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Thermodynamic Theory of Weakly Excited Granular Systems

Hisao Hayakawa1,* and Daniel C. Hong2,†

1Graduate School of Human and Environmental Studies, Kyoto University, Yoshida, Sakyo, Kyoto 606-01,
2Department of Physics, Lewis Laboratory, Lehigh University, Bethlehem, Pennsylvania 18015

(Received 7 August 1996)

We present a thermodynamic theory of weakly excited two-dimensional granular systems from
the viewpoint of elementary excitations of spinless Fermions. We introduce a global temperatur
T that is associated with the acceleration amplitudeG in a vibrating bed. We show that the
configurational statistics of weakly excited granular materials in a vibrating bed obey the Ferm
statistics. [S0031-9007(97)02860-3]

PACS numbers: 46.10.+z, 05.20.Dd, 05.70.–a, 81.05.Rm
d

d

o

n
l

en
eys
of

as
inct
the

h a
the
ng
ht
ns

ak
ss in
o
the
the
i-
ch
inst
ad-
ui-

b-

al

f

this
ys-
ic
s,

he
s.
le
av-
lar

n
a

Granular system is robust to thermal disturbance
because its entity is a macroscopic object [1]. For this
reason, the granular system is effectively in the groun
state at any finite temperature and the excitation may b
achieved by subjecting the system to vibration or shaking
Such an external stimulus will inject energy at a constan
rate but the energy will be dissipated via collisions,
leading the system to reach a steady state. Dynamics
such a steady state are quite complex, where convectio
[2], density waves [3], segregation [4], anomalous soun
propagation [5], and even turbulent behaviors [6] have
been observed.

There are some indications that fluctuations in physica
quantities of granular systems persist over the size o
the system [7] and intrinsically nonequilibrium clustering
instabilities appear for particles with a large coefficient of
restitution [8]. In such cases, we may eventually have t
question the validity of the hydrodynamics [9] with the aid
of kinetic theory [10], though some attempts have bee
made to capture some of the essential features of granu
convections based on phenomenological hydrodynamic
models [11].

In spite of the above negative signs, the validity of the
thermodynamics concept has been suggested by seve
theoretical papers [12,13] and experimental papers [14
17]. In particular, Knightet al. [17] have observed a
logarithmic relaxation in compaction processes in a three
dimensional vibrating bed, which can be understood a
the consecutive transitions among the metastable (glass
configurations. This suggests the validity of the free
volume (or hole) theory [18] used for the dense liquid
theory as will be shown later. In two dimensions, in
particular, the situation is much simpler than in three
dimensions, because the particles can form a lattic
structure without glassy configurations. For example
the experiment by Clement and Rajchenbach [14] ha
suggested that nontrivial and distinctiveconfigurational
statistics appear to exist for excited granular systems i
a vibrating bed. The experiment was conducted with
steel balls that have small coefficient of restitution and
was monitored carefully to suppress the convection with
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a suitable choice of the boundary condition. They th
observed that the ensemble-averaged density profile ob
a universal function that is independent of the phase
oscillations. The experimental result in Ref. [14] h
been recovered by a simulation based on the dist
element method [15] and has been generalized to
case of strong excitations [16]. The existence of suc
distinctive configurational statistics, which resembles
problem of packing, appears to be a fairly convinci
evidence that kinetic aspects of the vibrating bed mig
have been decoupled from the statistical configuratio
averaged over many ensembles and time sequences.

Such a simple observation in two-dimensional we
dissipation cases enables one to make some progre
characterizing the excitation of vibrating beds in tw
ways: first, if the kinetics is indeed separated out, then
configurational properties should be determined by
principle of maximum entropy or equivalently the min
mization of free energy. Second, the validity of su
variational methods should be carefully checked aga
experiments. The test may lead to further conceptual
vances, establishing the fact that a weakly driven noneq
librium dissipative vibrating bed with the vibration
intensity G may be viewed as a thermodynamic equili
rium state at a finite temperatureT in the near elastic
limit, if one’s focus is exclusively on the configuration
properties. Here,G ­ Av2yg with g the gravitational
acceleration,A andW the amplitude and the frequency o
the oscillations. The precise relation betweenG and T ,
however, has yet to be determined. The purpose of
Letter is to advance such a simple observation into s
tematic investigations and to formulate a thermodynam
theory of powders, at least, in two-dimensional system
from the viewpoint of elementary excitations such as t
Fermi liquid theory [19] in condensed matter physic
Our formulation may open a way to visualize the invisib
quantum behaviors of fermions or the microscopic beh
iors of dense fluids through the manipulation of granu
materials.

