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Direct Construction of Conservation Laws from Field Equations
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This Letter presents an algorithm to obtain all local conservation laws for any system of field
equations. The algorithm uses a formula which directly generates the conservation laws and does n
depend on the system having a Lagrangian formulation, in contrast to Noether’s theorem which require
a Lagrangian. Several examples are considered including dissipative systems inherently having n
Lagrangian. [S0031-9007(97)02768-3]
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Finding conservation laws is important in the study
physical systems. Given a system of field equations aris
from a Lagrangian, one can obtain all local conservati
laws of the system algorithmically by using Noether
theorem. The algorithm involves the following step
(1) Find all local symmetries of the given Lagrangia
system [1,2]. (2) Check which of the symmetries lea
the Lagrangian invariant to within a local divergenc
(3) For each such symmetry construct a conservation l
through the variational relation between the Lagrangi
and the field equations [1,2]. However, given a syste
without a Lagrangian formulation, one currently lacks
corresponding algorithm to find local conservation laws
the system.

In this Letter we present an algorithm to obtain all lo
cal conservation laws for any system of field equatio
whether or not the system has a Lagrangian formulatio
The algorithm uses an adjoint invariance condition t
gether with a formula which directly yields a conservatio
law for any solution of the condition, and involves th
following steps: (1) Linearize the given system of fiel
equations and find the adjoint system of the lineariz
system. (2) Find all solutions of the adjoint system [3
(3) Check which of the solutions satisfy our adjoint in
variance condition. (4) For each such solution construc
conservation law directly by our formula.

The linearized system and the adjoint system are
same if and only if the given system is self-adjoint, i
which case the system has a Lagrangian formulatio
For a Lagrangian system the solutions of the lineariz
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system are simply the symmetries of the field equation
and our adjoint invariance condition is equivalent to th
condition that a symmetry leaves the Lagrangian invaria
to within a local divergence. However, the constructio
of conservation laws for such a system is considerab
simpler using our algorithm than using Noether’s theorem
since the adjoint invariance condition and conservatio
law formula do not require the expression for the loca
divergence arising from invariance of the Lagrangian
which is a cumbersome yet essential step in Noether
theorem.

In our algorithm, for any given system of field equa-
tions, the formula used for the construction of conserva
tion laws is well-defined for an arbitrary solution of the
adjoint system. Consequently, after steps (1) and (2), o
can bypass step (3) and simply insert each solution of t
adjoint system into our conservation law formula, the
check whether the resulting expression is conserved f
all solutions of the field equations. (This provides a use
ful shortcut in practice, since invariably all solutions of
the adjoint system with the exception of scaling solution
satisfy the adjoint invariance condition.)

Consider any given system of field equations [4]

GVfug ­ 0 (1)

for field variablesussxid, with time and space coordinates
represented by variablesxi . The linearization of system
(1) is given by

LVrfughr ­ 0 , (2)
© 1997 The American Physical Society 2869
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where

LVrfug ­ GVrfug 1 Gi
VrfugDi 1 G

ij
VrfugDiDj 1 · · · ,

(3)

with Di denoting the coordinate derivative operator wi
respect toxi , and GVrfug ­ ≠GVfugy≠ur , Gi

Vrfug ­
≠GVfugy≠Diur, etc. The adjoint system of system (2
is given by

L
p

rVfugLV ­ GVrfugLV 2 DisGi
VrfugLVd

1 DiDjsGij
VrfugLVd 1 · · · ­ 0 , (4)

with L
p

rVfug defining the formal adjoint ofLrVfug. In
systems (2) and (4),us is an arbitrary solution of the field
equations (1), whilehs andLV are variables depending
locally on us and derivatives ofus.

Our adjoint invariance condition on a solutionLVfug of
2870
h
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system (4) is given by

L p
sVfUgLVfUg ­ 2LV

s fUgGVfUg
1 DisLVi

s fUgGVfUgd
2 DiDjsLVij

s fUgGVfUgd 1 · · · (5)

for arbitrary Ussxi d ­ ussxid which are field variables
not subject to the field equations, whereLV

s fUg ­
≠LVfUgy≠Us, LVi

s fUg ­ ≠LVfUgy≠DiUs , etc. Given
anyLVfug satisfying condition (5), we have the following
conservation law on all solutionsus of the field equa-
tions (1):

DiF
ifug ­ 0 , (6)

where [5]

Fifug ­
Z 1

0

dl

l
sSifUg 1 Ni

sfUgUs

1 Nij
s fUgDjUs 1 · · ·djU­lu , (7)
SifUg ­ LVfUgGi
VsfUgUs 1 sLVfUgGij

VsfUgDjUs 2 DjsLVfUgGij
VsfUgdUsd 1 · · · , (8)

Ni
sfUg ­ LVi

s fUgGVfUg 2 DjsLVij
s fUgGVfUgd 1 · · · , Nij

s fUg ­ LVij
s fUgGVfUg 2 DksLVijk

s fUgGVfUgd 1 · · · .
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The proof that the expressionFifug satisfies Eq. (6) is
left to a forthcoming paper [6], where we also show tha
for any given system (1)all local conservation laws are
obtained by our algorithm.

