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Surface Electromigration as a Moving Boundary Value Problem
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Mass transport through surface electromigration strongly affects the stability and morpholog
metal surfaces. Here the problem is treated within a continuum theory which takes full account
nonlocal coupling between the electromagnetic bulk potential and the surface evolution. Key r
of the numerical solution of the resulting moving boundary value problem are a scale-dependen
of surface features and the absence of stable selected facet orientations. These effects ca
reproduced within approximate local theories. [S0031-9007(96)02097-2]

PACS numbers: 66.30.Qa, 05.70.Ln, 68.35.Ja, 81.65.–b
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Surface electromigration refers to the directed mo
of adsorbed atoms (adatoms) on a solid surface which i
caused by an electric current in the bulk of the mate
It has long been recognized [1] that the associated m
transport can lead to pattern formation on a mesosc
scale, through a mechanism related to the formation
ripples on wind blown sand [2]. A manifestation of rece
interest is the current-induced step bunching observe
surfaces vicinal to Si(111) [3]. Electromigration alo
interfaces and grain boundaries is also believed to
a crucial role in the failure of metallic interconnects
integrated circuits [4–6].

Two different mechanisms are identified to be respo
ble for the coupling between the adatoms and the ele
field. One is the direct electrostatic interaction, which
quires that the adatoms are ionized and carry some e
tive charge. The other, the so-called “wind force,” is d
to the scattering of the electrons off the migrating adato
and appears to be dominant at least for certain metals
The wind force can also be characterized by an effec
charge, leading to the same kind of force law as for the
rect electrostatic interaction. This already gives a hin
the principal difficulty in describing surface electromigr
tion on mesoscopic scales. The movement of the ada
under the applied electric field induces a shape chang
the specimen, which changes the electric field along
surface. It is this feedback between the surface evolu
and the driving field which gives rise to a nonlocalmov-
ing boundary valueproblem.

In this Letter we present a selection of results from
numerical solution of the nonlocal continuum equatio
[8]. Our main purpose is to display the richness
intriguing phenomena associated with this type of surf
dynamics, which is quite comparable to the extensiv
studied moving boundary problems of solidification [
A second goal is to delineate the validity of variouslocal
approximations which have been used in previous w
[2,5,10,11].

Continuum theory.—We propose a continuum de
scription of the surface evolution that takes into acco
electromigration and capillarity-driven surface diffusi
0031-9007y97y78(2)y278(4)$10.00
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á la Mullins [12]; desorption which might be importan
at high temperatures is neglected. Moreover we rest
ourselves to one-dimensional modulations which c
be parametrized by a height functionhsx, td. The one-
dimensional geometry is both convenient and direc
relevant to the modeling of shape changes at the e
of an effectively two-dimensional conductor line [6,8]
the description through a single-valued height functio
however, becomes inappropriate if the dynamics crea
overhangs; see below. Volume conservation implies th
h satisfies the continuity equation

≠th 1 ≠xJs ­ 0 , (1)

where the mass currentJs along the surface is the produc
of the (orientation dependent) adatom mobilitys [2,10,13]
and a driving force. In equilibrium the driving force is
the derivative of the chemical potential with respect
the arclength. The external electric field contributes,
indicated above, a termqEs whereq is the effective charge
density of the adatoms [14] andEssxd the electric field
along the surface. Recalling that the chemical potent
is the product of the surface curvature and the surfa
stiffness g̃, here assumed to be isotropic, we get th
following expression for the current

Js ­ ss≠xhd

√
g̃

g1y2
≠x

≠2
xh

g3y2
1 qEssxd

!
, (2)

where g ­ 1 1 s≠xhd2. Dimensional analysis reveals
lE ­

p
g̃yjqE0j as characteristic length scale [5], wher

E0 is a typical value of the electric field specified below
AssumingqEs . 0 for simplicity and rescaling all lengths
with 1ylE, time with ss0dg̃yl4

E, the electric field with
1yE0 and the adatom mobility with1yss0d, we end up
with the following dimensionless equation of motion:

≠t̃ h̃ ­ 2≠x̃

"
s̃s≠x̃ h̃d

√
1

g1y2 ≠x̃
≠

2
x̃ h̃

g3y2 1 Ẽssx̃d

!#
. (3)