The starting point of our thermodynamic formulatio
[20] is the recognition that the granular state in
© 1997 The American Physical Society
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vibrating bed is an excited state and the degree
the excitation is controlled by the global parameterG.
Since we are concerned here with the configuratio
property of such a system, it is natural to associate
similar global temperatureT , but care must be taken
here because the global temperatureT must have a well
defined thermodynamic meaning. One of the essen
requirements is thatT must satisfy the statistical definition
of the thermodynamic temperature, namely,T ­ ≠Uy≠S,
whereU is the total energy andS is the entropy of the
system. Notice that the conventional kinetic temperatu
which is in general a local function, is not identical to th
thermodynamic temperature. In fact,T can be nonzero
without kinetic energy, becauseU contains the potentia
which is a function of the entropy. When the contributio
from the kinetic energy is much smaller than the poten
energy, the global temperature may be more appropr
than the local granular temperature to characterize
state of granules as the idea used in the free volume the
[18]. One can easily show that this parameterT is almost
identical with the compactivityX defined through the
free volume introduced by Edwards and his co-worke
[12]. While the compactivityX has never been compute
nor related in any manner with the experimental cont
parameters such asG, our formulation will enable us to
determine the explicit relation betweenT and G. To
be more specific, we first view the system of granu
particles as the lattice gas, which can be regarded
the simplest version of the free volume (hole) theo
[18]. We now assign virtual lattice points by dividin
the vibrating bed of widthL and the heightmD into cells
of D 3 D with the diameter of the grainD. Each row,
i, is then associated with the potential energyei ­ mgzi

with zi ­ si 2 1y2dD and m the mass of the grain
The degeneracy,V, of each row isV ­ LyD. For a
weakly excited system withG ø 1, the kinetic energy
may be neglected and the potential energy domina
for which case the most probable configuration should
determined by the state that maximizes the entropy in
microcanonical ensemble approach.

The entropy,S, is defined asS ­ ln W with W the total
number of ways of distributingN particles into a system
Excluded volume interactions do not allow two grains
occupy the same states and thus the statistics is give
the Fermi statistics. We find

W ­ PifV!yNi! sV 2 Nid!g , (1)
whereNi is the number of particles in theith row. We
now maximizeS with constraints that characterize th
system, namely, the fixed number of particlesN and the
mean steady state system energykUsssT sGddddl, namely,X

i

Ni ­ N ,
X

i

Niei ­ U . (2)

The maximization ofS then yields that the density profile
fszd, which is the average number of occupied ce
at a given energy level, must be given by the Fer
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distribution:

fszd ­ NiyV ­ 1yh1 1 expfbsz 2 mdgj , (3)

where b ! mgDyT in the low temperature limit, the
height z ­ ziyD, and the Fermi energym measured in
units of D is the initial number of layers. Note that both
z andm are measured from the bottom layer. The Ferm
analogy is valid whenm ¿ nl with nl the number of
fluidized layer. For a noninteracting electron gas, thi
ratio is of order10 to 102. Now, since the injected energy
per particle at the bottom layer,Ei, is of ordermA2v2y2
and the potential energy,Ep, to fluidize a particle on the
top nl layers is of ordermgnlD, by equating the two, we
find a necessary condition for the fluidization of the top
nl layers, namely,nl , GsAy2Dd. For G , 1, the Fermi
statistics will be valid, ifm ¿ AyD.

Our only remaining task is then to relate the tem
peratureT to the control parameterG. Here we do not
calculate the entropy and the energy directly, becau
nonequilbrium and kinetic characteristics may appear i
the relation between the temperatureT andG. Since we
have determined the density profile, we find from (2) th
energyper particle:

ūsT d ­
UsT d

N
­

mgDm2

2

∑
1 1

p2

3

µ
T

mgDm

∂2∏
1 . . . ,

(4)
where the first term is the ground state energy and th
second term is the increase in energy due tothermal
expansion, which results in the shift in the center of mas
h̄sT d ­ ūsTdymg.

h̄sT d ­ hs0d
∑

1 1
p2

3

µ
T

mgDm

∂2∏
1 . . . (5)

with hs0d ­ Dm2y2. We now make a crucial observa-
tion that for a weakly excited granular system, most ex
citations occur near the Fermi surface, which may b
effectively well represented by the motion of asinglepar-
ticle on the Fermi surface that is in contact with the vi-
brating plate. If the maximum height that a single bal
bouncing in a vibrating plate with the intensityG is de-
noted byH0sGd, thenH0sGd is determined by the equation
that describes the trajectory of a single ball on a vibratin
plane with the intensityG [11,21]. The relative distance,
Dstd, between the ball and the vibrating plate is given by

Dstd ­ Gfsinst0d 2 sinstdg 1 G cosst0d st 2 t0d

2
1
2

st 2 t0d2 (6)

in units of g ­ v ­ 1, where t0 ­ sin21s1yGd. The
maximum,H0sGd, can be obtained from (6) numerically
and it is effectively equivalent to the expansion of the
volume due tokinetics. Since the Fermi distribution near
T ­ 0 can be approximated by a piecewise linear functio
and H0sGd is thought to be the edge of the function, we
2765
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expect H0sGdy2 ø Dh ­ fh̄sTd 2 hs0dg. By equating
the thermal expansion, (5), to the kinetic expansi
H0sGdgyv2 in physical units, we now complete ou
thermodynamic formulation by presenting the expli
relation betweenT andG ­ Av2yg:

T ­
mg
pv

f3DgH0sGdg1y2. (7)

