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Spatial Modulational Instability and Multisolitonlike Generation in a Quadratically Nonlinear
Optical Medium
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A novel type of spatial modulational instability induced by thedynamicalinteraction of two strongly
coupled fundamental and harmonic fields in a second-order nonlinear optical material is demonstrated
experimentally. This phenomenon is explained theoretically on the basis of a one-dimensional Floquet
theory. At high intensities, the formation of a 1D solitary wave lattice is superseded by the onset of
2D modulational instabilities. [S0031-9007(97)02848-2]
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Instabilities and chaos can occur in a wide class of wa
phenomena when intense waves propagate through
linear media [1]. Among several examples investiga
for electromagnetic waves, the self-filamentation of sin
beams, due to the self-focusing effects inherent to posi
third order nonlinearities, was observed in the early da
of nonlinear optics [2]. A one dimensional (1D) tempor
counterpart of this phenomenon is the breakup of a cw fi
in an optical fiber [3] due to modulational instability (MI)
In Kerr media, the propagation is described by the no
linear Schrödinger equation (NLSE) whose integrabil
ensures the existence of extremely stable solutions in
i.e., in slab waveguide geometries. Conversely, in
blow-up instabilities occur unless higher order effects b
comes significant [4,5]. Infinite beams such as pla
waves [6] or soliton stripes [7] experience MI in 2D. The
instabilities are also important in water waves [6] and pla
mas [8]. The dimensionality also affects features in t
long range evolution of MI: exact recurrence (periodic r
construction of the plane wave) occurs in the 1D NLS
[9], whereas pseudorecurrence takes place in 2D [6,
In the presence of dissipative perturbations such as driv
and damping in a Kerr cavity [11], or an adiabatic variati
of the dispersion in a fiber [12], these instabilities lead
the formation of periodic structures which propagate wi
out spreading in space or time.

Recently spatial solitons consisting of two strong
coupled optical fields have been observed in the sec
harmonic generation (SHG) process [13]. Theory h
shown that these solitons are stable [14]. Because of t
robustness, mutual trapping of the fundamental (FW) a
SH beams occurs, even when the latter is not launch
The typical size of 2D solitons requires strong focusin
Conversely, in the quasiplane-wave regime, this stro
coupling between two fields at different frequenci
introduces new degrees of freedom into MI phenome
MI was recently predicted to occur for the plane-wa
nonlinear eigenmodes of SHG [15,16]. These corresp
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e
on-
d
e
ve
s

l
ld

-
y
D,
D
-
e

e
-
e
-

0].
ng
n
o
-

nd
s

eir
d
d.
.
g

s
a.
e
nd

to special launching conditions requiring injection of bo
FW and SH plane waves with a given relative pha
that propagate without exchanging energy and remain
phase locked [17]. In this Letter we show, however, th
1D spatial MI builds up under more general condition
namely, in SHG from FW input beams (with highly
elliptical cross section). To our knowledge, this is th
first observation of adynamical transverse instability,
i.e., MI occurring from an intense beam composed
two strongly interacting frequency modes. We develo
a theoretical approach which exposes new features of M

The propagation equations for SHG are well know
We make use of type-II SHG (i.e., the same geometry
Ref. [13]) involving two orthogonally polarized FW in-
puts. Since highly elliptical beams (quasiplane wave
the transverse coordinatex) are employed, the propaga
tion is reasonably described by the 1D model

i
≠a1

≠Z
2

r1

2
≠2a1

≠X2 1 a3ap
2e2ibZ ­ 0 ,

i
≠a2

≠Z
2 id2

≠a2

≠X
2

r2

2
≠2a2

≠X2 1 a3ap
1e2ibZ ­ 0 , (1)

i
≠a3

≠Z
2 id3

≠a3

≠X
2

r3

2
≠2a3

≠X2
1 a1a2eibZ ­ 0 ,

where a1 (ordinary polarized FW),a2 (extraordinary
polarized FW), anda3 (SH) are envelope amplitudes o
the three waves. We use the following normalizatio
Z is the distance in units of the parametric leng
znl ­ sx

p
Itot d21, X ­ xyxtr where xtr ­

p
znlyk1, Itot

is a (plane-wave) total intensity, andb ­ sk1 1 k2 2

k3dznl ­ DkLsznlyLd is the mismatch parameter,L being
the sample length. In KTP,d

