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Consistent Sets Yield Contrary Inferences in Quantum Theory
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In the consistent histories formulation of quantum theory, the probabilistic predictions and
retrodictions made from observed data depend on the choice of a consistent set. We show that
this freedom allows the formalism to retrodict contrary propositions which correspond to orthogonal
commuting projections and which each have probability one. We also show that the formalism makes
contrary probability one predictions when applied to Gell-Mann and Hartle’s generalized time-neutral
guantum mechanics. [S0031-9007(97)02991-8]
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The consistent histories approach to quantum theorynentary projections and so are incompatible. This, in
pioneered by Griffiths [1,2], Omneés [3,4], and Gell-Mannitself, might be taken as merely an extension to the consis-
and Hartle [5,6,7], is perhaps the best attempt to date d@ént histories context of the familiar fact that noncommut-
a precise formulation of quantum theory that involves nang observables cannot simultaneously be assigned values.
“hidden” auxiliary variables and can be applied to closedThe inferences we consider here, though, correspond to
systems. Since modern ideas in cosmology and quantugommuting but orthogonal projections. The fact that they
gravity require an interpretation of the quantum theory ofare nonetheless each assigned probability one in their re-
the Universe, the approach has naturally attracted a goapective sets is a result with no parallel in standard quan-
deal of interest. It seems, however, that without newtum theory. It raises the question of whether the present
axioms, whose precise form is presently unknown, it isversion of the consistent histories formalism is a natural
impossible to derive the standard predictions of classicajeneralization of Copenhagen quantum mechanics.
mechanics and Copenhagen mechanics from the consistentThe consistent histories formalissWe begin with a
histories formalism, since predictions essentially alwaydrief description of the simplest version of the consistent
depend not only on known data and the Hamiltonian buhistories formulation of nonrelativistic quantum mechan-
on the selection of a particular consistent set [8]. Thidcs, in which sets of histories correspond to sets of pro-
is true even if predictions are made conditional on thgective decompositions. While consistent histories can be
persistence of quasiclassical physics [9]. It should be saidiefined abstractly on any Hilbert spagé, it is generally
nonetheless, that debate over the scientific status of thessumed that operators corresponding to the Hamiltonian
formalism continues and that its proponents tend to regarf and other physically interesting observables, such as
its lack of predictive power with more equanimity than do position, momentum, and spin, are given. The dynamics,
its critics. however, are irrelevant to the examples we consider, so

This Letter, though, looks at the logical properties ofthat we will takeH = 0 and will not need to distinguish
the consistent histories formalism rather than interpretaany particular operators as simple physical observables.
tional questions. It is helpful immediately to introduce We are interested in a closed system whose initial
a little logical terminology. We say that two projec- density matrixp is given. We will also be interested in
tion operatorsP and Q are complementanyf they fail  applying the formalism to a version of the time-neutral
to commute:PQ # QP. We say that they areontra- generalization of quantum mechanics first discussed by
dictory if they sum to the identity, so tha® = 1 — Q  Aharonov, Bergmann, and Lebowitz [11]. This can be
and PQ = QP = 0. Finally, we say that they areon- though of as a nonrelativistic version of the theory which
trary if they are orthogonal and not contradictory, so thatwould be obtained by imposing initial and final conditions
P <1 — Q and againPQ = QP = 0. in quantum cosmology, and requires an initial density

The somewhat counterintuitive properties of consistentnatrix, which we take to have the standard normalization
sets of histories have, of course, already been extensivebnd write asp;, and final boundary conditions defined
investigated in the original literature [1,3,5] and elsewheréby a positive semidefinite matrix, normalized so that
[8,10]. We describe here a feature which seems to havér(p;ps) = 1. The initial and final matricep; and p
gone unnoticed, namely, that different consistent setthen give boundary conditions for the system at times
extending a given history can imply, with probability one, andz, with #; < ¢4.
propositions which are contrary. It may be helpful to think of the system under dis-

