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Consistent Sets Yield Contrary Inferences in Quantum Theory
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In the consistent histories formulation of quantum theory, the probabilistic predictions and
retrodictions made from observed data depend on the choice of a consistent set. We show tha
this freedom allows the formalism to retrodict contrary propositions which correspond to orthogonal
commuting projections and which each have probability one. We also show that the formalism makes
contrary probability one predictions when applied to Gell-Mann and Hartle’s generalized time-neutral
quantum mechanics. [S0031-9007(97)02991-8]
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The consistent histories approach to quantum theo
pioneered by Griffiths [1,2], Omnès [3,4], and Gell-Man
and Hartle [5,6,7], is perhaps the best attempt to date
a precise formulation of quantum theory that involves n
“hidden” auxiliary variables and can be applied to close
systems. Since modern ideas in cosmology and quant
gravity require an interpretation of the quantum theory
the Universe, the approach has naturally attracted a go
deal of interest. It seems, however, that without ne
axioms, whose precise form is presently unknown, it
impossible to derive the standard predictions of classic
mechanics and Copenhagen mechanics from the consis
histories formalism, since predictions essentially alwa
depend not only on known data and the Hamiltonian b
on the selection of a particular consistent set [8]. Th
is true even if predictions are made conditional on th
persistence of quasiclassical physics [9]. It should be sa
nonetheless, that debate over the scientific status of
formalism continues and that its proponents tend to rega
its lack of predictive power with more equanimity than d
its critics.

This Letter, though, looks at the logical properties o
the consistent histories formalism rather than interpre
tional questions. It is helpful immediately to introduc
a little logical terminology. We say that two projec
tion operatorsP and Q are complementaryif they fail
to commute:PQ fi QP. We say that they arecontra-
dictory if they sum to the identity, so thatP ­ 1 2 Q
and PQ ­ QP ­ 0. Finally, we say that they arecon-
trary if they are orthogonal and not contradictory, so th
P , 1 2 Q and againPQ ­ QP ­ 0.

The somewhat counterintuitive properties of consiste
sets of histories have, of course, already been extensiv
investigated in the original literature [1,3,5] and elsewhe
[8,10]. We describe here a feature which seems to ha
gone unnoticed, namely, that different consistent se
extending a given history can imply, with probability one
propositions which are contrary.

It is well known that the predictions and retrodiction
made in different sets generally correspond to comp
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mentary projections and so are incompatible. This,
itself, might be taken as merely an extension to the cons
tent histories context of the familiar fact that noncommu
ing observables cannot simultaneously be assigned valu
The inferences we consider here, though, correspond
commuting but orthogonal projections. The fact that the
are nonetheless each assigned probability one in their
spective sets is a result with no parallel in standard qua
tum theory. It raises the question of whether the prese
version of the consistent histories formalism is a natur
generalization of Copenhagen quantum mechanics.

The consistent histories formalism.—We begin with a
brief description of the simplest version of the consiste
histories formulation of nonrelativistic quantum mechan
ics, in which sets of histories correspond to sets of pr
jective decompositions. While consistent histories can
defined abstractly on any Hilbert spaceH , it is generally
assumed that operators corresponding to the Hamilton
H and other physically interesting observables, such
position, momentum, and spin, are given. The dynami
however, are irrelevant to the examples we consider,
that we will takeH ­ 0 and will not need to distinguish
any particular operators as simple physical observables

We are interested in a closed system whose init
density matrixr is given. We will also be interested in
applying the formalism to a version of the time-neutra
generalization of quantum mechanics first discussed
Aharonov, Bergmann, and Lebowitz [11]. This can b
though of as a nonrelativistic version of the theory whic
would be obtained by imposing initial and final condition
in quantum cosmology, and requires an initial densi
matrix, which we take to have the standard normalizati
and write asri , and final boundary conditions defined
by a positive semidefinite matrixrf normalized so that
Trsrirfd ­ 1. The initial and final matricesri and rf

then give boundary conditions for the system at timesti

andtf , with ti , tf .
It may be helpful to think of the system under dis

cussion as a non-self-interacting quantum system tha
prepared in the stateri at t ­ ti and then isolated until
© 1997 The American Physical Society
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t ­ tf , when it is observed in the staterf . The Hilbert
spaceH here should then be thought of as a subspace
the full Hilbert space, which includes the degrees of fre
dom of the preparation and measuring apparatuses,
the full Hamiltonian is nonzero. In the examples we co
sider, bothri and rf are pure andH is three dimen-
sional or higher. Such examples can, of course, easily
realized in the laboratory.