s2d
eff ­ 2.8 pmyV resulting

in a nonlinear coefficientx ø 5 3 1024 W21y2. For
the spatial case,r1 ­ 21, r2 ­ 2k1yk2 ø 21, andr3 ­
2k1yk3 ø 21y2, since all of the refractive indices are
equal to within a few percent. We found that the essent
© 1997 The American Physical Society 2756
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physics is not affected by the spatial walk-off term
and hence we setd2 ­ d3 ­ 0. Under these conditions
whenever the two FW beams are equally excited, the fi
two of Eqs. (1) become degenerate, and are equiva
to scalar type-I SHG. The equations governing t
latter interaction are formally obtained by the substituti
a1 ­ a2 ­ a0y

p
2 in Eqs. (1). When a plane FW (i.e

X independent) is launched as an initial condition, it
well known that Eqs. (1) predict that the SH is genera
and reconverted back in a periodic fashion [18]. As t
following analysis shows, MI is still expected to build u
over a distance of the order of the period of the plan
wave interaction. The stability calculation is carried o
by inserting in Eqs. (1) the ansatz

a0sZ, Xd ­ fr0sZd 1 e0sZ, Xdg expfif0sZdg , (2)

a3sZ, Xd ­ fr3sZd 1 e3sZ, Xdg expfif3sZd 1 ibZg ,
(3)

where the two (FW and SH) perturbationse0,3 read as
sideband pairs inkx space

ejsZ, Xd ­ ejssZdeiKx X 1 ejasZde2iKxX , j ­ 0, 3 .
(4)

Here the novelty with respect to conventional MI [15
is due to theZ dependence of the plane wavesaj ­
rj expsifjd. We linearize ine, and group terms with the
same spatial frequency. The plane-wave (kx ­ 0) contri-
butions obey the systemÙh3 ­ 2 Ùh0y2 ­ h0

p
h3 sinf ­

≠Hr y≠f, Ùf ­ fs1 2 3h3dyp
h3 g cosf 2 b ­ 2≠Hry

≠h3, whereh3 ­ r
2
3 , h0 ­ r

2
0 ­ 2s1 2 h3d, f ­ f3 2

2f0, and Hr ­ 2
p

h3 s1 2 h3d cosf 2 bh3 is the
Hamiltonian [17]. The contributions atkx ­ 6Kx

yield the linear system for the perturbatione ; se0s,
e

p
0a, e3s, e

p
3adT

Ùe ­ MsZde , (5)

where the 4 3 4 matrix M ­ hmijj has the diagonal
elements m11 ­ 2m22 ­ r1K2

x y2 2 r3 cosf, m33 ­
2m44 ­ r3K2

x y2 2 sr
2
0y2r3d cosf, and the nonvanish-

ing off-diagonal elementsm12 ­ 2mp
21 ­ r3 expsifd,

andm13 ­ mp
31 ­ 2mp

24 ­ 2m42 ­ r0 expsifd. Hence
the perturbation evolves according to the linear system
with periodic coefficients, the periodicity being introduce
through the plane-wave solutions. For instance, our
periment of nonseeded SHG is described by the perio
plane-wave solutionh3sZd ­ h2sn2s

p
h1 Zjkd, with the

period Zp ­ 2Kskdy
p

h1, where k2 ­ h2yh1 is the
modulus of the elliptic integral of the first kindKskd,
and h6 ­ 1 1 b2y8 6 sby4d fsby4d2 1 1g1y2 [18].
By applying Floquet theory to Eqs. (5), the stabili
depends on the so-called Floquet multipliers or charac
istic exponents [19]. These are obtained by construct
the4 3 4 fundamental matrix solutionU, whose columns
are the solutions to Eqs. (5) atZ ­ Zp for the four initial
values es0d ­ s1, 0, 0, 0d, s0, 1,0, 0d, s0, 0, 1, 0d, s0, 0, 0, 1d.
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MI occurs when one of the eigenvaluesl of U is jlj . 1.
In this case the (intensity) growth rate of the instabili
is given by the characteristic exponentg ­ 2 ln jljyZp .
We computed the MI gain as a function ofKx for differ-
ent values ofb. In Fig. 1, we show the physical gain
G ­ gz21

nl for our KTP sample ofL ­ 1 cm versus the
spatial frequencynx ­ Kxys2pxtrd. Figure 1(a) shows
the gain close to phase matching, i.e., forDkL ­ 1022,
and intensitiesItot ­ 10, 50, 100 GWycm2 correspond-
ing to b . 20, 9, 6 3 1025. Figure 1(b) shows how
the expected spectral gain changes when moving
phase matching (e.g.,DkL ­ 63p , corresponding to
b . 60.2), for a fixed intensityItot ­ 10 GWycm2.

