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A novel type of spatial modulational instability induced by thgnamicalinteraction of two strongly
coupled fundamental and harmonic fields in a second-order nonlinear optical material is demonstrated
experimentally. This phenomenon is explained theoretically on the basis of a one-dimensional Floquet
theory. At high intensities, the formation of a 1D solitary wave lattice is superseded by the onset of
2D modulational instabilities. [S0031-9007(97)02848-2]
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Instabilities and chaos can occur in a wide class of wavéo special launching conditions requiring injection of both
phenomena when intense waves propagate through noRW and SH plane waves with a given relative phase
linear media [1]. Among several examples investigatedhat propagate without exchanging energy and remaining
for electromagnetic waves, the self-filamentation of singlephase locked [17]. In this Letter we show, however, that
beams, due to the self-focusing effects inherent to positivéD spatial Ml builds up under more general conditions,
third order nonlinearities, was observed in the early daysamely, in SHG from FW input beams (with highly
of nonlinear optics [2]. A one dimensional (1D) temporal elliptical cross section). To our knowledge, this is the
counterpart of this phenomenon is the breakup of a cw fielfirst observation of adynamical transverse instability,
in an optical fiber [3] due to modulational instability (MI). i.e., Ml occurring from an intense beam composed by
In Kerr media, the propagation is described by the nontwo strongly interacting frequency modes. We develop
linear Schrodinger equation (NLSE) whose integrabilitya theoretical approach which exposes new features of M.
ensures the existence of extremely stable solutions in 1D, The propagation equations for SHG are well known.
i.e., in slab waveguide geometries. Conversely, in 2DNe make use of type-1l SHG (i.e., the same geometry of
blow-up instabilities occur unless higher order effects beRef. [13]) involving two orthogonally polarized FW in-
comes significant [4,5]. Infinite beams such as planguts. Since highly elliptical beams (quasiplane wave in
waves [6] or soliton stripes [7] experience Ml in 2D. Thesethe transverse coordinate are employed, the propaga-
instabilities are also important in water waves [6] and plastion is reasonably described by the 1D model

mas [8]. The dimensionality also affects features in the )
. aa1 r d aq

long range evolution of MI: exact recurrence (periodic re- i— — = —— + azaje P? =0,
construction of the plane wave) occurs in the 1D NLSE aZ 2 X2
[9], whereas pseudorecurrence takes place in 2D [6,10]. 5, oa r 02a '
.. . . .. L oay . ody 3 2 * —ifZ __
In the presence of dissipative perturbations such as driving ¢ a7 02y > Ix2 + azaje =0, (1)
and damping in a Kerr cavity [11], or an adiabatic variation
of the dispersion in a fiber [12], these instabilities lead to . daz S daz 13 0%a3 N iBZ _
the formation of periodic structures which propagate with- ' 57 ~— '3 ox ~ 2 gxz | ¢ T

out spreading in space or time.

Recently spatial solitons consisting of two stronglywhere a, (ordinary polarized FW),a, (extraordinary
coupled optical fields have been observed in the secorPlarized FW), andi3 (SH) are envelope amplitudes of
harmonic generation (SHG) process [13] Theory haéhe three W-aVeS. We US.e the fOIIOW|ng normallzatloni
shown that these solitons are stable [14]. Because of thef is the distance in units of the parametric length
robustness, mutual trapping of the fundamental (FW) andm = (xvTot) ™', X = x/x;, wherex,, = y/zu/ki, It
SH beams occurs, even when the latter is not launcheds @ (plane-wave) total intensity, andl = (ki + k> —
The typical size of 2D solitons requires strong focusingk3)zn = AkL(zm/L) is the mismatch parametek, being
Conversely, in the quasiplane-wave regime, this stronghe sample length. In KTPdglz = 2.8 pm/V resulting
coupling between two fields at different frequenciesin a nonlinear coefficienty =5 X 1074 W~1/2, For
introduces new degrees of freedom into MI phenomenahe spatial case; = —1,r, = —ki/ky = —1, andr; =
MI was recently predicted to occur for the plane-wave—k;/k; = —1/2, since all of the refractive indices are
nonlinear eigenmodes of SHG [15,16]. These correspondqual to within a few percent. We found that the essential
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physics is not affected by the spatial walk-off terms,MI occurs when one of the eigenvalug®f U is |A| > 1.

and hence we se, = ;3 = 0. Under these conditions, In this case the (intensity) growth rate of the instability
whenever the two FW beams are equally excited, the firss given by the characteristic exponent= 2In|Al/Z,.

two of Egs. (1) become degenerate, and are equivalem/e computed the MI gain as a function &f. for differ-

to scalar type-l SHG. The equations governing theent values ofB. In Fig. 1, we show the physical gain
latter interaction are formally obtained by the substitutionG = gz, for our KTP sample of. = 1 cm versus the

a; = a; = ap/~/2 in Egs. (1). When a plane FW (i.e., spatial frequencyr, = K,/(2mx,.). Figure 1(a) shows