The physical propositions we are interested in corr
spond to members of setss of orthogonal Hermitian pro-
jectionsPi, withX

i

Pi ­ 1 and PiPj ­ dijPi . (1)

These projective decompositions of the identity shou
be thought of as being applied at definite times. T
times are usually appended to the sets of projectio
so thatsjstjd ­ hPi

jstjd; i ­ 1, 2, . . . njj defines a set of
projections obeying (1) and applied at timetj . However,
as our results depend only on the time ordering, w
will omit explicit time labels and take sets of the form
S ­ hs1, . . . , snj to be ordered with time increasing from
left to right. The projections correspond to proposition
about the system in the usual way. For example,
projection onto thesz ­ 1y2 eigenspace of a spin-1y2
particle applied at timet corresponds to the statement th
the particle was in thesz ­ 1y2 eigenstate at the relevan
time. The consistent histories formulation differs from
Copenhagen quantum mechanics, however, in that ther
no dynamical projection postulate attached to stateme
of this type.

Suppose now we have a list of setssj of this form.
Then the histories given by choosing one projectio
from each sj in all possible ways are an exhaustiv
and exclusive set of alternatives. We use Gell-Ma
and Hartle’s decoherence condition, and say thatS is a
consistentset of histories if

TrsPin
n · · · P

i1
1 rP

j1

1 · · · Pjn
n d ­ di1j1 · · · dinjn

psi1 · · · ind ,

(2)
or, in the time-neutral case,
TrsrfPin

n · · · P
i1
1 riP

j1

1 · · · Pjn
n d ­ di1j1 · · · dinjn

psi1 · · · ind .

(3)
WhenS is consistent,psi1 · · · ind is the probability of the
history hPi1

1 , . . . , Pin
n j. We say the set

S 0 ­ hs1, . . . , sk , t, sk11, . . . , snj (4)
is a consistent extensionof a consistent set of histories
S ­ hs1, . . . , snj by the set of projectionst ­ hQi:i ­
1, . . . , mj if t is a projective decomposition andS 0 is
consistent.

Suppose now that we have a collection of data defin
by the history

H ­ hPi1
1 , . . . , Pin

n j , (5)
which has nonzero probability and belongs to the cons
tent setS . This history might, for example, describe th
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results of a series of experiments or the observations ma
by an observer. To make scientific use of the formalism
we then want to make further inferences from the data
In the standard formalism, this can only be done relativ
to a choice of consistent extensionS 0 of S . (We con-
sider only the standard formalism here. It is possible t
amend the formalism by appending axioms which identif
natural retrodictions [3,12,13]. If only these retrodictions
are allowed, contrary retrodictions are avoided. Howeve
this would also exclude almost all scientifically desirable
retrodictions [13].) OnceS 0 is fixed we can make prob-
abilistic inferences conditioned on the historyH. For
example, ifS 0 has the above form, the histories extending
H in S 0 areHi ­ hPi1

1 , . . . , P
ik
k , Qi , P

ik11
k11, . . . , Pin

n j and the
historyHi has conditional probabilitypsHidypsHd.

We use the convention that the calculation is made
the time of the last event from the history, so that an
projection occurring before this last event is a retrodiction
Thus if k ­ n then psHidypsHd is the probability with
which the proposition corresponding to the projectionQi

is predicted; if k , n it is the probability with which
the proposition is retrodicted. The differentS 0 are to be
thought of as different, equally valid, possible pictures
of the past and future physics of the system, or mor
formally as different and generally incompatible logica
structures allowing different classes of inferences from th
given data.

Contrary retrodictions and predictions.—We now give
two simple examples of contrary inference in the consis
tent histories formalism. The Hilbert spaceH is taken
to be of dimension greater than or equal to three.