It is well known that the predictions and retrodictions cussion as a non-self-interacting quantum system that is
made in different sets generally correspond to compleprepared in the statg; at+ = ¢; and then isolated until
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t = tr, when it is observed in the stagg. The Hilbert results of a series of experiments or the observations made
space/H here should then be thought of as a subspace dfy an observer. To make scientific use of the formalism
the full Hilbert space, which includes the degrees of freewe then want to make further inferences from the data.
dom of the preparation and measuring apparatuses, amad the standard formalism, this can only be done relative
the full Hamiltonian is nonzero. In the examples we con-to a choice of consistent extensidi of S. (We con-
sider, bothp; and p, are pure and# is three dimen- sider only the standard formalism here. It is possible to
sional or higher. Such examples can, of course, easily bemend the formalism by appending axioms which identify
realized in the laboratory. natural retrodictions [3,12,13]. If only these retrodictions
The physical propositions we are interested in correare allowed, contrary retrodictions are avoided. However,
spond to members of sets of orthogonal Hermitian pro- this would also exclude almost all scientifically desirable
jectionsP?, with retrodictions [13].) Onces’ is fixed we can make prob-
i _ ipj _ s pi abilistic inferences conditioned on the histoH. For
2 Pr=1 and PP’ =0;P" @ example, ifS’ has the above form, the histories extending
These projective decompositions of the identity shouldd in S’ areH’ = {P{',..., P}, Q' P¢{},..., Pix} and the
be thought of as being applied at definite times. Thehistory H' has conditional probability (H')/p(H).
times are usually appended to the sets of projections, We use the convention that the calculation is made at
so thato(t;) = {P,"»(t.,-);i = 1,2,...n;} defines a set of the time of the last event from the history, so that any
projections obeying (1) and applied at time However, projection occurring before this last event is a retrodiction.
as our results depend only on the time ordering, wefhus if k = n then p(H')/p(H) is the probability with
will omit explicit time labels and take sets of the form which the proposition corresponding to the project@h
S ={o1,...,0,}to be ordered with time increasing from is predicted; ifkx < n it is the probability with which
left to right. The projections correspond to propositionsthe proposition is retrodicted. The differefit are to be
about the system in the usual way. For example, dhought of as different, equally valid, possible pictures
projection onto theo, = 1/2 eigenspace of a spin/2  of the past and future physics of the system, or more
particle applied at time corresponds to the statement thatformally as different and generally incompatible logical
the particle was in the-, = 1/2 eigenstate at the relevant Structures allowing different classes of inferences from the
time. The consistent histories formulation differs from given data.
Copenhagen quantum mechanics, however, in that there is Contrary retrodictions and predictions-We now give
no dynamical projection postulate attached to statementso simple examples of contrary inference in the consis-
of this type. tent histories formalism. The Hilbert spadd is taken
Suppose now we have a list of sets of this form.  to be of dimension greater than or equal to three.
Then the histories given by choosing one projection Example 1=—Take p = |a){al, where the normalized
from eacho; in all possible ways are an exhaustive vector |a) defines the initial state of the system. De-
and exclusive set of alternatives. We use Gell-Manrfine the projectiorP. = |c){c|, for some normalized vec-
and Hartle’s decoherence condition, and say thas a  tor |¢) such that) < [{alc)| = % Suppose that the data
consistenset of histories if correspond to the historg{ = {P.} from the consistent
PP Py = 8. S (i setS = {{P.,1 — P.}}. Now consider a consistent ex-
THBy - PUpPY - P) = Bujy e Bugplin i) tension of the formS’ = {{P,,1 — P,},{P.,1 — P},
2) where P, = |b)(b|/|{b|b)| for some unnormalized vec-
or, in the time-neutral case, tor |b) with the property that

in i Ji iy . .
Tr(psPy -+ Pi piP1 -+ Pyr) = 8ijy -+ 8, plin -+ in) . (c|b)(bla) = (cla){b|b). (6)

(3) Itis not hard to verify thatS’ is consistent and that the
When§ is consistentp(i; - - - i,) is the probability of the conditional probability ofP, given H is 1. It is also
history{Pi‘,“.’PYif}. We say the set easy to see that there are at least two mutually orthogonal
vectors |b) satisfying (6). For example, ldiw,), |v2),
|vs) be orthonormal vectors and take) = |v;) and
lc) = Alvy) + wlva), whereA? + u? = 1 and we may
takeA andu real. Then the vectors

S'={o1,....,06, T, Oks1,...,0,} 4)
is a consistent extensioaf a consistent set of histories
S ={o4,...,0,} by the set of projections = {Q':i =
1,...,m} if 7 is a projective decomposition anfl’ is U2
consistent. be) = Avy) + £ Juy) = Rl lvs)  (7)

Suppose now that we have a collection of data defined - X X

by the history both satisfy (6) and are orthogonalhifis real ande2A? =

H={P/,....,P}, (5)  (x — 2)(1 — A?), which has solutions fox = 1/3. Thus
which has nonzero probability and belongs to the consisthis construction produces consistent sets which give
tent setS. This history might, for example, describe the contrary probability one retrodictions.
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Example 2—Now consider the formalism applied to danger, which would mean that the present approach is
generalized quantum mechanics, choose vedtors|p),  completely wrong, we shall initially discuss how two
and|c) as above, takp; = |a){a| = P,andp; = P./C, different logics can be related to each other” [15].
where the normalization constaiff = [{a|c)|>. Sup- Now Omnés has in mind here a slightly different
pose that the data correspond to the histGfy = {P,}  possibility, namely, that if two propositions both belong
from the consistent sef = {{P,,1 — P,}}, and con- to two distinct consistent sets, and one implies the other
sider consistent extensions of the ford’ = {{P,, in one set, the implication might fail in the other set. This
1 - P, {Py,1 — P,}} where P, is as in Example 1. cannot happen in the consistent histories formalism. It
As above, the conditional probability d?, given H is  is not possible, for example, to use the same set of data
1, so that we obtain consistent sets which give mutuallyo predict the propositior? in one set and its negation
contrary probability one predictions. (1 — P) in another, both with probability one. At first

