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Million-Atom Pseudopotential Calculation of G-X Mixing in GaAsyAlAs Superlattices
and Quantum Dots

Lin-Wang Wang, Alberto Franceschetti, and Alex Zunger
National Renewable Energy Laboratory, Golden, Colorado 80401

(Received 1 November 1996)

We have developed a “linear combination of bulk bands” method that permits atomistic,
pseudopotential electronic structure calculations for,106 atom nanostructures. Application to
sGaAsdnysAlAsdn (001) superlattices (SL’s) reveals even-odd oscillations in theG-X coupling
magnitudeVGXsnd, which vanishes forn ­ odd, even forabrupt and segregatedSL’s, respectively.
Surprisingly, in contrast with recent expectations, 0D quantum dots are found here to have asmaller
G-X coupling than equivalent 2D SL’s. Our analysis shows that for large quantum dots this is largely
due to the existence of level repulsion frommanyX states. [S0031-9007(97)02839-1]

PACS numbers: 73.20.Dx, 71.15.Hx, 73.61.Ey
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The crossover from direct band gap to indirect ba
gap (e.g.,G ! X) as a function of an external param
ter is common in semiconductor physics. It is seen
(i) zinc blende materials (GaAs [1], InP [2]) as a fun
tion of pressure, (ii) alloys (AlxGa12xAs [3], Gax In12xP
[4]) as a function of compositionx, and (iii) in superlat-
tices (SL’s) [5–9] and quantum dots [10,11] as a functi
of size or external pressure. While in cases (i) and
the transition is believed to be first order [3], in nan
structures [case (iii)] the lack of translational invarianc
causes a quantum-mechanical mixing between the z
center G and the zone edgeX states [12], measure
by the coupling matrix elementVGX . Although small
in magnitude (VGX , 10 meV ), the G-X coupling has
profound consequences on the properties of the sys
leading, for example, to the appearance of indirect tra
tions without phonon intervention [7,8], to characteris
pressure-induced changes of the photoluminescence
tensity [9,10], to resonant tunneling in electronic tran
mission between GaAs quantum wells separated by
AlAs barrier [13] and to level splitting (“avoided cross
ing”) in the pressure, electric-field, and magnetic-field
ducedG-X transition [5,6].

The significance of this small but crucial quantum
mechanical coupling has prompted attempts to mea
VGX sm, nd in sGaAsdmysAlAsdn (001) superlattices, pro
ducing, however, widely scattered results: Meynad
et al. [5] found from the electric-field dependence
the photoluminescence energyVGXs12, 28d ­ 1.25 meV,
while Pulsfordet al. [6] found from the magnetic-field in-
duced gap in the Landau levelVGXs9, 3d ­ 9 meV. Mea-
surements of the valence (y) to conduction (c) Gy $ Gc

and Gy $ Xc emission [7] or absorption [8] fitted to
theoretical models producedVGXs10, 10d ­ 1.2 meV in
Ref. [7] andVGX s4, 10d ­ 0.99 meV in Ref. [8].

The calculation ofVGX is difficult, as highlighted by the
fact that the central approximation underlying the “sta
dard model” of nanostructure physics–the conventio
k ? p model [14]—leads toVGX ­ 0. Tight-binding
[15,16], empirical pseudopotential [17–19], and first pr
0031-9007y97y78(14)y2819(4)$10.00
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ciples [20–22] calculations have been applied to abru
short-period superlattices, but are difficult to extend
lower symmetry structures such as quantum wires a
dots or to interfacially rough superlattices. The intere
in the latter systems stems from the recent suggestion [
that VGX would exhibit a dramatic enhancement in zer
dimensional (0D) quantum dots relative to 2D period
superlattices.