Example 1.—Take r ­ jal kaj, where the normalized
vector jal defines the initial state of the system. De-
fine the projectionPc ­ jcl kcj, for some normalized vec-
tor jcl such that0 , jkajclj #

1
3 . Suppose that the data

correspond to the historyH ­ hPcj from the consistent
set S ­ hhhhPc, 1 2 Pcjjjj. Now consider a consistent ex-
tension of the formS 0 ­ hhhhPb , 1 2 Pbj, hPc, 1 2 Pcjjjj,
wherePb ­ jbl kbjyjkbjblj for some unnormalized vec-
tor jbl with the property that

kcjbl kbjal ­ kcjal kbjbl . (6)

It is not hard to verify thatS 0 is consistent and that the
conditional probability ofPb given H is 1. It is also
easy to see that there are at least two mutually orthogon
vectors jbl satisfying (6). For example, letjy1l, jy2l,
jy3l be orthonormal vectors and takejal ­ jy1l and
jcl ­ ljy1l 1 mjy2l, wherel2 1 m2 ­ 1 and we may
takel andm real. Then the vectors

jb6l ­ ljy1l 1
m

x
jy2l 6

sx 2 1d1y2m

x
jy3l (7)

both satisfy (6) and are orthogonal ifx is real andx2l2 ­
sx 2 2d s1 2 l2d, which has solutions forl # 1y3. Thus
this construction produces consistent sets which giv
contrary probability one retrodictions.
2875



VOLUME 78, NUMBER 15 P H Y S I C A L R E V I E W L E T T E R S 14 APRIL 1997

i

x

i

p

o

—
n

o
u
n

t

i

n
f
n
s

is

t

er

It
ta

do

e
s

s
g,
-

y
ts

nse
of
-

nt
if
ip
ue

e
e
p-
it

.
-
s

.

it.
s
-
s

d,
ry

n-

-
r-
e

Example 2.—Now consider the formalism applied to
generalized quantum mechanics, choose vectorsjal, jbl,
andjcl as above, takeri ­ jal kaj ­ Pa andrf ­ PcyC ,
where the normalization constantC ­ jkajclj2. Sup-
pose that the data correspond to the historyH ­ hPaj
from the consistent setS ­ hhhhPa, 1 2 Pajjjj, and con-
sider consistent extensions of the formS 0 ­ hhhhPa,
1 2 Paj, hPb , 1 2 Pbjjjj where Pb is as in Example 1.
As above, the conditional probability ofPb given H is
1, so that we obtain consistent sets which give mutua
contrary probability one predictions.

Note that it is impossible to produce an example
which the formalism makes contrary predictions whe
applied to ordinary quantum mechanics. In this conte
if P is predicted with probability 1 from the history
H ­ hP1, . . . , Pnj in the setS , then

PPn · · · P1r1y2 ­ Pn · · · P1r1y2, (8)

and

QPn · · · P1r1y2 ­ 0 (9)

if Q # s1 2 Pd. Thus if a projectionQ orthogonal to
P belongs to any consistent set, then its probability
that set, conditional on the historyH, is zero. It is
also easy to see that we construct examples in wh
any number of consistent sets make mutually contra
retrodictions—or, in the case of time-neutral quantu
mechanics, predictions—by taking the dimension ofH

to be sufficiently large and choosingjkajclj sufficiently
small.

Though the contrary inferences in the above exam
both correspond to one-dimensional projections, it is ea
to construct similar examples of contrary inferences co
responding to projections of different dimensions sinc
given the above initial and final states, the condition f
a projectionP to correspond to a probability one consis
tent inference is simply thatkajPjcl ­ kajcl. Thus con-
trary inferences could not be avoided by introducing
unitary equivalence relation—perhaps along the lines
those recently considered by Gell-Mann and Hartle [14]
according to which any pairs of projections involved i
contrary inferences are declared physically equivalent.

The incompatibility of the logics corresponding t
different consistent sets is generally described as a nat
generalization of the principle of complementarity i
Copenhagen quantum mechanics: a discussion mak
precisely this point can be found, for example, in Chap
5.4 of Omnès’s recent book [4]. There is, though, n
parallel in standard quantum mechanics for the predict
and retrodiction of contrary propositions, and many mig
feel that no acceptable interpretation of quantum theo
should allow such inferences. Indeed, Omnès comme
“The worst event would be if two different ways o
reasoning could lead to different conclusions when o
is using two different consistent logics. In view of thi
2876
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danger, which would mean that the present approach
completely wrong, we shall initially discuss how two
different logics can be related to each other” [15].

Now Omnès has in mind here a slightly differen
possibility, namely, that if two propositions both belong
to two distinct consistent sets, and one implies the oth
in one set, the implication might fail in the other set. This
cannot happen in the consistent histories formalism.
is not possible, for example, to use the same set of da
to predict the propositionP in one set and its negation
s1 2 Pd in another, both with probability one. At first
sight it may seem as though the above examples
precisely this. The reason why they fail to do so is
that, in the consistent histories formalism, if we hav
two propositions corresponding to projection operator
P # Q (i.e., the range ofP is a subspace of that ofQ) and
if P is predicted with probability one, it does not follow
thatQ is predicted with probability one (or with any other
probability).