To illustrate our adjoint invariance condition (5) and
conservation law formula (7), we now consider several e
amples of scalar field equations in two spacetime dime
sions. For the sequel,x0 ­ t, x1 ­ x denote time and
space coordinates,D0 ­ Dt , D1 ­ Dx denote coordinate
derivatives, andusx, td denotes a scalar field.

Nonlinear wave equation.—Consider a Lagrangian
Lfug ­ 2

1
2 sDtud2 1

1
2 sDxud2 1 sp 1 1d21up11 for any

p . 1. The field equation arising fromLfug is given by

Gfug ­ D2
t u 2 D2

xu 1 up ­ 0 . (9)

Linearizing Eq. (9) leads to the operator

L fug ­ pup21 1 D2
t 2 D2

x ,

which is self-adjoint,L fug ­ L pfug. Thus the adjoint
t

x-
n-

system of the linearized field equation is given by

L pfugL ­ pup21L 1 D2
t L 2 D2

xL ­ 0 , (10)

whereL is a scalar field which depends locally onu and
derivatives ofu, with u satisfying Eq. (9). System (10) is
simply the determining equation for the local symmetri
du ­ Lfug of the field equation (9). The solutions o
the system are given by a time translationLfug ­ Dtu, a
space translationLfug ­ Dxu, a Lorentz boostLfug ­
xDtu 1 tDxu, and a scalingLfug ­ tDtu 1 xDxu 1

au with a ­ 2ysp 2 1d fi 0.
Through our adjoint invariance condition and conse

vation law formula, we now show that the time transla
tion leads to the expected energy conservation law, wh
the scaling does not yield a conservation law. First, f
Lfug ­ Dtu, we readily see

L pfUgLfUg ­ DtsUp 1 D2
t U 2 D2

xUd ­ DtGfUg

for an arbitraryUsx, td. Since≠LfUgy≠U ­ 0, ≠LfUgy
≠DtU ­ 1, ≠LfUgy≠DxU ­ 0, etc., we have
2
≠LfUg

≠U
GfUg 1 Dt

µ
≠LfUg
≠DtU

GfUg
∂

1 · · · ­ Dt

µ
≠LfUg
≠DtU

GfUg
∂

­ DtGfUg .

ThusLfug ­ Dtu satisfies the adjoint invariance condition (5). However, forLfug ­ tDtu 1 xDxu 1 au, we find

L pfUgLfUg ­ spa 1 tDt 1 xDxdUp 1 s2 1 a 1 tDt 1 xDxd sD2
t U 2 D2

xUd

­ s2 1 adGfUg 1 tDtGfUg 1 xDxGfUg

and

2
≠LfUg

≠U
GfUg 1 Dt

µ
≠LfUg
≠DtU

GfUg
∂

1 Dx

µ
≠LfUg
≠DxU

GfUg
∂

1 · · · ­ s2 2 adGfUg 1 tDtGfUg 1 xDxGfUg
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using ≠LfUgy≠U ­ a, ≠LfUgy≠DtU ­ t, ≠LfUgy
≠DxU ­ x, etc. Sincea fi 0, we see that the adjoint
invariance condition (5) is not satisfied.

For any of the solutionsLfug satisfying the adjoint
invariance condition, the conservation law formula (7
leads to the conserved density

F0fug ­
Z 1

0
dl

µ
LflugDtu 2 uDtLflug

1 u
1
l

≠Lflug
≠Dtu

Gflug
∂

. (11)

Evaluating Eq. (11) forLfug ­ Dtu yields

F0fug ­
Z 1

0
dlslssssDtud2 2 uD2

xuddd 1 lpup11d

­
1
2 sDtud2 1

1
2 sDxud2 1

1
p11 up11 2 Dxs 1

2 uDxud .

(12)

This is the expected energy density, up to a trivial co
served density.

Soliton equation.—Consider the Korteweg–de Vries
(KdV) equation in physical form

Gfug ­ D3
xu 1 uDxu 1 Dtu ­ 0 . (13)

This field equation lacks a direct Lagrangian formulatio
Linearizing Eq. (13) leads to the operator

L fug ­ D3
x 1 Dxu 1 uDx 1 Dt ,

and taking the adjoint yields

L pfug ­ 2D3
x 2 uDx 2 Dt fi L fug .

