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Quantum Dissipation versus Classical Dissipation for Generalized Brownian Motion
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We try to clarify what are the genuine quantal effects that are associated with generalized Brownian
motion. All the quantal effects that are associated with the Zwanzig-Feynman-Vernon-Caldeira-Leggett
model are (formally) a solution of the classical Langevin equation. Nonstochastic, genuine quantum
mechanical effects are found for a model that takes into account either the disordered or the chaotic
nature of some environment. [S0031-9007(97)02879-2]

PACS numbers: 03.65.Bz, 05.40.+j, 05.45.+b, 05.60.+w

The motion of a particle in 1D, under the influence of paths segments). Still, in practice, it is desirable to find
an environment, is commonly described in the classicah master equation of the form
literature by an appropriate generalization of Langevin 9
) ap _
equation [1-3] 0 Lp (5)

mi + qx = F. @ that generates essentially the same dynamical behavior.
Herem andz are the mass of the particle and the friction Alternatively, it is desirable to find an appropriate Lan-
coefficient, respectively. Implicit is an ensemble averageyevin equation of the form (1) that reproduces the reduced
over realizations of the random for¢E. In the standard dynamics in phase space.
Langevin equation it represents stationary “noise” which is At this stage it is appropriate to gather few questions that
zero upon averaging, and whose autocorrelation functioare of conceptual significance: (a) What are the essential
is ingredients that define generic generalized Brownian mo-

Ny — o tion (GBM)? (b) What are the necessary requirements on
. <‘T(t)‘7:(t % ¢_(t_ ) _ @ H.,, for having generic GBM? (c) IfH . is Strongly

This phenomenological description can be derived forghaotic, what is the minimal number of degrees of free-
mally from an appropriate Hamiltoniah{ = 3{o(x, p) +  dom which are required? (d) Is it possible to reproduce
H..y, Where the latter term incorporates the interactionany generic GBM by assuming a coupling to an appro-
with environmental degrees of freedom. The reduced dypriate bath that consists of (infinitely many) oscillators?
namics of the system may be described by the propagatg) |s it possible to reproduce any generic GBM by an ap-
K (R, P|Rq, Po) of the probability density matrix. Forthe propriate master equation? (f) Is it possible to reproduce
sake of comparison with the classical limit, one uses th%my generic GBM by an appropriate Langevin equation?
Wigner functionp(R, P) in order to represent the latter. (gy |n the latter case, what is the relation between the noise
In some cases, using Feynman-Ve_rnon (FV) formalismyng the friction, should fluctuation dissipation theorem be
[4], an exact path-integral expression for the propagamgdified? Most frequently, questions (b) and (c) are em-
tor is available [3]. The FV expression is a double sumphasized. This Letter intends to introduce partial answers
J | Dx" Dx" over the path variables(7) andx"(7). It g the rest, less emphasized questions.

is convenient to use new path variabRs= (x’ + x")/2 Classically,the answers for all the questions [(a)—(g)]
andr = (x" — x), and to transform th [ DRDr in-  are known [6,7]. Any generit{.,, leads to a simple BM
tegral into the form [5] that is described by (1) with friction which is proportional
R.P to velocity and white noisep(7) = 2nkgT 8(7) in con-
XK (R, P|Ro, Po) = o DRXI[R], (3)  sistency with the classical fluctuation-dissipation theorem.

The environment should consist of at ledstegrees of
where K[R] is a real functional, which is defined by the freedom withfastchaotic dynamics.Fastimplies that the
expression, classical motion is characterized by a continuous spectrum
with high frequency cutoff, such that the motion of the en-
XI[R] = f D e’ /M Siwe 50 =(/F)Sx —(4)  yironment can be treated adiabatically with respect to the
slow motion of the system. One can use a bath that con-
The D r integration is unrestricted at the end points, andsists of infinitely many oscillators in order to reproduce
the free action functional iS¢ee[R,r] = —m ff) dr X (1). Note that an oscillator bath is obviousigngeneric
Rr. The actionS[R, r] corresponds to the friction and since it consists of nonchaotic degrees of freedom. Thus,
the actionSy[R, r] corresponds to the noise. The latter the spectral distribution of the oscillators should be chosen
are, in general, nonlocal functionals of the path variable$n a uniqueway that mimics the generic spectral function
(there may be long-time interactions between differentand, consequently, reproduces the simple BM behavior.
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We are interested in this Letter iquantizedBM. In its classical limit [for a giveng(7)]. With (6) and (7),
order to be consistent with the terminology that prevailsexpression (4) fodK[R] becomes invariant under the re-
in the literature, we shall use the notation “BM model” placementi — A%. This replacement is compensated by
in a restricted sense as referring to the quantization afhe scaling transformation — Ar of the auxiliary path
(1) with (2). The notation “GBM” suggests that a satis- variable.
factory model should generasglditional physical effects. The observation that quantum BM (in the restricted
Referring to question (a), let us try to list the ingredientssense discussed above) is formally equivalent to the so-
that should be associated with GBM: (I) fluctuations dueution of a classical Langevin equation with colored noise
to noise; (ll) dissipation of energy due to friction effect; is probably not new, though there is no obvious reference
(1) dissipative diffusion due to competition between fric- for it. This is probably the reason for the existence of ex-
tion and noise; (IV) nondissipative diffusion due to “ran- tensive literature which utilizes rather lengthy “quantum
dom walk” dynamics; (V) quantum localization due to mechanical formalism” in order to derive essentially clas-
quenched disorder; (VI) destruction of coherence due tagical results. However, there is a deeper reason for con-
dephasing. This list is intended to make a distinction besidering “quantum dissipation” as distinct from “classical
tween qualitatively different effects that are associatedlissipation” which is concerned with the extensive usage
with the reduced dynamics, irrespective of the actual of the master equation approach. In this approach the com-
mechanism which is responsible for them. monly used Markovian approximation generates “nonclas-