The fluctuations lead the most unstable perturbatio
to spontaneously break the plane wave into a perio
sequence of peaks. The nonintegrability of the SH
Eqs. (1) suggests that MI on the infinite line will evolv
into a turbulent state with generation of multiple freque
cies [15]. Conversely, an initial beam with a finite width
will split into a number of beams roughly given by th
ratio of the beam width to the period of the most unstab
modulation. For a Gaussian beam, the density of sp
is expected to decrease in the tails. We believe that
beam envelope has a stabilizing effect on the formation
the multipeak structure. In order to support this argume
we numerically propagated a wide, 1D, FW Gaussi
beam (a1 ­ a2 ­ expf2sXy20d2g), perturbed by white
amplitude noise with a Gaussian distribution (no SH
the input,b ­ 2). To prove that beam breakup is indee
due to noise-driven MI, Fig. 2(a) shows the evolution of
wide FW Gaussian in the absence of noise. The FW e
velopes only exhibit the presence of oscillations due to t
different SHG experienced by the portions of the envelo
which see different parametric lengths [znl ~ I

21y2
tot sXd].

The presence of the noise, however, dramatically chan
the results. Figure 2(b) shows the evolution of the sam
beam as in Fig. 2(a), but with amplitude fluctuations a
eraging10%, typical of our experiment. During propaga
tion those components with the most unstable transve
periodicity (2pyKx ø 6 from our theory) dominate. Here
MI induced by the interplay of diffraction and SHG lead

FIG. 1. MI gain G versus spatial frequencynx . (a) Fixed
DkL ­ 1022 and different intensities. (b) Fixed intensity
Itot ­ 10 GWycm2 and different values ofDkL ­ 0.01, 63p.
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FIG. 2. Evolution of a wide FW Gaussian beam close
phase matching of SHG (a) in the absence of noise; (b) s
as (a) with10% amplitude noise superimposed on the inp
(c) same as (b) but with twice the input power.

to the noise-driven breakup of both the FW and the g
erated SH (not shown) beams. In this case the orig
beam splits into three main separated beams, pro
gating in parallel directions. Doubling the intensity
the input beam, the output number of maxima incre
[see Fig. 2(c)]. The resulting structure is not complet
stable, even though the beam sizes and powers are ty
of quadratic solitons. The beams experience direct in
action forces and exchange of radiation as well. In
we expect both qualitative and quantitative differenc
the radiation can leave the interaction region along the
thogonal coordinateY , thereby (i) favoring the stabiliza
tion into quadratic solitons, and (ii) reducing the fracti
of input power converted into the MI pattern.

The MI was experimentally demonstrated in
L ­ 1 cm long KTP crystal (see Ref. [13] for th
details). The source used was aQ-switched, mode-
locked, Nd:YAG providing35 psec pulses with10 Hz
repetition, atl0 ­ 1064 nm . The incident polarization
was held fixed at 45± between the axes, providing a tot
measured peak intensityItot ­ 2Io ­ 2Ie. A variable
elliptical beam was created with an adjustable cylindri
telescope. The small dimension of the incident be
was maintained at a FWHM value of20 mm. The larger
dimension was varied such that aspect ratios (X to Y )
above 5:1 were created at the input face of the crys
This makes a 1D plane-wave approximation reasona
since in a1 cm long crystal, the effects of diffraction o
the spatial envelopes are minimal for beams with su
large waists. Figure 3 illustrates qualitatively the dep
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FIG. 3. (a) The input beam. (b) The output at48 GWycm2.
(c) The output at57 GWycm2.