It might possibly be argued that this last feature is les
of a flaw, and that the examples above are less worryin
than the type of contradictory inference Omnès consid
ers—but it is hard to see why. The fact that the theor
stipulates that the pictures corresponding to different se
are incompatible alternatives cannot be used as a defe
here without allowing the same defense in the case
Omnès’s hypothetical disaster. Clearly, no logical con
tradiction arises if we suppose that different consiste
sets simply give different pictures of the physics and
we make no stipulation whatsoever about the relationsh
between these pictures. But the same, of course, is tr
of the analogous supposition aboutinconsistentsets of
histories. To justify the fundamental assumption of th
consistent histories formalism—that it is precisely th
consistent sets which give sensible physical descri
tions—we need to suppose the following. First, that
is wrong—a product of misguided classical intuition—
to suppose that contrary propositionsP and Q should
never be inferred with probability one in different sets
Second, that it is right—a fundamental feature of quan
tum physics—to suppose that contradictory proposition
P ands1 2 Pd should never be inferred in different sets
This is certainly not the standard understanding of the
situation, and there seems no obvious reason to adopt
One might plausibly try to argue that both supposition
are right, or conceivably (depending on how the descrip
tions are to be used) that both are wrong, but it seem
particularly hard to argue for one and against the other.

Another possible counter-argument is that, in the en
scientists need only worry about predictions, and contra
predictions can be avoided by restricting the formalism
to standard, rather than generalized, quantum mecha
ics. One difficulty with this line of defense is that it is
the retrodictive cosmological applications of the consis
tent histories formalism that are presently the most inte
esting. Unlike other approaches to quantum theory, th
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formalism allows us to discuss series of past cosmolo
cal events and to assign probabilities to them, even wh
some or all of the events occurred before the formati
of classical structures. Prediction, on the other hand,
where the consistent histories formalism is at its wea
est. No coherent interpretation of the formalism has be
found which unambiguously implies the standard pred
tions of Copenhagen quantum mechanics, although th
predictions (among many others) can be reproduced
calculations within the formalism. Moreover, though th
formalism allows many different predictive calculations
those which are new seem to by physically irreleva
except in highly implausible scenarios and, possibly,
the case of generalized time-neutral quantum cosmolo
This, though, is precisely the case in which contrary pr
dictions arise.

If we reject these defenses we seem to be left w
the conclusion that the contrary inferences implied
the consistent histories formalism make it hard to ta
it seriously as a fundamental theory in its present for
This means that further constraints beyond consistency
needed in order to construct a natural generalization of
Copenhagen interpretation to closed systems. Whet
physically sensible and mathematically precise constrai
can be found in standard versions of the formalism
such as the one above, is an important and intrigui
open question. It might also be interesting to investiga
the analogous problem in the more abstract schem
characterizing the logical structure of consistent histor
which have recently been developed [16].

I am very grateful to Oliver Cohen, Fay Dowker, Arthu
Fine, and Lucien Hardy for helpful discussions and
Bob Griffiths and Jim Hartle for critical readings of th
manuscript and valuable comments. I thank the Roy
Society for financial support.

Note added.—After writing this Letter, my attention
was drawn to Cohen’s interesting analysis [17] of a
example due to Aharonov and Vaidman [18]. Referen
[17] includes what seems to be the first consistent histor
analysis of an example in which contrary inferenc
arise. (The argument of the relevant section, VIII B, o
Ref. [17] is not entirely correct: The statement that failu
of consistency follows from the failure of the relevan
projection operators to commute is false.) Reference [1
is a critique of Aharonov and Vaidman’s arguments rath
than those of the consistent histories literature, so that
implications for the consistent histories formalism are n
considered in any detail.
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A response to the present Letter, defending the co
sistent histories formalism, can be found in Ref. [19
Griffiths stresses the point, emphasized above, that
consistent histories formalism can be interpreted in a w
which leads to no logical contradiction.

As mentioned above, it seems that further natur
constraints beyond consistency seem to be needed
a sensible formulation of the quantum theory of close
systems. It turns out that at least one such constra
exists: A stronger version of the consistent historie
formalism, designed to avoid the problems discussed
this paper, is described in Ref. [20].
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