X independent) is launched as an initial condition, it isthe gain close to phase matching, i.e., fokL = 1072,

well known that Egs. (1) predict that the SH is generatedand intensitiesl,,; = 10,50, 100 GW/cn? correspond-
and reconverted back in a periodic fashion [18]. As theing to B = 20,9,6 X 107°. Figure 1(b) shows how
following analysis shows, Ml is still expected to build up the expected spectral gain changes when moving off
over a distance of the order of the period of the planephase matching (e.g.AkL = *37, corresponding to
wave interaction. The stability calculation is carried out3 = +0.2), for a fixed intensityl,,, = 10 GW/cn?.

by inserting in Eqgs. (1) the ansatz The fluctuations lead the most unstable perturbations

— . to spontaneously break the plane wave into a periodic
Z,X) = Z) + Z, X Z 2
a0(2.X) = [po2) + eo(Z. X)]exili¢o(2)].  (2) sequence of peaks. The nonintegrability of the SHG

a3(Z,X) = [p3(Z) + &(Z,X)exfdids(Z) + iBZ], Egs. (1) suggests that Ml on the _infinite Iine_ will evolve
3) into a turbulent state with generation of multiple frequen-

_ cies [15]. Conversely, an initial beam with a finite width,
where the two (FW and SH) perturbatiosss read as il split into a number of beams roughly given by the
sideband pairs i, space ratio of the beam width to the period of the most unstable

€,(Z,X) = €;(2)e™X + €;,(2)e KX, j=0,3. modulation. For a Gaus_s,ian beqm, the den§ity of spots

@) s expected to decrease in _the tails. We believe th_at the

) ) beam envelope has a stabilizing effect on the formation of

Here the novelty with respect to conventional MI [15] the multipeak structure. In order to support this argument,

is due to theZ dependence of the plane waves = e numerically propagated a wide, 1D, FW Gaussian
pj exp(i¢j). We linearize ine, and group terms with f[he beam &, = a» = exd—(X/20)2]), perturbed by white

same spatial frequency. The plane-wake € 0) contri-  amplitude noise with a Gaussian distribution (no SH at

butions obey the systetils = —170/2 = 10y/73 SiNg = the input,8 = 2). To prove that beam breakup is indeed
0H,/o¢, ¢ =[(1 — 3n3)/\/m3]cos¢ — B = —0H,/  due to noise-driven MI, Fig. 2(a) shows the evolution of a
a3, Wherens = p3, 1o = pd = 2(1 — 13), ¢ = 3 —  wide FW Gaussian in the absence of noise. The FW en-

2¢0, and H, = 2./75(1 — n3)cos¢p — Bn3 is the velopes only exhibit the presence of oscillations due to the
Hamiltonian [17]. The contributions atc, = +K,  different SHG experienced by the portions of the envelope
yield the linear system for the perturbatian= (e¢y;, which see different parametric lengths,[« It;tl/z(X)].
€005 €35, €34) 7 The presence of the noise, however, dramatically changes
¢ = M(2)e, (5) the results. Figure 2(b) shows the evolution of the same
_ . beam as in Fig. 2(a), but with amplitude fluctuations av-
where the4 X 4 matrix M = {m;;} has the diagonal eraging10%, typical of our experiment. During propaga-
elements mi; = —myp = r1K;/2 — p3€0S$, m33 =  tion those components with the most unstable transverse
—mas = r3K2/2 — (p3/2p3) cos$, and the nonvanish- periodicity @/K, ~ 6 from our theory) dominate. Here
ing off-diagonal elementsn;; = —mj; = p3expi¢), Ml induced by the interplay of diffraction and SHG leads
andmis = m3; = —myy, = —mg = poexpli¢p). Hence
the perturbation evolves according to the linear system (5)
with periodic coefficients, the periodicity being introduced 250 80
through the plane-wave solutions. For instance, our ex- () ®)
periment of nonseeded SHG is described by the periodic 2% Ly = 100 AL =0.01
plane-wave solutioms(Z) = 5~ srt(/n ™ Z|k), with the “ 3r
period Z, = 2K(k)/\/n*, where k> = /0" is the
modulus of the elliptic integral of the first kin& (),
and 7* =1+ B2/8 = (B/4)[(8/47 + 11> [18]. 0
By applying Floquet theory to Egs. (5), the stability @ -3
depends on the so-called Floquet multipliers or character- oy Y Y 515 %0 008 oA
istic exponents [19]. These are obtained by constructing SPATIAL FREQUENCY v(um™) SPATIAL FREQUENCY v, (um?)
the4 X 4 fun.damental matrix solutiofy, whose co'lu'n.ms FIG. 1. MI gain G versus spatial frequency,. (a) Fixed
are the solutions to Egs. (5) 4t= Z, for the four initial ~ Axz = 1072 "and different intensities. (b) Fixed intensity
values €(0) = (1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1). I, = 10 GW/cn? and different values oAkL = 0.01, 3.
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FIG. 3. (a) The input beam. (b) The output4® GW/cn?.
(c) The output a7 GW/cn?.

