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Million-Atom Pseudopotential Calculation of I'-X Mixing in GaAs /AlAs Superlattices
and Quantum Dots
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We have developed a “linear combination of bulk bands” method that permits atomistic,
pseudopotential electronic structure calculations fet0® atom nanostructures. Application to
(GaA9y, /(AlAs), (001) superlattices (SL's) reveals even-odd oscillations in h& coupling
magnitudeVrx(n), which vanishes fom = odd, even forabrupt and segregatedSL’s, respectively.
Surprisingly, in contrast with recent expectations, 0D quantum dots are found here to bmadler
I'-X coupling than equivalent 2D SL’s. Our analysis shows that for large quantum dots this is largely
due to the existence of level repulsion fromanyX states. [S0031-9007(97)02839-1]

PACS numbers: 73.20.Dx, 71.15.Hx, 73.61.Ey

The crossover from direct band gap to indirect bandciples [20—22] calculations have been applied to abrupt,
gap (e.g.,I' — X) as a function of an external parame- short-period superlattices, but are difficult to extend to
ter is common in semiconductor physics. It is seen idower symmetry structures such as quantum wires and
() zinc blende materials (GaAs [1], InP [2]) as a func- dots or to interfacially rough superlattices. The interest
tion of pressure, (ii) alloys (AlGa —.As [3], GalIn;—P in the latter systems stems from the recent suggestion [10]
[4]) as a function of compositiom, and (iii) in superlat- that Vry would exhibit a dramatic enhancement in zero-
tices (SL's) [5—9] and quantum dots [10,11] as a functiondimensional (0D) quantum dots relative to 2D periodic
of size or external pressure. While in cases (i) and (ii)superlattices.
the transition is believed to be first order [3], in nano- In this paper we introduce a method that permits direct
structures [case (iii)] the lack of translational invariancesand precise calculations of electronic structures, including
causes a quantum-mechanical mixing between the zorthe couplingVry, in large scale superlattices, wires, and
centerI' and the zone edg& states [12], measured dots. In analogy with the linear combination of atomic
by the coupling matrix elemenVry. Although small orbitals (LCAO) method, familiar in molecular chemistry,
in magnitude Yrx ~ 10 meV ), theI'-X coupling has our “linear combination of bulk bands” (LCBB) method
profound consequences on the properties of the systeraxpands the states of the quantum structure in terms of the
leading, for example, to the appearance of indirect transifull-zone Bloch eigenstates of the constituent bulk solids.
tions without phonon intervention [7,8], to characteristicLike thek - p method [14], but unlike ordinary basis-set
pressure-induced changes of the photoluminescence iexpansion approaches (tight-binding [15,16], plane waves
tensity [9,10], to resonant tunneling in electronic trans{17-20]) the LCBB expansion allows for the selective
mission between GaAs quantum wells separated by amclusion of physically important (near edge) basis states,
AlAs barrier [13] and to level splitting (“avoided cross- resulting in manageable Hamiltonian matrices that can be
ing”) in the pressure, electric-field, and magnetic-field in-diagonalized with desktop computers even for million-
ducedI'-X transition [5,6]. (10%) atom quantum structures. Unlike the conventional

The significance of this small but crucial quantum-k - p method [14], however, intervalley (e.gl’-X)
mechanical coupling has prompted attempts to measui@upling and multiband mixing are fully included.
Vrx(m,n) in (GaAs,,/(AlAs), (001) superlattices, pro- In conventional wave function expansion methods, the
ducing, however, widely scattered results: Meynadiemwave functiony;(r) is expanded in terms dfxed basis
et al.[5] found from the electric-field dependence of functions (e.g., atomic orbitals or plane waves),
the photoluminescence enerdfyx(12,28) = 1.25 meV, M
while Pulsfordet al. [6] found from the magnetic-field in- Yi(r) = Z Cg) do(r). (1)
duced gap in the Landau levE}x(9,3) = 9 meV. Mea- a=1
surements of the valence)(to conduction ¢) I', < TI'. Since the numbe of basis functions¢,(r) scales
and I', « X, emission [7] or absorption [8] fitted to linearly with the system size, such expansion becomes
theoretical models producedrx(10,10) = 1.2 meV in  quickly impractical for large quantum nanostructures.
Ref. [7] andVrx(4, 10) = 0.99 meV in Ref. [8]. The challenge of finding an accurate expansion with

The calculation oWty is difficult, as highlighted by the the smallest basis set requires physically motivated
fact that the central approximation underlying the “stan-preselection of basis functionsther than a brute-force,
dard model” of nanostructure physics—the conventionatystematic increase in the upper limit of Eq. (1).