In this paper we introduce a method that permits dire
and precise calculations of electronic structures, includ
the couplingVGX , in large scale superlattices, wires, an
dots. In analogy with the linear combination of atom
orbitals (LCAO) method, familiar in molecular chemistry
our “linear combination of bulk bands” (LCBB) metho
expands the states of the quantum structure in terms of
full-zone Bloch eigenstates of the constituent bulk solid
Like the k ? p method [14], but unlike ordinary basis-se
expansion approaches (tight-binding [15,16], plane wa
[17–20]) the LCBB expansion allows for the selectiv
inclusion of physically important (near edge) basis stat
resulting in manageable Hamiltonian matrices that can
diagonalized with desktop computers even for millio
(106) atom quantum structures. Unlike the convention
k ? p method [14], however, intervalley (e.g.,G-X)
coupling and multiband mixing are fully included.

In conventional wave function expansion methods, t
wave functioncisrd is expanded in terms offixed basis
functions (e.g., atomic orbitals or plane waves),

cisrd ­
MX

a­1

Csid
a fasrd . (1)

Since the numberM of basis functionsfasrd scales
linearly with the system size, such expansion becom
quickly impractical for large quantum nanostructure
The challenge of finding an accurate expansion w
the smallest basis set requiresa physically motivated
preselection of basis functions,rather than a brute-force
systematic increase in the upper limit of Eq. (1).

This aspect of the problem is addressed in thek ? p
Luttinger-Kohn approach [14], where the zone-cen
© 1997 The American Physical Society 2819
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(k ­ 0) bulk Bloch functionshun,0j are used to construc
the basis functionsfasrd ­ un,0srd eik?r . The wave
function of the nanostructure is then expanded as

cisrd ­
X
n,k

C
sid
n,k fun,0srd eik?rg . (2)

The disadvantage of this approach is that it is unable
reproduce the band structure across the Brillouin zone
particular, the bulkX1c state is misplaced by.10 eV ,
as recently shown by Woodet al. [23,24], with the
consequence thatVGX , 0 for all nanostructures.

The solution to this dilemma is to replace the zon
center stateshun,0j in Eq. (2) with the bulk Bloch states
hun,kj, leading to the linear combination of bulk band
method. For a periodic system consisting of materialsA
andB, Eq. (2) becomes

cisrd ­
X

s­A,B

Nb ,NkX
n,k

C
sid
n,k,s fus

n,ksrd eik?rg , (3)

where the first sum runs over the constituent mater
A and B, and the second sum runs over the bulk ba
index n and the supercell reciprocal lattice vectorsk
belonging to the first Brillouin zone of the underlyin
lattice. The advantage of the LCBB method over t
conventionalk ? p method is that off-G statesus

n,kfi0 of
both materials can be directly included in the basis s
thus eliminating the need for hundreds ofk ­ 0 bulk
states in the expansion of Eq. (2) to describek ¿ 0
a

)
t

n
d
d
v

iv

a

2820
to
in

-

ls
d

e

t,

states [23,24]. As a result, the bulk band structure
reproduced exactly in our approach, and theG-X coupling
is naturally included without the need for anad hoc
treatment [25,26]. The advantage over Eq. (1) [15,1
is that the classification of the basis functions in term
of the band indexn makes it intuitive to retain only the
physically relevant band-edge states.

The Hamiltonian of the quantum structure has the for

Ĥ ­ 2
h̄2

2m
=2 1

X
a

X
R

yasr 2 R 2 dad WasRd , (4)

where the sum runs over the atomic typeshaj and the
primary cell positionshRj. Here yasrd is the screened
atomic pseudopotential for atoma and the weight func-
tion WasRd selects the atomic type at locationR. The
Hamiltonian matrix elements in the LCBB represent
tion are obtained by expanding the bulk Bloch function
us

n,ksrd in a plane-wave basis set,

us
n,ksrd ­

NGX
G

Bs
n,ksGd eiG?r , (5)

where the NG coefficients Bs
n,ksGd are calculated by

diagonalizing thebulk Hamiltonian for eachk point.
The Bloch wave functionsus

nk are orthogonalized among
different s and n indexes at eachk point to avoid
overcompleteness. The Hamiltonian matrix elements
then
ks0; n0, k0jĤjs; n, kl ­ V
X