We point out that the energy is an extensive quan
along the horizontal direction, but is not in the vertical d
rection where strong anisotropy is present due to grav
Further,T has a gap atT ­ 0 because the time betwee
the launching and landing of the ball is always finite f
G . 1. Figure 1 shows the fitting of the experiment
density profile forG ­ 4 of Clement and Rajchenbac
[14] by the scaled Fermi distribution,fszd ! fszdfc,
with fc ø 0.92 the closed packing density for the he
agonal packing. The fitting value ofTymg is
2.0 mm with mD ­ 30.5 mm, while Eq. (7) yields
Tymg ø 2.6 mm [22]. The agreement between th
two is fairly good in spite of such a simple calculatio
This expression also agrees with the simulation re
[15]. Note that the detailed expression ofH0sGd depends
on the manner by which the grains are excited a
we expect that our main scaling prediction of Eq. (
namely, T ~ g3y2D1y2yv, will hold even for systems
driven not by sinusoidal waves. Next, it is well know
that the specific heatper particle, Cy ­ dūydT , can
be written as the fluctuations in the energy, name
ksDūd2l ­ kfūszd 2 ūg2l ­ T2Cy and thus we predict the
scaling relation for the fluctuations in potential energy,
in the center of mass,

ksDūd2l ­
p2

3
T3

mgD
~ g7y2D1y2v23. (8)

Certainly, more experiments or simulations would
desirable to test our theory.

FIG. 1. Comparison between the experiment and the theo
cal prediction. The diamonds are the data by Clement
Rajchenbach (Ref. [14]) and the dotted line is the Fe
distribution functionfszd [Eq. (3)] multiplied byfc ­ 0.92.
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Three comments are in order: First, in three
dimensional systems the situations become far m
complex and our ideal Fermi description based on
simple lattice gas picture certainly requires modificatio
primarily for two reasons: first, holes are not equivale
to particles and, second, many metastable configurati
exist, which results in the hysteresis-dependent dens
profile as observed in the experiment of Knightet al. [17].
Even in this case, however, the lattice picture may
valid because the mean free path of the grains is of or
of a few particle diameters and the basic granular state
not a gas but a crystal. Hence, the free energy appro
adopted in this Letter is more appropriate than the kine
theory in studying the granular state. Such an approa
is consistent with the free volume theory of the liqui
state [18], which assumes that the dominant proce
involving particle rearrangement is a hopping with th
rate determined by the activation energyA. Within
this picture, the probability of the hopping of a particl
from a positionr is proportional to expf2AsrdyT g with
Asrd . afsrdyf1 2 fsrdg. The relevant time scalet
that determines the time evolution of the compaction
then given bytyt0 . expfbfys1 2 fdg with b ­ ayT ,
or fstd . lnstyt0dyfb 1 lnstyt0dg, where we have
replacedt by t. This is consistent with the experimenta
result reported by Knightet al. [17]. Notice that such
an activation dominated process does not have a smo
increase of the density. Although this kind of slow re
laxation may not be unexpected even in two-dimension
systems, the strong geometrical constraint may suppr
such a slow process. We point out that attempts ha
been made to determine the thermodynamic tempera
defined in this paper by measuring the effective viscos
for fluidized beds with a mixture of gas and particle
The results [23] seem to support the validity of the fre
volume theory. This is an indirect confirmation of th
validity of our free fermion picture based on the fre
volume theory even in three dimensional systems.

Second, we comment on interactions among particl
It is known that even for hard core particles, an effectiv
attractive interaction exists through the direct correlati
function [24], which will induce the curvature term in the
free energy. In the presence of such a curvature te
while it may be difficult to quantitatively compute the
surface tension due to the spatial inhomogeneity, it
nevertheless obvious that we can define surface tens
for excited granular materials in a vibrating bed. We ma
need more systematic experiments and careful theoret
argument to resolve the question of surface tension
excited granular materials [2].

Third, we comment on the effect of dissipation. Fo
a simple one-dimensional system ofNs¿1d particles
connected by springs, where the end particle at t
bottom is driven by an external sinusoidal force, th
equation of motion fornth bead is then given bymz̈n 1

mz Ùzn 2 k≠2
nzn ­ mAv2 cosvtdn,0. For such a linear
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system, it is easy to show that the effective amplitu
Aeff felt by the particle at the top is expressed b
Aeff ­ Ay

p
1 1 szyvd2, where the dissipation constan

z ­ 2svypd ln e with the restitution constante [25].
Thus, the correction forA is very small.
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Note added.—After we submitted this Letter, we be
came aware of two recent papers in which thermodyna
concepts such as one developed in this Letter are usef
highly excited vertical vibration of granular materials [26
and in horizontal vibration of granular materials [27].
these papers, the authors have demonstrated that a
tionary nonequilibrium state of the vibrating bed exhib
similarities with the thermally equilibrated fluid, consis
tent with the assumption of this Letter, and the spatial c
relation function (two-point correlation) can be an inde
of solid-fluid transition of granular materials and can
approximated by the equilibrium distribution function i
the fluid phase.
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