integration over the finalP has been
performed. Note that there is a smooth crossover from
BM logarithmic “diffusion” (faint noise, dispersion on a
scale less than,) to the DLD frozen profile (stronger noise
dispersion on a scale larger than,). The classical DLD
model becomes significantly distinct from the BM mode
for long-time correlated noise. In particular, in the limit of
quenched disorder, the motion of the particle is bounde
More generally, for long but finite time autocorrelations
or for higher dimensionality, the particle will execute
nondissipative random walk diffusion.

The quantal DLD model, in contrast with the quan-
tal BM model, does not constitute a formal solution o
its corresponding Langevin equation. This leads to som
newgenuine quantal effects. Referring first to the limitin
case (D) ofquenched disorder,one may demonstrate tha
localization is a natural consequence of the path-integ
expression [5]. One should wonder whether such an eff
can be generated by a classical Langevin equation with
propriate colored noise. The frozen diffusion profile (12
is probably the best that one can achieve. However,
reduced dynamics is not the same as in the case of qu
tum localization, since there is a strong velocity-positio
correlation. Thus, it is claimed that quantal localizatio
cannot be generated by a classical Langevin equation.

There is an additional aspect of the quantal DLD mod
that cannot be generated by a classical Langevin equat
The distinction between the quantal DLD model and i
classical limit persists even in the limit of high tempera
tures. In order to clarify this point, one should substitut
fstd ­ 2kBTdstd into (9), yielding

SN frg ­ 2hKBT
Z t

0
fws0d 2 wsssrstddddg dt , (13)

and compare (8) and (13) with their classical limit, whic
is not by accident (6) and (7), respectively. The quan
expressions [11] differ from the classical ones for, ø jrj.
2880
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The scaling properties ofr with h̄ imply that these large
deviations are important for the study of interference an
dephasing. Simply by inspection of the action functionals
one may draw two important observations: First, interfer
ence in the DLD model is not affected by friction, unlike
the BM model. The second observation is that the depha
ing factor is

keiwl ­ e2SN f,øjrjg ­ exp

∑
2

2hkBT,2

h̄2 t

∏
, (14)

irrespective of the geometry of the interfering pathsxastd
and xbstd which are assumed to be well separated with
respect to the microscopic scale, [abover ­ sxa 2 xbd].
The latter conclusion should be contrasted with the BM
case, where

keiwl ­ exp

∑
2

1
2

2hkBT
h̄2

Z t

0
fxastd 2 xbstdg2 dt

∏
,

(15)

which is essentially the same as the dephasing due to the
teraction with extended (electromagnetic) field modes [12
Thus, dephasing due to the interaction with disordered e
vironment (e.g., localized impurities) is qualitatively dif-
ferent. Further discussion, semiclassical consideration
and specific examples will appear in [5]. In particular, it
is interesting to note that, due to interference, the famil
iar diffusive behavior is modified by a ballistic component
that decays exponentially in time as in (14).

Finally, we should refer to question (d) which is also
intimately related to question (g) concerning the role o
fluctuation-dissipation theorem. One should ask whethe
the DLD model is the “ultimate” model for the description
of BM in the most generalized way (as far as generic effec
are concerned). In the case of 2D generalized BM, on
should also consider the effect of “geometric magnetism
[13], which is not covered by the 1D DLD model. Here we
limited the discussion to 1D BM. In order to answer this
question, one should consider a general nonlinear couplin
to a thermal, possibly chaotic bath. In the limit of weak
coupling one may demonstrate [5] that indeed the bat
can be replaced by an equivalent “effective bath” tha
consists of harmonic oscillators, yielding the DLD model
In the opposite limit of strong coupling, and extremely
adiabatic interaction, the reduced dynamics is determine
by the ground state energyEenv sxd of Henv , leading to an
effective “quenched” disordered potential. Such extrem
adiabaticity is probably not very realistic. Gefen and
Thouless [14], Wilkinson [7], and Shimshoni and Gefen
[14] have emphasized the significance of Landau-Zene
transitions as a mechanism for dissipation. There is
possibility that some future derivation will demonstrate
that an equivalent “oscillator bath” can also be define
in this case. The existence of such a derivation is mo
significant, since it implies that no “new effects” (such
as geometric magnetism in the case of 2D generalize
BM) can be found in the context of 1D generalized BM.
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Wilkinson has demonstrated that, due to the Landau-Zen
mechanism, anomalous friction, which is not proportiona
to velocity, arises for the Gaussian orthogonal ensemb
(GOE) fermion bath [7]. The BM model cannot generat
such an anomalous effect due to a “memory problem” th
makes it ill defined. However, one may demonstrate th
thenonohmicDLD model can be used in order to generat
this effect [5].
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Appendix.—Here, we shall illustrate how an apparently
nonclassical feature may arise due to the application of t
Markovian approximation. To demonstrate this point in
transparent way it is best to make a reference to a rela
recent study [15,16] of the parametric driven harmon
quantum oscillator with ohmic dissipation. This problem
has an exact solution using FV formalism [8,15]. In [16]
various approximation schemes forL in (5) have been
discussed, leading to an expression of the general form

L ­ 2
p
m

≠x 1
h

m
≠pp 1 · · · 1 Dpp≠2

p 1 Dxp≠x≠p .

(16)

(The time-dependent driving term has been omitted f
brevity.) The last term is the so-called “Drude correc
tion.” Because of this term, the diffusion matrix is no
longer positive semidefinite. Kohleret al. [16] have cor-
rectly pointed out that, consequently,L has no equiva-
lent Langevin representation. Because of this term, t
Wigner function may become negative in some places
phase space. Note, however, that (16) is the best appro
mation for the actual dynamics within the framework o
the master equation approach. We shall now demonstr
that the Drude correction may be derived in a very simp
way from the classical Fokker-Planck equation. Thi
derivation also sheds new light on the traditional Markov
ian approximation which is used within the framework
of the master equation approach. Starting from (1), wi
a definite realization of the random forceF, the Liouville
equation is≠r

≠t ­ 2=sryd, where= ­ s≠x , ≠pd andy ­
spym, Ftotald with Ftotal ­ 2hpym 2 F std. The first
two terms in (16) are immediately obtained, and the add
tional term due to the random force is2F std≠pr. We
now use the identityrjF fxstdjF , pstdjF , tg ­ rjF ­0 3

fxstdjF ­0, pstdjF ­0, tg, which holds since both sides
equal r sssxs0d, ps0d, t ­ 0ddd. One substitutesxstdjF ­
xstdjF ­0 1

Rt
0 Gst, tdF stddt, where G is the appro-

priate Green function (response kernel) of (1) with
parametric driving term that should be included. Ex
pandingr with respect toF up to first order, and then
averaging2F std≠pr over realizations of the random
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force, one obtains the last two terms in (16). In particula
the Drude term isDxp ­

Rt
0 fst 2 tdGst, td dt. It is

easy to observe that this result coincides with Eq. (85
of [16]. Evidently, in the high temperature limit (white
noise), this term goes to zero. However, at the limit o
zero temperaturefstd constitutes a Fourier transform
of fsvd ­ hh̄jvj in accordance with the fluctuation-
dissipation theorem, leading to a diffusion matrix that is
no longer positive semidefinite. Thus, we have demon
strated that the Drude correction does not imply tha
the exact quantum dynamics cannot be generated by
appropriate Langevin equation, rather it is an artifact o
the Markovian approximation involved.
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