This leads to the adjoint system of the linearized Kd
equation

L pfugL ­ 2D3
xL 2 uDxL 2 DtL ­ 0 , (14)

whereL is a scalar field which depends locally onu and
derivatives ofu, with u satisfying Eq. (13).

Using our adjoint invariance condition and conservatio
law formula, we nowdirectly derive the infinite sequence
of local conservation laws [7] known for the KdV
equation (13). By inspection,Lfug ­ u is a solution of
system (14) sinceL pfugu ­ 2D3

xu 2 uDxu 2 Dtu ­
2Gfug ­ 0. An additional solution is easily found to
be Lfug ­ tu 2 x since L pfug stu 2 xd ­ 2tD3

xu 2

tuDxu 2 tDtu 2 u 1 u ­ 2tGfug ­ 0. There are no
further solutions which are linear inu. Checking the
adjoint invariance condition (5), for an arbitraryUsx, td
we see that2GfUg≠LfUgy≠U 1 · · · reduces to2GfUg
if LfUg ­ U and 2tGfUg if LfUg ­ tU 2 x. Since
these expressions equalL pfUgLfUg, condition (5) is
satisfied.

One can show that the recursion operator [8]Rpfug ­
D2

x 1
1
3 u 1

1
3 D21

x suDxd takes solutions of system (14
into solutions of system (14) sinceL pfugRpfug ­
RpfugL pfug. Consequently, the solutionsLfug ­ tu 2 x
)

n-

n.

V

n

andLfug ­ u each yield an infinite sequence of addition
solutions. The solution sequenceLfug ­ sRpfugdnstu 2

xd for n ­ 1, 2, . . . has nonlocal dependence onu and thus
fails to lead to local conservation laws. The other solutio
sequenceLfug ­ sRpfugdnu for n ­ 1, 2, . . . depends
locally onu andx derivatives ofu. This sequence satisfies
the adjoint invariance condition (5) and thus yields
sequence of local conservation laws.

From the conservation law formula (7) applied to th
solutions Lfug satisfying condition (5) we obtain the
conserved density

F0fug ­
Z 1

0
dlsLflugud . (15)

Evaluating Eq. (15) forLfug ­ tu 2 x yields

F0fug ­
Z 1

0
dlsltu2 2 xud ­

1
2 tu2 2 xu . (16)

For the sequenceLfug ­ u, Lfug ­ Rpfugu ­ D2
xu 1

1
2 u2, Lfug ­ sRpfugd2u ­ D4

xu 1
5
3 uD2

xu 1
5
6 sDxud2 1

5
18 u3, etc., we obtain

F0fug ­
Z 1

0
dlslu2d ­

1
2 u2, (17)

F0fug ­
Z 1

0
dlsluD2

xu 1 l2 1
2 u3d ­

1
2 uD2

xu 1
1
6 u3,

(18)

F0fug ­
Z 1

0
dlsluD4

xu 1 l2sss 5
3 u2D2

xu 1
5
6 usDxud2 ddd

1 l3 5
18 u4d ,

­
1
2 uD4

xu 1
5
9 u2D2

xu 1
5
18 usDxud2 1

5
72 u4,

(19)

etc. Equation (16) and Eqs. (17)–(19), etc., agree with
local conserved densities found in Ref. [7], up to additio
of trivial conserved densities.

Heat equation.—Consider the equation for heat con
duction

Gfug ­ D2
xu 2 Dtu ­ 0 . (20)

This is a dissipative field equation inherently lacking
Lagrangian formulation. Through our adjoint invarianc
condition and conservation law formula, we now deriv
the elementary local conservation laws of Eq. (20).

Since Eq. (20) is linear, we directly obtain the adjoin
system

L pfugL ­ D2
xL 1 DtL ­ 0 , (21)

where L is a scalar field. System (21) has solution
L ­ fsx, td given by

D2
xf 1 Dtf ­ 0 (22)
2871
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with no dependence onu. These solutions trivially satisfy
the adjoint invariance condition (5) sinceL pfUgL and
≠Ly≠U, ≠Ly≠DtU, ≠Ly≠DxU, etc. identically vanish
for an arbitraryUsx, td. There are no solutions which
have explicit local dependence onu or derivatives ofu.

Evaluating the conservation law formula (7) forL ­
fsx, td, we obtain the conserved density

F0fug ­
Z 1

0
dlsLud ­ uf , (23)

wherefsx, td is an arbitrary solution of the adjoint hea
equation (22). This yields the infinite number of eleme
tary local conserved densities of the heat equation (20)

Nonlinear diffusion equation.—Consider Burgers’
equation

Gfug ­ D2
xu 2 uDxu 2 Dtu ­ 0 , (24)

which is a nonlinear dissipative field equation with n
Lagrangian formulation. Burgers’ equation is related
the heat equation by anonlocaltransformation [9] involv-
ing solutions of the adjoint system of the linearization
Eq. (24). Using these solutions and our conservation l
formula, we now derive corresponding conservation law
of Burgers’ equation.