G,G0

Bs0

n0,k0sG0 d
∑

h̄2

2m
jk 1 Gj2 dk,k0 dG,G0 1

X
a

yasjk 1 G 2 k0 2 G0jd

3 e2ida ?sk1G2k02G0d Wask 2 k0d
∏

Bs
n,ksGd , (6)
of
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whereV is the supercell volume andyasqd is the Fourier
transform of yasrd. Previously impractical [15–19]
calculations on large systems are enabled here by obt
ing Waskd from

Waskd ­
1
V

X
R

WasRd eik?R, (7)

and evaluating it via fast Fourier transformation (FFT
The evaluation of the Hamiltonian matrix elemen
requires ~ sNB 3 Nk 3 NGd2 operations, while the
diagonalization of the matrix requires~ sNB 3 Nkd3

operations [hereNB ­ sNb , sd].
The dramatic reduction in the basis set sizeNB and

Nk afforded by the LCBB expansion is illustrated i
Fig. 1, which shows the lowest three conduction ban
of sGaAsdnysAlAsdn (001) superlattices versus the perio
n, as computed by the untruncated, “exact” plane-wa
expansion of Eq. (1) (solid lines), and by success
truncations ofNB and Nk in the LCBB expansion (3)
(dashed lines). We see [Fig. 1(a)] that using four v
in-

.
s

s

e
e

-

lence bands and the two lowest conduction bands
GaAs and AlAs (soNB ­ 12), and replacing the full re-
ciprocal spacek ­ s2pynad j 1 k0, j [ f2n, ng by a
limited grid of j [ f26, 6g, k0 ­ G, and j [ f25, 5g,
k0 ­ X (so Nk ­ 24), we can reproduce all trends in
the superlattice states (including the bendover at smaln)
within 2 meV down to the monolayer superlattice. U
ing the sameNk grid, but only a single band (the con
duction band of GaAs fork0 ­ G and the conduction
band of AlAs for k0 ­ X, thus NB ­ 1), the error is
,10 meV for n ­ 20 ML [Fig. 1(b)] and the projec-
tions of the wave functions on the “exact” plane-wav
result of Eq. (1) are99.6% and 99.95% for the G and X
states, respectively. We will use the latterNB, Nk trunca-
tion in the following calculations.

Figure 2(a) shows the calculated pressure depende
of the transition energies from the valence-band maxim
(VBM) to the ḠsG1cd and ḠsX1cd conduction bands in a
sGaAsd20ysAlAsd20 superlattice. The coupling-induce
anticrossing is evident. The G-X coupling matrix
elementVGXsnd, obtained as one half of the minimum
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FIG. 1. Energy of the three lowest conduction states at
Ḡ point of (001)sGaAsdnysAlAsdn superlattices, obtained usin
different truncations (insets) in the number of bandsNB and the
number ofk pointsNk in Eq. (3).

distance between theG and X curves, is 0.9 meV for
n ­ 20. This value should be compared with 1.2 me
we obtained from an exact calculation (i.e., no truncat
in NB or Nk). Figure 2(c) shows the VBM! CBM
(conduction-band minimum) momentum transition mat
elementjkcVBMjpjcCBMlj2 as a function of pressure. W
see that unlike alloys [3], the transition in superlattic
(and dots) isnot first order. The finiteG-X couplingVGX

leads to the presence of someG character even in the
“indirect gap region” (P $ Pc), producing therea finite
optical transition probability.

In the above calculations we assumed ideal, sharp
terfaces. To see whether interfacial roughness, pre
in real samples, can quench theG-X coupling, we have
comparedVGX for sGaAsdnysAlAsdn superlattices with
sharp interfaces and with realistic segregated profiles
tained by solving the segregation equation [27]. The
sults (Fig. 3) show that while segregation reducesVGX

by about a factor of 2, the odd-even oscillations
VGX with the period n are not washed out. In fac
while for abrupt SL’s [Fig. 3(a)],VGX ­ 0 for n ­ odd,
in segregated SL’s,VGX ø 0 for n ­ even [Fig. 3(b)].
Our calculatedVGX ­ 1.24 meV for a sharpsGaAsd12y
sAlAsd28 SL, is in excellent agreement with the expe
mental [5] value of 1.25 meV.