k - p model [14]—Ileads toVrxy = 0. Tight-binding This aspect of the problem is addressed in khep
[15,16], empirical pseudopotential [17—19], and first prin-Luttinger-Kohn approach [14], where the zone-center
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(k = 0) bulk Bloch functions{u, o} are used to construct
the basis functionse, (r) = u,(r)e’**. The wave
function of the nanostructure is then expanded as

gie) = > C lun o) €7 2)
nk

states [23,24]. As a result, the bulk band structure is
reproduced exactly in our approach, and Ih& coupling

is naturally included without the need for ad hoc
treatment [25,26]. The advantage over Eq. (1) [15,16]
is that the classification of the basis functions in terms
of the band indexx makes it intuitive to retain only the

The disadvantage of this approach is that it is unable t®hysically relevant band-edge states.
reproduce the band structure across the Brillouin zone; in 1€ Hamiltonian of the quantum structure has the form

particular, the bulkX,. state is misplaced by-10 eV,
as recently shown by Wooet al.[23,24], with the
consequence thatry ~ 0 for all nanostructures.

The solution to this dilemma is to replace the zone-

center statesu, o} in Eq. (2) with the bulk Bloch states
{u. x}, leading to the linear combination of bulk bands
method. For a periodic system consisting of materials
andB, Eq. (2) becomes

N, Nk
(i) ld ik-
Yir) = D D> Cokelul@®e™™],  (3)
o=A,B nk

where the first sum runs over the constituent materials
A and B, and the second sum runs over the bulk band

index n and the supercell reciprocal lattice vectdks
belonging to the first Brillouin zone of the underlying

2
=-S5 v.r - R = do) Wa(R), (3)
Zm a R

where the sum runs over the atomic tydes and the
primary cell positions{R}. Here v, (r) is the screened
atomic pseudopotential for atom and the weight func-
tion W,(R) selects the atomic type at locatidh The
Hamiltonian matrix elements in the LCBB representa-
tion are obtained by expanding the bulk Bloch functions
u, k(r) in a plane-wave basis set,

Ng
ul, (r) = > BIL(G) ST, (5)
G

where the Ng coefficients By x(G) are calculated by

lattice. The advantage of the LCBB method over thediagonalizing thebulk Hamiltonian for eachk point.

conventionalk - p method is that offf’ statesu; x .o of

The Bloch wave functiong;,, are orthogonalized among

both materials can be directly included in the basis sefdifferent o and n indexes at eactk point to avoid

thus eliminating the need for hundreds kf= 0 bulk
states in the expansion of Eg. (2) to describe> 0

(0 K'|H|o;n,K) = Q Z B,‘{,I’k,(G/)
GG

X ¢ e k+GK=G) yr () _ k/)} (G

overcompleteness. The Hamiltonian matrix elements are
then

52
[% k + G|? Okx 0cq t Zva(lk +G-k' -G

(6)

where(} is the supercell volume ang, (g) is the Fourier
transform of v,(r). Previously impractical [15-19]

lence bands and the two lowest conduction bands of
GaAs and AlAs (saVz = 12), and replacing the full re-

calculations on large systems are enabled here by obtaigiprocal spacek = (27 /na) j + ko, j E[—n,n] by a

ing W, (k) from

Walk) = & . Wa(R) ¥, ™
R

and evaluating it via fast Fourier transformation (FFT).

limited grid of j € [—6,6], kg =T', and j € [-5,5],

ko = X (so Nx = 24), we can reproduce all trends in
the superlattice states (including the bendover at smjall

within 2 meV down to the monolayer superlattice. Us-
ing the sameNy grid, but only a single band (the con-
duction band of GaAs foky, = I' and the conduction

The evaluation of the Hamiltonian matrix elementsband of AlAs for kg = X, thus Ny = 1), the error is

requires = (Ng X Nx X Ng)> operations, while the
diagonalization of the matrix requires (Nz X Ny)?
operations [her&/g = (N, o)].

The dramatic reduction in the basis set si¥g and
Nx afforded by the LCBB expansion is illustrated in

~10 meV for n = 20 ML [Fig. 1(b)] and the projec-
tions of the wave functions on the “exact” plane-wave
result of Eq. (1) ar®9.6% and99.95% for the I' and X
states, respectively. We will use the latiéf, Ny trunca-
tion in the following calculations.

Fig. 1, which shows the lowest three conduction bands Figure 2(a) shows the calculated pressure dependence

of (GaAs, /(AlAs), (001) superlattices versus the period

of the transition energies from the valence-band maximum

n, as computed by the untruncated, “exact” plane-wavéVBM) to the I'(I';.) and I'(X;.) conduction bands in a

expansion of Eq. (1) (solid lines), and by successivdGaA9,y/(AlAs), superlattice.

truncations of Nz and Ny in the LCBB expansion (3)