Quantum mechanically, it would be desirable to derivesical” correction. It is frequently left either unnoticed or
first, as in the classical theory, a general description of BMunclarified, as in a recent publication [10], that the resultant
and only later to address question (d). However, this turngonclassical feature is aartifact of the formalisnrather
out to be impossible, unless uncontrollable approximationshan of the model itself. In the Appendix this point is il-
are made. Therefore we shall take the other way aroundustrated by considering a specific example.

Referring to question (d), it is natural to discuss first the The standard BM motion that is modeled by (1) with (2)
standard model for BM, where linear coupling to a largeis not rich enough to generate effects that are associated
set of harmonic oscillators is assumed [2]. This modelwith the possibly disordered nature of the environment
has been used extensively in the literature. Caldeira anfihgredients (IV) and (V)]. In [5] we have introduced a
Leggett (CL) and followers [3] have used it to analyzeunified model for the study of diffusion localization and
“quantum BM"” that corresponds to (1) with (2). There, in dissipation (DLD). The DLD model is defined in terms of
the limit of high temperatureg)(7) = 2nkgT 6(7) which  the path-integral expression (3) with
coincides with the classical limit. The friction action p )
functional is Sp = ﬂf drw'(r(7))R(7) (8)

0

t .
Sp = —77]0 dt Rr, (6)  for ohmic friction. The general expression for the noise

. . . action functional is
and the noise functional is

t t I — L ' ' —
skl = 5 [ [ dnidn i = . 1= 3 |, dmdn ot =

) X Dat = ) + wlh = x)

i !
In the absence of noise tHB r integration is easily per- ~ 2wl — x)l, ©)
formed, leading taK[R] =[], 8(mR + mR). Further- wherex; is a short notation fat(r;). (For white noise, see
more, FV have observed [4] thdf can be interpreted as the simplified expression (13) below.) Both functionals
arising from averaging over the realizations of the classicatlepend on the normalized spatial-autocorrelation function
c-number random forcg’. Thus, the reduced dynamics w(x — x’) of the disordered environment. For definiteness
of the particle can be reproduced by the classical Langeviwe have assumed
equation (1) with appropriaté (7). Note, however, that 1 /x — x\2
¢ (7) will depend onZ in accordance with the fluctuation- wx — x) = ¢ ex;{—— < > }
dissipation theorem. In particular, the suppression of “nor- 2 ¢
mal” diffusion at low temperatures [3] can be interpreted asthe various derivations of the DLD model are discussed
arising from negative noise autocorrelations [8]. Also, thein [5]. Here we note its various limits: (A) In the classi-
relaxation of a quantal harmonic oscillator to its groundcal limit it constitutes a formal solution of (1), where

(10)

state, the dynamics of quantal parametric oscillator withF (x, 1) = —U'(x, 1) and
dissipation, and the dynamics of the quantal kicked rotator
with dissipation can be simulated by assuming the same (U (x,)U X', t")) = ¢(t — Hw(x — x). (11)

type of noise (the latter case is analyzed in [9]). There
is a somewhat more transparent way to observe that th@) In the limit € — « it reduces to the standard BM
FV-CL path-integral expression is formally identical with model. (C) By dropping the friction functiondlz, one
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obtains the case of the nondissipative noisy disorderedhe scaling properties of with 7 imply that these large
environment. (D) By further taking the limit ab(7) =  deviations are important for the study of interference and
const, one obtains the case of quenched disorder. dephasing. Simply by inspection of the action functionals,
The classicalDLD model is similar to the BM model one may draw two important observations: First, interfer-
for short-time correlated noisesuch that¢ () can be ence in the DLD model is not affected by friction, unlike
approximated by a delta function (white noise approxi-the BM model. The second observation is that the dephas-
mation). However, for short-time correlated noise withing factor is
negative correlationisf, d7 ¢(r) — 0], one cannot avoid
considering the interplay with the disorder. This is the (e'®) = ¢~ Slt=Irl] — ex;{
case of “superohmic” noise and also of low-temperature
“ohmic noise.” In the latter casé (r) = —(C/x) (1/72)
for 7. < 7, where 7. is a very short time scale and
C = hn. For BM (no disorder) the spatial spreading is
Tspatial ~ [(C/7?) (2/)Int]"/? with a Gaussian profile,
while for the DLD model in the same circumstances [5]