We next studyG-X coupling in GaAs dots embedded
AlAs matrix. To compare meaningfully theG-X coupling
in quantum dots and superlattices, we have chose
particular dot geometry (inset of Fig. 4): 20 monolaye
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(ML) of GaAs sandwiched by 20 ML of AlAs in the
[001] direction andN ML of GaAs surrounded by 20 ML
of AlAs in the [110] andf11̄0g directions. Thus, when
N ! ` the quantum dot merges into a20 3 20 [001]
superlattice. The pressure dependence of the transi
energies and of the momentum matrix element for aN ­
140 quantum dot are shown in Figs. 2(b) and 2(c) (whe
the supercell contains2 3 106 atoms). The calculation
takes,30 min on a IBM RSy6000 work station model 590
for one pressure value. We find that theG-X coupling in
these QD’s issmaller than in the corresponding20 3 20
superlattice [compare Fig. 2(a)]. Furthermore, as shown
Fig. 4, the anticrossing gapDEmin (­ 2VGX in two level
systems) in dots does not approach the superlattice va
whenN increases. There are two reasons for this: (i) F
small dots, the 20 ML barrier region of AlAs in [110] and

FIG. 2. Pressure dependence of the transition energies fr
the VBM to the G and X-derived conduction bands (a) and
(b) and transition probabilities (c) of asGaAsd20ysAlAsd20
superlattice and a20 3 140 3 140 quantum dot. The insets
in part (a) show theG and X wave functions along the [001]
direction of the superlattice. The dashed line in part (c) giv
the SL transition probability expected in the absence ofG-X
coupling.
2821
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FIG. 3. G-X coupling matrix elements of abrupt (a) an
segregated (b)sGaAsdnysAlAsdn [001] superlattices, as a
function of the periodn. These results are calculated witho
truncation onNB andNk .

f11̄0g directions reduces the ratio between the area of
N 3 N GaAs (001) interface and the total volume of AlA
[compared to thesGaAsd20ysAlAsd20 SL]. This reduces
the G-X coupling. (ii) For a dot with largeN , there are
multiple X states with energy separation comparable
VGX which can couple with each other [see Fig. 2(b

FIG. 4. G-X level splitting at the pressure-inducedG-X
transition in GaAsyAlAs quantum dots of size20 3 N 3 N
ML, as a function ofN . The level splitting of a20 3 20
superlattice is also shown for comparison.
2822
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the lowestX state is repelled both from above and below
reducing the anticrossing gap.

To test the generality of the conclusion thatVGX is
smaller in a quantum dot than in a superlattice of com
parable size, we compared the2VGX of n 3 n 3 n ML
Ga-centereds100d 3 s010d 3 s001d cubic GaAs quantum
dots (embedded in2n 3 2n 3 2n AlAs supercells) with
sGaAsdnysAlAsdn superlattices. We found2VGX of 0.76,
4.6 meV for n ­ 24, 10 quantum dots, smaller than the
0.98, 9.6 meV results of the corresponding superlattice

In conclusion, we find that theG-X coupling (anticross-
ing) in quantum dot is always smaller than the coupling
the comparable superlattice. This result conflicts with t
common wisdom expectation that quantum confineme
effects diminish in going from a 0D quantum dot to a 1D
quantum wire and to a 2D quantum well. The reduce
anticrossing in large dots is partially due to the existen
of a complex pattern ofG-X coupling leading to partially
canceling upwards and downwards level repulsions.

This work was supported by the U.S. Departme
of Energy, OER-BES, under Grant No. DE-AC36
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