Note that it is impossible to produce an example insight it may seem as though the above examples do
which the formalism makes contrary predictions whenprecisely this. The reason why they fail to do so is
applied to ordinary quantum mechanics. In this contextfhat, in the consistent histories formalism, if we have
if P is predicted with probability 1 from the history two propositions corresponding to projection operators

H = {Py,...,P,}in the setS, then P = Q (i.e., the range of is a subspace of that ¢f) and
12 12 if P is predicted with probability one, it does not follow
PPy---Pip’'"=Py---Pip'~, (8)  thatQ is predicted with probability one (or with any other
and probability).
It might possibly be argued that this last feature is less
QOP,---Pip'? =0 (9) ofa flaw, and that the examples above are less worrying,

than the type of contradictory inference Omnes consid-

if 0 =1 — P). Thus if a projectionQ orthogonal to ers—but it is hard to see why. The fact that the theory
P belongs to any consistent set, then its probability instipulates that the pictures corresponding to different sets
that set, conditional on the histor§f, is zero. It is are incompatible alternatives cannot be used as a defense
also easy to see that we construct examples in whichere without allowing the same defense in the case of
any number of consistent sets make mutually contrarfODmnés’s hypothetical disaster. Clearly, no logical con-
retrodictions—or, in the case of time-neutral quantuntradiction arises if we suppose that different consistent
mechanics, predictions—by taking the dimensionJdf  sets simply give different pictures of the physics and if
to be sufficiently large and choosir¢u|c)| sufficiently — we make no stipulation whatsoever about the relationship
small. between these pictures. But the same, of course, is true

Though the contrary inferences in the above examplef the analogous supposition aboutonsistentsets of
both correspond to one-dimensional projections, it is eashistories. To justify the fundamental assumption of the
to construct similar examples of contrary inferences corconsistent histories formalism—that it is precisely the
responding to projections of different dimensions sinceconsistent sets which give sensible physical descrip-
given the above initial and final states, the condition fortions—we need to suppose the following. First, that it
a projectionP to correspond to a probability one consis-is wrong—a product of misguided classical intuition—
tent inference is simply thau|P|c) = {alc). Thus con- to suppose that contrary propositiofs and Q should
trary inferences could not be avoided by introducing anever be inferred with probability one in different sets.
unitary equivalence relation—perhaps along the lines oecond, that it is right—a fundamental feature of quan-
those recently considered by Gell-Mann and Hartle [14]—um physics—to suppose that contradictory propositions
according to which any pairs of projections involved in P and(1 — P) should never be inferred in different sets.
contrary inferences are declared physically equivalent. This is certainly not the standard understanding of the

The incompatibility of the logics corresponding to situation, and there seems no obvious reason to adopt it.
different consistent sets is generally described as a natur@ne might plausibly try to argue that both suppositions
generalization of the principle of complementarity in are right, or conceivably (depending on how the descrip-
Copenhagen quantum mechanics: a discussion makirtgons are to be used) that both are wrong, but it seems
precisely this point can be found, for example, in Chapteparticularly hard to argue for one and against the other.
5.4 of Omnes’s recent book [4]. There is, though, no Another possible counter-argument is that, in the end,
parallel in standard quantum mechanics for the predictioscientists need only worry about predictions, and contrary
and retrodiction of contrary propositions, and many mightpredictions can be avoided by restricting the formalism
feel that no acceptable interpretation of quantum theoryo standard, rather than generalized, quantum mechan-
should allow such inferences. Indeed, Omnés commentgs. One difficulty with this line of defense is that it is
“The worst event would be if two different ways of the retrodictive cosmological applications of the consis-
reasoning could lead to different conclusions when oneent histories formalism that are presently the most inter-
is using two different consistent logics. In view of this esting. Unlike other approaches to quantum theory, the
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formalism allows us to discuss series of past cosmologi- A response to the present Letter, defending the con-
cal events and to assign probabilities to them, even whesistent histories formalism, can be found in Ref. [19].
some or all of the events occurred before the formatiorGriffiths stresses the point, emphasized above, that the
of classical structures. Prediction, on the other hand, isonsistent histories formalism can be interpreted in a way
where the consistent histories formalism is at its weakwhich leads to no logical contradiction.
est. No coherent interpretation of the formalism has been As mentioned above, it seems that further natural
found which unambiguously implies the standard predicconstraints beyond consistency seem to be needed for
tions of Copenhagen quantum mechanics, although those sensible formulation of the quantum theory of closed
predictions (among many others) can be reproduced bgystems. It turns out that at least one such constraint
calculations within the formalism. Moreover, though theexists: A stronger version of the consistent histories
formalism allows many different predictive calculations, formalism, designed to avoid the problems discussed in
those which are new seem to by physically irrelevanthis paper, is described in Ref. [20].
except in highly implausible scenarios and, possibly, in
the case of generalized time-neutral quantum cosmology.
This, though, is precisely the case in which contrary pre-
dictions arise.
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