dence of the spatial frequency of the MI on the incide
intensity for an elliptical beam with an aspect ratio o
12.0:1. Figure 3(a) shows the profile of the incident F
beam at the focus which is located at the front face
the KTP crystal, while 3(b) and 3(c) show the FW bea
profiles at the exit face of the crystal for intensities of48
and57 GWycm2, respectively. The breakup of the beam
into a line of well-defined circular spots is clear. Cu
through the spots in the orthogonal directions show
them to be circular to within68% in the central part of
the pattern. Their radius was9.5 6 1.5 mm, essentially
equal to the value of10 12 mm, obtained for spatial soli-
tons when20 mm circular beams are incident onto thi
crystal [13]. The patterns shown in Fig. 3 were obtain
with single laser shots, while the noise was estimated
recording successive shots. The absolute location (
not the shape or separation) of the beams jittered in sp
along the long ellipse axis from shot to shot, showin
the noise generated aspects of the patterns. Althou
not shown clearly in the high contrast photographs, we
FW fields were also observed in some cases between
spots, corresponding to the expected radiation excha
between the solitonlike beams. Furthermore, as
input intensity is increased, there was no indication
any return to the plane-wave elliptically shaped field,
predicted. These results strongly support our conject
that the beams are indeed spatial solitons.

The beam breakup was also investigated for two pha
mismatch parametersDkL ­ 63p . The most detailed
set of data was collected atDkL ­ 23p because this
provides a larger intensity increment between increa
in the number of beams generated. Although rigorous
MI has no threshold intensity, its observability require
a minimum intensity for the exponential gain to becom
significant over the lengthL. For instance, a gain factor
exps20d requiresgLyznl ­ 20 which yields a cw plane-
wave thresholdIth ø 3 GWycm2 at DkL ­ 23p, in suf-
ficient agreement with the observation, taking into accou
2758
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the measured radiation losses, and the temporal struc
of the beams. We also observe a reduction of the thre
old intensityIth for the positiveb, the lowest threshold
being at phase matching, in qualitative agreement w
the theoretical prediction [see Fig. 1(b)]. However, it
the dependence of the breakup frequency on the inten
which constitutes the most clear signature of spontane
MI [15]. This feature is clearly shown in Fig. 4, where
we report the number of spotsNs in the observed stable
patterns versus intensity for two ellipticities. The inten
sity required to see a givenNs increases for the smaller
ellipticity. The data with ellipticity 10.8:1 are closer to
the plane-wave 1D case, for which the MI theory predic
Ns , nx ~ I

1y4
tot for a largeNs [due to the scaling law

xtr ­ sk1x
p

Itot d21y2 of Eqs. (2)]. However, we do not
expect a detailed fit for the current experimental param
ters which yield a relatively smallNs.

For 2D waves the validity of our 1D model is expecte
to hold best when the profile of the beam across the ot
transverse coordinatey is strongly confined and constant
This happens strictly in waveguides, but also for a str
beam in a bulk medium, where the growth rate of th
transverse instability depends smoothly on the preser
profile in the other dimension [20]. Conversely, when th
profile acrossy exhibits large changes, the 1D theory
not expected to work. In our experiment, at very hig
input intensitiesItot , 150 GWycm2 for an elliptical beam
with a large aspect ratio of 12.0:1, we observed the on
of beam breakup along the short ellipse axis. It occurr
near the center of the input beam at intensities for whi
the soliton spacing alongx was comparable to they beam
dimension. This is indicative of 2D pattern formation, an
constitutes experimental evidence for the breakdown

FIG. 4. Number of separate beams observed at the out
versus the intensity for two different ellipticities of the inpu
beam, andDkL ­ 23p. The dashed line is a best fit with a
quartic polynomial inNs for the data with ellipticity 10.8:1.
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the 1D picture. However, damage limitations preclude
a detailed investigation of this situation.

In summary, spatial MIs have been investigated bo
experimentally and theoretically in quadratically nonlinea
media near phase-matched SHG. Experimentally, high
elliptical input beams were observed to break up in
a line of circular, separated beams whose measu
properties strongly suggested them to be quadratic spa
solitons. At very high input intensities, the onset of a 2
pattern was observed. We have presented a 1D the
which accounts for the dynamical behavior of the beam
and agreed well with the experimental results.
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