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This Letter presents an algorithm to obtain all local conservation laws for any system of field
equations. The algorithm uses a formula which directly generates the conservation laws and does not
depend on the system having a Lagrangian formulation, in contrast to Noether’s theorem which requires
a Lagrangian. Several examples are considered including dissipative systems inherently having no
Lagrangian. [S0031-9007(97)02768-3]

PACS numbers: 03.40.Kf, 11.10.Cd, 11.30.—j

Finding conservation laws is important in the study ofsystem are simply the symmetries of the field equations,
physical systems. Given a system of field equations arisingnd our adjoint invariance condition is equivalent to the
from a Lagrangian, one can obtain all local conservatiorcondition that a symmetry leaves the Lagrangian invariant
laws of the system algorithmically by using Noether'sto within a local divergence. However, the construction
theorem. The algorithm involves the following steps:of conservation laws for such a system is considerably
(1) Find all local symmetries of the given Lagrangiansimpler using our algorithm than using Noether’'s theorem
system [1,2]. (2) Check which of the symmetries leavesince the adjoint invariance condition and conservation
the Lagrangian invariant to within a local divergence.law formula do not require the expression for the local
(3) For each such symmetry construct a conservation lawlivergence arising from invariance of the Lagrangian,
through the variational relation between the Lagrangiamwhich is a cumbersome yet essential step in Noether’s
and the field equations [1,2]. However, given a systentheorem.
without a Lagrangian formulation, one currently lacks a In our algorithm, for any given system of field equa-
corresponding algorithm to find local conservation laws oftions, the formula used for the construction of conserva-
the system. tion laws is well-defined for an arbitrary solution of the

In this Letter we present an algorithm to obtain all lo- adjoint system. Consequently, after steps (1) and (2), one
cal conservation laws for any system of field equationgan bypass step (3) and simply insert each solution of the
whether or not the system has a Lagrangian formulatioradjoint system into our conservation law formula, then
The algorithm uses an adjoint invariance condition to-check whether the resulting expression is conserved for
gether with a formula which directly yields a conservationall solutions of the field equations. (This provides a use-
law for any solution of the condition, and involves the ful shortcut in practice, since invariably all solutions of
following steps: (1) Linearize the given system of field the adjoint system with the exception of scaling solutions
equations and find the adjoint system of the linearizedatisfy the adjoint invariance condition.)
system. (2) Find all solutions of the adjoint system [3]. Consider any given system of field equations [4]

(3) Check which of the solutions satisfy our adjoint in-
variance condition. (4) For each such solution construct a Golu] =0 (1)

conservation law directly by our formula. for field variables:” (x), with time and space coordinates

The linearized system and the adjoint system are thgayresented by variables. The linearization of system
same if and only if the given system is self-adjoint, N (1) is given by

which case the system has a Lagrangian formulation.
For a Lagrangian system the solutions of the linearized Lopluln? =0, (2)
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where

Loplu] = Gaplu] + Gélp[u]Di + Gé‘{p[u]DiDj + .
3)

with D; denoting the coordinate derivative operator with

respect tox!, and Go,[u] = dGolul/ou?, Gg,[u] =
dGqlul/dD;u”, etc. The adjoint system of system (2)
is given by

L;Q[M]AQ = Ga,[u]A® — Di(Gbp[u]AQ)

+ DiDj(Gg [u]A®) +--- =0, (4)
with L;}l[u] defining the formal adjoint ofl ,q[u]. In
systems (2) and (4),” is an arbitrary solution of the field
equations (1), whilep” and A are variables depending
locally on u” and derivatives ofi”.

Our adjoint invariance condition on a solutid®[«] of

STU] = A [UIGH,[UIUT + (AYUIGH,[UID;U” — Di(AC[UIGY,[UDU?) + ---,

system (4) is given by

L;o[UIA[U] = —A2[UIGa[U]
+ D{(AXUIGo[U])
— DiD;(A}I[UIGo[U]) + - (5)

for arbitrary U?(x") = u“(x") which are field variables
not subject to the field equations, wher®{}[U] =
aAC[UY/oU”, AY U] = aA[U]/oD; U, etc. Given
any A®[u] satisfying condition (5), we have the following
conservation law on all solutiong” of the field equa-
tions (1):

No[UT = A'[UIGalU] = D;(AZVIUIGalUD + -+ NJ[UT = AGVIUIGa[U] = Di(AZMUIGa[UD + -+

The proof that the expressich[«] satisfies Eq. (6) is|

left to a forthcoming paper [6], where we also show that

for any given system (1all local conservation laws are
obtained by our algorithm.

where [5] Di®'[u] =0, ©)

1

Ou] = [ % (S'[U] + Nl [UJU®

0

+ NJ[UID; U + - y—pus  (7)
|
8
system of the linearized field equation is given by

L u]A = pu? 'A + D>A — D>A =0, (10)

where A is a scalar field which depends locally arand

To illustrate our adjoint invariance condition (5) and derivatives ofu, with u satisfying Eq. (9). System (10) is
conservation law formula (7), we now consider several exsimply the determining equation for the local symmetries
amples of scalar field equations in two spacetime dimensu = A[u] of the field equation (9). The solutions of

sions. For the sequek’ = ¢, x! = x denote time and
space coordinate®), = D,, D; = D, denote coordinate
derivatives, andi(x, r) denotes a scalar field.