A N P VS dence of the spatial frequency of the Ml on the incident
wensverse coordinate wonsverse coordinate intensity for an elliptical beam with an aspect ratio of
FIG. 2. Evolution of a wide FW Gaussian beam close t012.0:1. Figure 3(a) shows the profile of the incident FW
phase matching of SHG (a) in the absence of noise; (b) sameeam at the focus which is located at the front face of
as (a) with10% amplitude noise superimposed on the input;the KTP crystal, while 3(b) and 3(c) show the FW beam
(c) same as (b) but with twice the input power. profiles at the exit face of the crystal for intensities4sf
and57 GW/cn?, respectively. The breakup of the beam
into a line of well-defined circular spots is clear. Cuts
to the noise-driven breakup of both the FW and the genthrough the spots in the orthogonal directions showed
erated SH (not shown) beams. In this case the originghem to be circular to withint8% in the central part of
beam splits into three main separated beams, propdhe pattern. Their radius was5 = 1.5 um, essentially
gating in parallel directions. Doubling the intensity of equal to the value of0—12 um, obtained for spatial soli-
the input beam, the output number of maxima increaséons when20 um circular beams are incident onto this
[see Fig. 2(c)]. The resulting structure is not completelycrystal [13]. The patterns shown in Fig. 3 were obtained
stable, even though the beam sizes and powers are typioaith single laser shots, while the noise was estimated by
of quadratic solitons. The beams experience direct interrecording successive shots. The absolute location (but
action forces and exchange of radiation as well. In 2Dnot the shape or separation) of the beams jittered in space
we expect both qualitative and quantitative differencesalong the long ellipse axis from shot to shot, showing
the radiation can leave the interaction region along the orthe noise generated aspects of the patterns. Although
thogonal coordinatd’, thereby (i) favoring the stabiliza- not shown clearly in the high contrast photographs, weak
tion into quadratic solitons, and (ii) reducing the fraction FW fields were also observed in some cases between the
of input power converted into the MI pattern. spots, corresponding to the expected radiation exchange
The MI was experimentally demonstrated in abetween the solitonlike beams. Furthermore, as the
L=1cm long KTP crystal (see Ref. [13] for the input intensity is increased, there was no indication of
details). The source used was @switched, mode- any return to the plane-wave elliptically shaped field, as
locked, Nd:YAG providing35 psec pulses with0 Hz predicted. These results strongly support our conjecture
repetition, atAp = 1064 nm . The incident polarization that the beams are indeed spatial solitons.
was held fixed at 45between the axes, providing a total The beam breakup was also investigated for two phase-
measured peak intensitf,, = 21, = 2I,. A variable mismatch parameterAkL = =37. The most detailed
elliptical beam was created with an adjustable cylindricaket of data was collected &kl = —37 because this
telescope. The small dimension of the incident beanprovides a larger intensity increment between increases
was maintained at a FWHM value 20 wm. The larger in the number of beams generated. Although rigorously
dimension was varied such that aspect rati&istg ¥)  MI has no threshold intensity, its observability requires
above 5:1 were created at the input face of the crystalh minimum intensity for the exponential gain to become
This makes a 1D plane-wave approximation reasonablsignificant over the lengtl.. For instance, a gain factor
since in al cm long crystal, the effects of diffraction on exp(20) requiresgL/z, = 20 which yields a cw plane-
the spatial envelopes are minimal for beams with suchvave thresholdy, =~ 3 GW/cn? at AkL = —3, in suf-
large waists. Figure 3 illustrates qualitatively the depenf{icient agreement with the observation, taking into account
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the measured radiation losses, and the temporal structutiee 1D picture. However, damage limitations precluded
of the beams. We also observe a reduction of the thresta detailed investigation of this situation.

old intensity I, for the positive8, the lowest threshold In summary, spatial MIs have been investigated both
being at phase matching, in qualitative agreement witlexperimentally and theoretically in quadratically nonlinear
the theoretical prediction [see Fig. 1(b)]. However, it ismedia near phase-matched SHG. Experimentally, highly
the dependence of the breakup frequency on the intensitglliptical input beams were observed to break up into
which constitutes the most clear signature of spontaneows line of circular, separated beams whose measured
MI [15]. This feature is clearly shown in Fig. 4, where properties strongly suggested them to be quadratic spatial
we report the number of spofé, in the observed stable solitons. At very high input intensities, the onset of a 2D
patterns versus intensity for two ellipticities. The inten-pattern was observed. We have presented a 1D theory
sity required to see a giveN, increases for the smaller which accounts for the dynamical behavior of the beams
ellipticity. The data with ellipticity 10.8:1 are closer to and agreed well with the experimental results.

the plane-wave 1D case, for which the MI theory predicts This research was supported by DARPA, ARO, and

N, ~ v, = Ink* for a largeN, [due to the scaling law NSF.
xir = (kixTot )~ /% of Egs. (2)]. However, we do not
expect a detailed fit for the current experimental parame-
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