The caret, which we will omit from now on, indicate
scaled quantities.
© 1997 The American Physical Society
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Next the local electric fieldEssxd has to be specified
Since the time scale for electrodynamic processes is m
shorter than that for diffusion processes involving adatom
a quasistatic treatment of the electrodynamics is appro
ate. Then the existence of an electric potentialU in the
bulk is a consequence of Maxwell’s lawE ­ 0. Since the
potential difference applied to the specimen is a const
of motion, thetypicalelectric field mentioned above is jus
the negative potential difference divided by the length
the sample. Combining Ohm’s lawJ , E with the sta-
tionarity of the electric current, it follows that the potenti
has to obey Laplace’s equation=2U ­ 0 in the bulk with
metallic boundary conditions on the surface; that is,
component of the electric field normal to the surface va
ishes, while the tangential electric field which enters (3)
given byEs ­ 2≠sUjsurface. This shows that surface elec
tromigration defines a new class of “Laplacian” interfa
dynamics, which differs from the familiar type [9] both i
the boundary conditions for the Laplacian fieldU, and in
the way the field couples to the interface motion.

Clearly the problem simplifies enormously if the ele
tric field in (3) is replaced by some local function ofh and
its derivatives; however, there does not seem to be
systematic justification for such an approximation. So
aspects of void migration [5] can evidently be captured
assuming a field that is constant in thex direction, corre-
sponding toEssxd ­ E0yp

g [5,10,11]. We will instead
compare our results to a local model in which the fie
is constant along the surface,Es ­ const. This has the
advantage of reproducing at least the linear stability pr
erties of the full problem, which we address next.

Linear stability analysis.—We consider a meta
slab of thicknessd in the h direction and infini-
tely extended in thex direction. One can think
of the lower boundary as being attached to a fl
substrate, whereas the upper boundary is the
tual surface, subject to some sinusoidal disturba
hsx, td ­ e expsikx 1 vtd. The resulting electric field is
then given byEs ­ f1 2 ek expsikx 1 vtdy tanhskddg,
leading to the dispersion relation

vskd ­ 2k4 1 s0s0dk2 1 i
k2

tanhsdkd
. (4)

The linear stability for smallk is determined by the sign
of the second term, i.e., the sign ofs0s0d in relation
to the direction of the electric force [2,10]. This als
defines a characteristic lengthli ­ 2p

p
2ys0s0d lE which

determines the initial length scale of modulations in t
case of linear instabilitys0s0d . 0. The imaginary term
gives rise to a drift of the surface modulations wi
velocity y ­ ky tanhsdkd in the direction opposite to tha
of the electric force [15]. While the real part of (4) i
reproduced by the local approximationEs ­ const, the
imaginary part is intrinsically nonlocal. A drift can b
induced in a local theory by settingEs , 2h; however, in
that case the drift velocity is independent ofk. Note also
ch
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the dependence of the drift term on the sample thickn
d, which reflects the lack of translational invariance in t
h direction for the nonlocal problem.

Numerical results.—In our numerical investigation of
Eq. (3), we treat systems of lateral sizeL with periodic
boundary conditions. We solve the Laplace equat
in the domain shown in Fig. 1 by a boundary eleme
method and extract the tangential electric field. The fin
difference analog of (3) is then iterated by a variab
order, variable-step Adams method.

We assume an anisotropic adatom mobility of the fo

ssh0d ­
1 1 S cos2hNfarctansh0d 1 wgj

1 1 S cos2sNwd
, (5)

where N is the number of symmetry axes andw is
the angle between a symmetry direction and the aver
surface orientation. S is a parameter determining th
strength of the anisotropy. Throughout this paper
present results forN ­ 3 or 4 and S ­ 1. Orientations
are chosen such that a flat surface would be linea
unstable, i.e.,2pys2Nd , w , 0.

Figure 2 shows the time evolution of a surface that
initially flat, with a small random perturbation. The num
ber of symmetry axesN is chosen to be four. We com
pare the full problem (right) with the local approximatio
(left). Subsequent surface profiles have been displa
in the vertical direction in order to illustrate the evolu
tion in time. At early times in both cases the instabili
sets in on the scaleli ­ 7.2, followed by a coarsening
regime in which the typical length scale of the modulati
increases. The most striking difference between the
cases is due to the drift of surface structures in the n
local problem. One observes solitonlike features wh
follow curved trajectories, reflecting the fact that the dr
velocity decreases with increasing wavelength [see (
Occasionally this leads to collisions during which one
the features disappears. On a quantitative level the d
is therefore found tospeed upthe coarsening process
At time t ­ 5000, the feature wavelength in the nonlo
cal simulation exceeds that of the local approximation
a factor of two. The precise coarsening law is difficu

FIG. 1. Sketch of the domain used in the numerical solut
of (3).
279
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FIG. 2. Time evolution of systems with random initial surfa
profiles. Left: approximation with constant electric force alo
the surface; right: full problem. Subsequent surface profi
have been displaced byty2 (N ­ 4, w ­ 2py32, S ­ 1, and
li ­ 7.2).

to ascertain, but it appears that the wavelength incre
roughly logarithmically with time, as is typical in one
dimensional systems without fluctuations [16].