Nonlinear wave equatior-Consider a Lagrangian
Llu] = —3(Du)* + 3(Deu)* + (p + 1)"'ur™! for any
p > 1. The field equation arising from[«] is given by

Glu] = D?>u — D*u + u” = 0. 9)
Linearizing Eq. (9) leads to the operator
Lu]=pu"~' + D} - D3,
which is self-adjoint,L [u] = £ *[u]. Thus the adjoint

_9ALU]
oUu

dA[U]
oD, U

GlU] + D,< G[U]) +

the system are given by a time translatidfu] = D;u, a
space translatiol\[«] = D,u, a Lorentz boostA[u] =
xD,u + tD,u, and a scalingA[u] = tD,u + xD,u +
auwitha =2/(p — 1) # 0.

Through our adjoint invariance condition and conser-
vation law formula, we now show that the time transla-
tion leads to the expected energy conservation law, while
the scaling does not yield a conservation law. First, for
Alu] = D,u, we readily see

L*[UJA[U] = D,(U? + D*U — D*U) = D,G[U]
for an arbitraryU(x, ). SincedA[U]/oU = 0, dA[U]/

| oD,U = 1, 9A[U]/9D,U = 0, etc., we have

-

dA[U]
DU

G[U]) = D,G[U].

ThusAlu] = D,u satisfies the adjoint invariance condition (5). However,Apn]| = tD,u + xD,u + au, we find

LIUJAIU] = (pa + tD, + xD,)U? +

(2 + a + tD, + xD,) (D?U — D?U)

= (2 + a)G[U] + tD;G[U] + xD,G[U]

and

_9A[U]
oUu

IA[U]
DU

IA[U]
oD U

Glu] + D,( G[U]) ; Dx<
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using dA[U]/oU = a, JA[U])/oD,U =t, dA[U]/
oD, U = x, etc. Sincea # 0, we see that the adjoint
invariance condition (5) is not satisfied.

For any of the solutionsA[u] satisfying the adjoint

invariance condition, the conservation law formula (7)sequenceA[u] = (R*[u])*u for n =1,2,...

leads to the conserved density

OOu] — jo 1 dA(A[)\u]D,u — uD, A[Au]

1 0A[Au]
u—
A 0D;u

G[Au]). (11)
Evaluating Eq. (11) foA\[u] = D,u yields

®u] fl dAA((D;u)* — uD?u) + APuP*h)
0

1 1
mulﬁ—l - Dx(zquu).

(12)

1 1
3(Dw)* + 3(Deu)® +

andA[u] = u each yield an infinite sequence of additional
solutions. The solution sequenddu] = (R*[u])"(tu —
x) forn = 1,2,... has nonlocal dependence oland thus
fails to lead to local conservation laws. The other solution
depends
locally onu andx derivatives ofu. This sequence satisfies
the adjoint invariance condition (5) and thus yields a
sequence of local conservation laws.

From the conservation law formula (7) applied to the
solutions A[u] satisfying condition (5) we obtain the
conserved density

Ou] = ]1 dAA[Au]u). (15)
0
Evaluating Eq. (15) for\[u] = tu — x yields

1
Ou] = ] dX(A\tu® — xu) = %tu2 —xu. (16)
0

This is the expected energy density, up to a trivial con-

served density.
Soliton equation—Consider the Korteweg—de Vries
(KdV) equation in physical form

Glu] = D?u + uD,u + Du = 0. (13)

This field equation lacks a direct Lagrangian formulation.

Linearizing Eq. (13) leads to the operator
L{u]l =D+ D.u + uD, + D,,
and taking the adjoint yields
L*[u]l = —-D} — uD, — D, # L[u].

This leads to the adjoint system of the linearized KdV

equation
L*u]A = =D}A — uD,A — D,A =0, (14)

whereA is a scalar field which depends locally arand
derivatives ofu, with u satisfying Eq. (13).

For the sequencé\[u] = u, Alu] = R*[ulu = D?u +
%uz, Alu] = (R*[u])>u = D%u + %quu + %(Dxu)2 +
15—8u3, etc., we obtain

1
°Lu] = j dA(?) = 502, (17)
0
1 1 1 1
P°fu] =f dAXAuD?u + A*5u%) = suD?u + i,
0
(18)

1
®u] f dX(AuD%u + Az(guszu + %u(Dxu)z)
0

+ /\315—8144),

%uDiu + guzDiu + 15—814(sz4)2 + 2ut

U
(19)

etc. Equation (16) and Eqgs. (17)—(19), etc., agree with the

Using our adjoint invariance condition and conservationocal conserved densities found in Ref. [7], up to addition

law formula, we nowdirectly derive the infinite sequence
of local conservation laws [7] known for the KdV
equation (13). By inspectiom\[«] = u is a solution of
system (14) sincel “[ulu = —D3u — uD,u — D;u =
—G[u] = 0. An additional solution is easily found to
be Alu] = tu — x since L*[u](tu — x) = —tD3u —
tuD,u — tD,u — u + u = —tG[u] = 0. There are no
further solutions which are linear in. Checking the
adjoint invariance condition (5), for an arbitraty(x, t)
we see that-G[U]oA[U]/dU + --- reduces to—G[U]

if AJU]= U and —tG[U] if A[U]=tU — x. Since
these expressions equdl “[U]A[U], condition (5) is
satisfied.