The coupling-induced

anticrossing is evident. The I'-X coupling matrix

(dashed lines). We see [Fig. 1(a)] that using four va-elementVrx(n), obtained as one half of the minimum
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35 T . . (ML) of GaAs sandwiched by 20 ML of AlAs in the
(a) N : 6GaAs + 6 AlAs [001] direction andV ML of GaAs surrounded by 20 ML
a6 b ) of AlAs in the [110] and[110] directions. Thus, when
Ni: (-6,6)r +(-5,5)x N — = the quantum dot merges into 20 X 20 [001]
% _ superlattice. The pressure dependence of the transition
e 37 T ®(X10) energies and of the momentum matrix element fof &
o) 140 quantum dot are shown in Figs. 2(b) and 2(c) (where
5 38 | the supercell containg X 10° atoms). The calculation
3 takes~30 min on a IBM RS¥6000 work station model 590
o) for one pressure value. We find that thieX coupling in
o 3'2 these QD’s issmallerthan in the corresponding) X 20
2 superlattice [compare Fig. 2(a)]. Furthermore, as shown in
8 Fig. 4, the anticrossing gafEnin (= 2Vry in two level
S 36 F systems) in dots does not approach the superlattice value
B whenN increases. There are two reasons for this: (i) For
3 37b small dots, the 20 ML barrier region of AlAs in [110] and
S
o
_38 B T T T T
(a) Superlattice
39 1.73
0 5 10 15 20

Superlattice period n

FIG. 1. Energy of the three lowest conduction states at the
I" point of (001)(GaAs, /(AlAs), superlattices, obtained using
different truncations (insets) in the number of bangsand the
number ofk pointsNy in Eq. (3).

1.72 E

Energy (eV)

1.71

distance between th& and X curves, is 0.9 meV for
n = 20. This value should be compared with 1.2 meV
we obtained from an exact calculation (i.e., no truncation 173
in Ng or Nx). Figure 2(c) shows the VBM- CBM
(conduction-band minimum) momentum transition matrix
element(vem|plcem)|’ as a function of pressure. We
see that unlike alloys [3], the transition in superlattices
(and dots) imotfirst order. The finitd -X couplingVry
leads to the presence of sonbecharacter even in the
“indirect gap region” P = P,.), producing there finite 171
optical transition probability 1E

In the above calculations we assumed ideal, sharp in- i
terfaces. To see whether interfacial roughness, present
in real samples, can quench tlheX coupling, we have
comparedVry for (GaAs,/(AlAs), superlattices with
sharp interfaces and with realistic segregated profiles ob-
tained by solving the segregation equation [27]. The re- a
sults (Fig. 3) show that while segregation redudgs 0.001
by about a factor of 2, the odd-even oscillations of F<— "direct*~ = "indirect
Vrx with the periodn are not washed out. In fact, 105 1‘1 11‘5 1'2 1é5 13
while for abruptSL’s [Fig. 3(a)],Vrx = 0 for n = odd, ' ; '
in segregated SL'syry = 0 for n = even [Fig. 3(b)]. Pressure (kbar)
Our calculatedVry = 1.24 meV for a shargGaAs 2/  FIG. 2. Pressure dependence of the transition energies from
(AlAs),s SL, is in excellent agreement with the experi-the VBM to the I' and X-derived conduction bands (a) and
mental [5] value of 1.25 meV. (b) alnotlt' tra"SifjiOQopQO?fgiEfiﬁio(C) Oft aG%A?zo/ T(ﬁLAISg;% <

_ P P in Superiatiice an guantum aot.

e e SO coupling i Gane ot ebedded i B o s it and e Lncios don e 001
d . irection of the superlattice. The dashed line in part (c) gives
in quantum dots and superlattices, we have chosen e SL transition probability expected in the absencel’at
particular dot geometry (inset of Fig. 4): 20 monolayerscoupling.

1.72

Energy (eV)

0.1¢

0.01%

<y, Iplv, >
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FIG. 3. I'-X coupling matrix elements of abrupt (a) and
segregated (b)(GaAs,/(AlAs), [001] superlattices, as a

the lowestX state is repelled both from above and below,
reducing the anticrossing gap.

To test the generality of the conclusion théty is
smaller in a quantum dot than in a superlattice of com-
parable size, we compared tB&ry of n X n X n ML
Ga-centered100) X (010) X (001) cubic GaAs quantum
dots (embedded iBn X 2n X 2n AlAs supercells) with
(GaA9,/(AlAs), superlattices. We foun2lVyy of 0.76,

4.6 meV forn = 24,10 quantum dots, smaller than the
0.98, 9.6 meV results of the corresponding superlattices.
In conclusion, we find that thE-X coupling (anticross-
ing) in quantum dot is always smaller than the coupling in
the comparable superlattice. This result conflicts with the
common wisdom expectation that quantum confinement
effects diminish in going from a 0D quantum dot to a 1D
quantum wire and to a 2D quantum well. The reduced
anticrossing in large dots is partially due to the existence
of a complex pattern of-X coupling leading to partially

canceling upwards and downwards level repulsions.
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