From the divergence form of Eq. (24) we introduce
potentialysx, td such that

Dxy ­ u, Dty ­ Dxu 2
1
2 u2. (25)

The field equation fory is given by

Gfyg ­ 2Dty 1 D2
xy 2

1
2 sDxyd2 ­ 0 . (26)

Linearizing Eq. (26) and taking the adjoint leads to th
adjoint system

L pfygL ­ DtL 1 D2
xL 1 DxsLDxyd ­ 0 , (27)

where L is a scalar field which depends locally ony
and derivatives ofy, with y satisfying Eq. (26). System
(27) is equivalent to the adjoint system (21) of the he
equation through the local transformationL ! Le2yy2.
Thus, Lfyg ­ e2yy2fsx, td yields solutions of system
(27), wherefsx, td satisfies the adjoint heat equation (22

It is straightforward to checkLfyg satisfiesL pfV gLfV g
­ 2GfV g≠LfV gy≠V for an arbitraryV sx, td, and thus the
adjoint invariance condition (5) holds. Consequently, fro
our conservation law formula (7), we obtain the conserv
density

F0fyg ­
Z 1

0
dlsLflygyd

­
Z 1

0
dle2lyy2yf ­ 2f 2 2e2yy2f . (28)

The term2f in Eq. (28) is separately conserved due
f satisfying the adjoint heat equation (22). Sincef is
an arbitrary solution, the remaining term22e2yy2f yields
2872
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an infinite number of conserved densities for system (25
Eliminatingy in terms ofu, which we take to have compact
support inx, we obtain the following conserved densities
for Burgers’ equation (24):

F0fug ­ e2D21
x uy2f , (29)

whereD21
x represents an antiderivative with respect tox.

In addition to our algorithm, we can also find conserva
tion laws directly for any given system of field equations
(1) through the identity

WVLVsfUgV s 2 V sL
p

sVfUgWV ­ DiS
ifW , V g ,

(30)

which holds for arbitraryV s, WV, where

SifW , V g ­ WVGi
VsfUgV s

1 sWVG
ij
VsfUgDjV s

2 DjsWVG
ij
VsfUgdV sd 1 · · · . (31)

Given hsfug satisfying the linearized system (2) and
LVfug satisfying the adjoint system (4), we see by
Eqs. (30) and (31) that

Fifug ­ LVfugGi
Vsfughsfug

1 sLVfugGij
VsfugDjhsfug

2 DjsLVfugGij
Vsfugdhsfugd 1 · · · (32)

yields a conservation law (6) on all solutionsus of the
field equations (1). Herehsfug and LVfug are allowed
to have other than just a local dependence onus . This
extends corresponding results obtained for self-adjoin
systems of field equations in Ref. [10].

In a forthcoming paper [6] we show that the adjoint
invariance condition (5) and the conservation law formula
(7) can be generalized to hold whenLVfug has nonlocal
dependence onus . We further show that, conversely,
any conservation law having nonlocal dependence onus

arises from some such nonlocalLVfug satisfying the
adjoint system (4). As a consequence, it follows that fo
any given system of field equations, all conservation laws
local and nonlocal, arise from finding all solutionsLVfug
of the adjoint system (4).

*Electronic address: anco@math.ubc.ca
†Electronic address: bluman@math.ubc.ca

[1] P. Olver, Applications of Lie Groups to Differential
Equations(Springer, New York, 1986).

[2] G. Bluman and S. Kumei,Symmetries and Differential
Equations(Springer, New York, 1989).

[3] All solutions of the adjoint system can be found algorith-
mically by calculations similar to those used for finding
local symmetries.



VOLUME 78, NUMBER 15 P H Y S I C A L R E V I E W L E T T E R S 14 APRIL 1997

.
[4] Greek indices represent any internal indices together with
any vector, tensor, and spinor indices of the fields and
field equations. Latin indices represent time and spac
coordinate indices. Summation is assumed over an
repeated index in all expressions.

[5] We assume the field equations are satisfied byUs ­ 0.
The case whenUs ­ 0 is not a solution requires separate
treatment as we explain in Ref. [6].

[6] S. C. Anco and G. Bluman (to be published).
e
y

[7] R. M. Miura, C. S. Gardner, and M. S. Kruskal, J. Math
Phys.9, 1204–1209 (1968).

[8] This operator is the formal adjoint of the recursion
operator for the linearized KdV equation, whereD21

x
denotes a formal inverse ofDx.

[9] G. Bluman and P. Doran-Wu, Acta Appl. Math.41, 21–
43 (1995).

[10] S. C. Anco and G. Bluman, J. Math. Phys.37, 2361–2375
(1996).
2873