One can show that the recursion operator B8] u] =
D? + %u + %D;l(qu) takes solutions of system (14)
into solutions of system (14) sincel *[u]R*[u] =
R*[u]L *[u]. Consequently, the solutioldu] = ru — x

of trivial conserved densities.
Heat equation—Consider the equation for heat con-
duction

G[u] = D*u — D;u = 0. (20)

This is a dissipative field equation inherently lacking a
Lagrangian formulation. Through our adjoint invariance
condition and conservation law formula, we now derive
the elementary local conservation laws of Eq. (20).
Since Eq. (20) is linear, we directly obtain the adjoint

system
L*u]A = D?A + D,A =0, (21)

where A is a scalar field. System (21) has solutions
A = f(x,t) given by
Dif + Dif =0 (22)
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with no dependence am These solutions trivially satisfy an infinite number of conserved densities for system (25).
the adjoint invariance condition (5) sincE*[U]A and  Eliminatingv in terms ofu, which we take to have compact
aAN/oU, dA/oD,U, dA/dD, U, etc. identically vanish support inx, we obtain the following conserved densities
for an arbitraryU(x,r). There are no solutions which for Burgers’ equation (24):
have explicit local dependence aror derivatives ofu. o bl

Evaluating the conservation law formula (7) far = Q[u] = e " 5f, (29)

t), we obtain the conserved densit e .
flen y whereD ! represents an antiderivative with respeckto

o 1 In addition to our algorithm, we can also find conserva-
O°[u] = j dA(Au) = uf, (23)  tion laws directly for any given system of field equations
0 (1) through the identity
where f(x, t) is an arbitrary solution of the adjoint heat . - . O ;
equation (22). This yields the infinite number of elemen- W= Lag[UIV? = V7 Loo[UIW™ = D;S'[W, V],

tary local conserved densities of the heat equation (20). (30)
Nonlinear diffusion equatior—Consider Burgers’ , , o ol
equation which holds for arbitraryv 7, W**, where
G[u] = D*u — uDu — D;u =0, (24) SiW, V] = WeGh, [UIVe
which is a nonlinear dissipative field equation with no + (W“G}{U[U]Djv"

Lagrangian formulation. Burgers’ equation is related to
the heat equation by @onlocaltransformation [9] involv-

ing solutions of the adjoint system of the linearization of 5i,an n?[u] satisfying the linearized system (2) and
Eq. (24). Using these solutions and our conservation Iavy\sz[u] satisfying the adjoint system (4), we see by
formula, we now derive corresponding conservation Iaw%_qs' (30) and (31) that

of Burgers’ equation.

From the divergence form of Eq. (24) we introduce a &'[u] = A [ulGh [uln?[u]
potentialv(x, t) such that y ;
+ (A [ulGq o [u]Dm[u]

— D;(AC[W]GH [ [ul) + --- (32)

— D;(WeGE[UDV?) + ---. (31)

D.v = u, Dv =D,u— %uz. (25)
The field equation fov is given by yields a conservation law (6) on all solutiong of the
Glv] = -D,v + D*v — %(va)2 =0. (26) field equations (1). Herg“[u] and A®[«] are allowed
. o _ . to have other than just a local dependencex6n This
Linearizing Eq. (26) and taking the adjoint leads to theextends corresponding results obtained for self-adjoint
adjoint system systems of field equations in Ref. [10].
" _ 2 _ In a forthcoming paper [6] we show that the adjoint
LA = DA + DiA + Do(ADw) =0, (27) invariance condition (5) and the conservation law formula
where A is a scalar field which depends locally an  (7) can be generalized to hold whekf*[«] has nonlocal
and derivatives ob, with v satisfying Eq. (26). System dependence om”. We further show that, conversely,
(27) is equivalent to the adjoint system (21) of the hea@ny conservation law having nonlocal dependenceon
equation through the local transformation— Ae~v/2.  arises from some such nonlocal®[u] satisfying the
Thus, A[v] = e ¥/2f(x,) yields solutions of system adjoint system (4). As a consequence, it follows that for
(27), wheref (x, t) satisfies the adjoint heat equation (22).any given system of field equations, all conservation laws,
Itis straightforward to check[v] satisfiesf *[V]A[V] local and nonlocal, arise from finding all solution$[u]
= —G[V]aA[V]/aV for an arbitraryV (x, ¢), and thus the ~ of the adjoint system (4).
adjoint invariance condition (5) holds. Consequently, from
our conservation law formula (7), we obtain the conserved

density
1 ; .
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