2nkpT €2
— = t:|, (14)
irrespective of the geometry of the interfering pathér)
and x,(7) which are assumed to be well separated with
respect to the microscopic scdl¢abover = (x, — x,)].
The latter conclusion should be contrasted with the BM
case, where

—_ t
K(RIRy) = constx exp| ——o KoL} 1g)  qpiey - exr{—% e f [xa(r) — xb(T)]2d7:|,
4= )C 0
[ ™ <7/ €> i| (15)
Here Py = 0, and an integration over the finBlhas been
performed. Note that there is a smooth crossover from th
BM logarithmic “diffusion” (faint noise, dispersion on a
scale less thaf)) to the DLD frozen profile (stronger noise,
dispersion on a scale larger thé&h The classical DLD
model becomes significantly distinct from the BM model
for long-time correlated noiseln particular, in the limit of
quenched disorder, the motion of the particle is bounde
More generally, for long but finite time autocorrelations
or for higher dimensionality, the particle will execute
nondissipative random walk diffusion.

The quantal DLD model, in contrast with the quan-
tal BM model, does not constitute a formal solution of
its corresponding Langevin equation. This leads to som
newgenuine quantal effects. Referring first to the limiting
case (D) ofguenched disordelgne may demonstrate that
localization is a natural consequence of the path-integr
expression [5]. One should wonder whether such an effe

which is essentially the same as the dephasing due to the in-
feraction with extended (electromagnetic) field modes [12].
Thus, dephasing due to the interaction with disordered en-
vironment (e.g., localized impurities) is qualitatively dif-
ferent. Further discussion, semiclassical considerations,
and specific examples will appear in [5]. In particular, it
(1'5 interesting to note that, due to interference, the famil-

ar diffusive behavior is modified by a ballistic component
'that decays exponentially in time as in (14).

Finally, we should refer to question (d) which is also
intimately related to question (g) concerning the role of
fluctuation-dissipation theorem. One should ask whether
the DLD model is the “ultimate” model for the description
6t BM in the most generalized way (as far as generic effects
are concerned). In the case of 2D generalized BM, one

hould also consider the effect of “geometric magnetism”
f&f}, which is not covered by the 1D DLD model. Here we

Imited the discussion to 1D BM. In order to answer this

. . e ! Juestion, one should consider a general nonlinear couplin
propriate colored noise. The frozen diffusion profile (12)%0 a thermal, possibly chaotic bgth. In the limit of we%k 9

is cﬁ)robgbc;y the _begt tha: t%ne can aChi.theH Howev?r, th<‘*:‘oupling one may demonstrate [5] that indeed the bath
reduced dynamics IS not tn€ same as In In€ case of quagy -, replaced by an equivalent “effective bath” that

I:L:)Tr;g:t%ﬁan.?ﬁu SS 'r:f ?str;ﬁari?nles datr?;;Onga\r/]?;?ﬁg)é;ig?:;gr?conSiSts of harmonic oscillators, yielding the DLD model.
: ’ N In the opposite limit of strong coupling, and extremely

Ca?ﬂgieb?z%in:&zﬁggnb; :Sdiits'gf ':hl_eanglet;egfgtﬁgde diabatic interaction, the reduced dynamics is determined
p q y the ground state enerdy,, (x) of H.,,, leading to an

that cannot be generated by a classical Langevin equatiogffective “quenched” disordered potential. Such extreme

The c_ilstln_ctl_on bet_ween the_quanta_ll DLD model and Itsadiabaticity is probably not very realistic. Gefen and
classical limit persists even in the limit of high tempera-

tures. In order to clarify this point, one should substitute Thouless [14], Wilkinson [7], and Shimshoni and Gefen
6(r) = 2ksT5(7) into (9), yielding [14] have emphasized the significance of Landau-Zener

transitions as a mechanism for dissipation. There is a
t possibility that some future derivation will demonstrate

Snlr] = 277KBT[ [w(0) = w(r(r))Id7,  (13) that an equivalent “oscillator bath” can also be defined

0 in this case. The existence of such a derivation is most
and compare (8) and (13) with their classical limit, whichsignificant, since it implies that no “new effects” (such

is not by accident (6) and (7), respectively. The quantahs geometric magnetism in the case of 2D generalized
expressions [11] differ from the classical onesffox |r|.  BM) can be found in the context of 1D generalized BM.
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Wilkinson has demonstrated that, due to the Landau-Zendorce, one obtains the last two terms in (16). In particular,
mechanism, anomalous friction, which is not proportionalthe Drude term isD,, = ff)¢(t — 7)G(t,7)dr. ltis

to velocity, arises for the Gaussian orthogonal ensembleasy to observe that this result coincides with Eq. (85)
(GOE) fermion bath [7]. The BM model cannot generateof [16]. Evidently, in the high temperature limit (white
such an anomalous effect due to a “memory problem” thahoise), this term goes to zero. However, at the limit of
makes it ill defined. However, one may demonstrate thazero temperaturep(7) constitutes a Fourier transform
thenonohmidDLD model can be used in order to generateof ¢(w) = nhlw| in accordance with the fluctuation-
this effect [5]. dissipation theorem, leading to a diffusion matrix that is
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