In the local theory the late stage morphology is ch
acterized by well-defined, stable facets appearing at
entations which can be computed from the orientat
dependence of the adatom mobility [2,10]. To investig
whether a similar morphology selection mechanism op
ates in the nonlocal case, we carried out a second se
simulations in which coarsening effects were avoided
starting with surface configurations that are already d
torted on the scale of the system size. The equation
motion were then integrated until the surface width sa
rates, indicating that a steady state had been reached.
small initial distortions the systems exhibit the expone
tially growing surface width and the drift velocity pre
dicted by the linear stability analysis. Before the stea
state is reached, we observe a crossover regime in w
the width may, for certain orientations, increasefasterthan
in the linear regime. The final steady state solution atta
a constant drift velocity which does not seem to be sim
related to the velocity in the linear regime.

Figure 3(a) shows scaling plots of late time profiles
various system sizes in comparison to those of the lo
approximation; Figure 3(b) shows the corresponding o
entationsusxd ­ arctansh0d 1 w of the surfaces. Here
the number of symmetry axesN ­ 3. For the local case
the convergence to well-defined facet solutions, with fa
orientations that are independent of the average tilt [2,1
is clearly observed. For the full problem no such co
vergence is found. First, as can be seen in Fig. 3
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FIG. 3. Late time surface configurations. (a) shows scalin
plots of surface profiles for the local (upper part) and nonloca
(lower part) problems, and (b) shows the corresponding surfa
orientations. The plots contain data for system sizesL ­
1.5li , 3li , and 6li, with N ­ 3, S ­ 1, and w ­ 2py12.
All systems are in the steady state, except the largest o
corresponding to the full problem, which is unstable. The
dotted lines in (b) indicate orientations where the adatom
mobility has an extremum; the lineu ­ 2py3 indicates the
limit of linear stability.

the h °! 2h symmetry of the local theory is broken.
Second, in Fig. 3(b) strong distortions of the local ori-
entation appear near the minimum, which become mo
pronounced with increasing system size until the surfac
becomes unstable.

Observations such as these suggest the following sc
nario: An increase of the lateral length scale of surfac
modulations goes along with an increase in their ampl
tude, and therefore with a decrease of the electric fie
on the hills and an increase in the valleys. Consequentl
the rate at which adatoms move from one hillside to th
other at the bottom of the valleys increases. This give
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rise to a steepening of one hillside, which is appar
from Fig. 3(b). If the lateral length scale of the mod
lation becomes so large that the steep hillside reach
linearly unstable orientation, which, in the case shown
Fig. 3(b), is the case foru , 2py3, the entire hill-valley
structure becomes unstable. This manifests itself in
verging slopes. Since our algorithm applies so far o
to surfaces that can be parametrized by a height fu
tion, we cannot investigate the behavior of the surface
yond this point; however, the formation of overhangs a
slitlike voids, as observed in [8], seems very likely. F
N ­ 3 the same type of instability was also observed
simulations of large systems, as in Fig. 2, at long tim
(t ø 1500). For N ­ 4 the surfaces show the same te
dency to steepen one hillside as described in the ab
scenario, but so far we cannot confirm that they, in
end, actually become unstable.

We note in this context that in the local approximati
with Essxd ­ E0yp

g the facet selection mechanism w
found to fail under certain conditions [10]; presumab
also in this case the breakdown reflects a tendency o
morphology to develop overhangs and, possibly, slitl
solutions [5].

In conclusion, we have demonstrated that the inclus
of the nonlocal feedback between surface evolution
bulk current qualitatively changes the electromigratio
induced instability of a metal surface. The most intrigui
result of our investigation is that the surface, und
some circumstances, develops overhangs, which c
subsequently evolve into voids or slits. To further addr
this issue, our algorithm needs to be extended to allow
arbitrary surface conformations.
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