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Experimental Realization of Second Harmonic Generation in a Fibonacci Optical Superlattice
of LiTaO 3
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and Center for Advanced Studies in Science and Technology of Microstructures, Nanjing 210093, China
(Received 30 July 1996; revised manuscript received 10 January 1997)

We have designed and fabricated a novel nonlinear optical superlattice of LiTaO3 in which two
antiparallel 180± domains building blocksA and B were arranged as a Fibonacci sequence. We
measured the quasi-phase-matched second-harmonic spectrum of the superlattice. The second-harmonic
blue, green, red, and infrared light generation, with energy conversion efficiencies of,5% 20%, was
demonstrated experimentally, which efficiencies are comparable with those of a periodic superlattice.
Destruction of self-similarity and extinction phenomenon have also been observed in the spectrum. The
experiment results are in good agreement with theory. [S0031-9007(97)02784-1]

PACS numbers: 42.65.Ky, 77.80.Dj, 78.66.–w
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An important development in condensed-matter phy
is the discovery of quasicrystalline structure [1]. Mu
effort has been devoted to the studies of structure
physical properties of quasicrystal [2,3]. A quasipe
odic superlattice is an analog of one-dimensional qu
crystal. The first quasiperiodic semiconductor superlat
was fabricated by Merlinet al. by molecular-beam epi
taxy in 1985 [4]. Since then metallic and dielectr
Fibonacci superlattices have been produced by var
techniques [5–7]. These superlattices have shown m
unusual physical properties depending on their comp
tion and layer thickness.

In dielectric crystals, the most important physical p
cesses are the excitation and the propagation of clas
waves, including optical waves and acoustic waves.
trasonic excitation and propagation in the quasiperio
acoustic superlattices have been studied both theoreti
and experimentally [8]. More recently, the localizati
of optical waves in a quasiperiodic optical superlatt
(QPOS) of SiO2 and TiO2 has been reported [9]. Fo
second-order nonlinear optical effects of the QPOS, so
preliminary theoretical work has been carried out [10].
has been discovered that the second harmonic spec
of a QPOS is different from that of a periodic optical s
perlattics (POS) due to its lower space-group symme
According to the theory of quasiphase-matching (QP
proposed by Armstronget al. [11], the phase matchin
condition in the second harmonic process of a QPOS
be written into

Dk ­ k2v 2 2kv 2 Gm,n ­ 0 , (1)

where k2v , kv are the wave vectors of the second h
monic and fundamental waves, respectively,Gm,n is the
reciprocal vector (called the “grating wave vector” in no
linear optics) which depends on the structure param
of a QPOS. In a Fibonacci system, two incommensu
periods with ratiot are superimposed. The indexing
Gm,n requires two integersm, n, which is different from
the POS’s reciprocal vectorGn indexed with only one in-
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teger. Therefore, a QPOS can provide more recipro
vectors to the QPM optical parametric process, which
sults in the second harmonic spectrum of a QPOS show
more plentiful spectrum structure than that of a POS. T
characteristic of the QPOS may be used in multiwav
length laser frequency conversion application. Howev
up to now, this has not been experimentally proved due
the lack of proper material.

In this paper, we report for the first time the secon
harmonic generation experiment on a Fibonacci opti
superlattice of LiTaO3 (LT). The superlattice was fab-
ricated by the external field poling technique at roo
temperature. We measured the QPM second-harmo
spectrum of the QPOS and calculated its main effect
second-order nonlinear optical coefficientsdm,n. Two dif-
ferent extinction rules were found. We confirmed that t
second-harmonic spectrum of the QPOS does not refl
the symmetry of the quasiperiodic structure due to the d
persive effect of the refractive index and, consequen
self-similarity destructs in this spectrum.

The QPOS with Fibonacci sequence is constructed
follows. We first define two fundamental blocksA and
B, which are arranged according to the production ru
Sj ­ Sj21 j Sj22 with j $ 3, S1 ­ A, and S2 ­ AB.
Both blockA and blockB are composed of one positive
and one negative ferroelectric domain, so that neighbor
domains are interrelated by a dyad axis in thex direction.
As illustrated in Figs. 1(a) and 1(b),lA and lB represent
the thickness of blockA and blockB, respectively, where
lA ­ lA1 1 lA2, lB ­ lB1 1 lB2. Let lA1 ­ lB1 ­ l,
lA2 ­ ls1 1 hd, lB2 ­ ls1 2 thd, where l, h are ad-
justable structure parameters,t ­ s1 1

p
5 dy2 is the

golden ratio. The sequence of the blocks,ABAABABA . . . ,
produces a QPOS withlAylB ­ t; see Fig. 1(b). Even if
lAylB fi t, the quasiperiodic properties of the superlatti
are still preserved. Since the second-order nonline
optical coefficients form a third-rank tensor, they wi
change their signs from positive domains to negat
domains, so the nonlinear coefficients in the superlatt
© 1997 The American Physical Society
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FIG. 1. Quasiperiodic optical superlattic (QPOS) made fr
a LT single crystal. (a) Two building blocks:A and B,
each composed of one positive and one negative ferroele
domain. (b) Schematic diagram of a QPOS with Fibona
sequence. (c) The optical micrograph of a QPOS of LT sin
crystal revealed by etching.

are modulated with quasiperiodic sign reversal. In or
to utilize to the largest nonlinear optical coefficientd33

(­ 26 pmyV for LT), the ferroelectric domain lamellae
are arranged along thex axis of the LT crystal and the do
main boundaries parallel to they-z plane, thez-polarized
fundamental wave propagates along thex axis of crystal.
For an infinite array, the modulated nonlinear coefficie
dsxd can be written by use of Fourier transform approa
[10,12] as

dsxd ­
X
m,n

dm,neiGm,nx , (2)

where the reciprocal vectorGm,n ­ 2pD21sm 1 ntd,
D ­ tlA 1 lB is the “average structure parameter” of t
superlattice. The corresponding Fourier coefficientsdm,n
can be defined as the effective nonlinear coefficients of
QPOS.

The sample was fabricated by poling az-cut LT single-
domain wafer at room temperature [13]. Figure 1(c) is
optical micrograph of the cross section of the poled sam
revealed by etching; the observed surface was perpend
lar to they axis and the lamellae were perpendicular
the x axis. The figure shows that a volume quasiperio
domain grating has been produced in the sample. In
QPOS blockA and blockB consist nominally of11, 13 mm
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and11, 6.5 mm, respectively. The sample has 13 gene
tions sS13d, 377 A and B blocks, with a total length of
,8 mm and a thickness of,0.5 mm.

We used a tunable optical parametric oscillator (OP
as the fundamental light source. Its pulse duration w
23 ps and the repetition rate was 1 Hz. The fundamen
wave was polarized along thez axis of the sample. It was
weakly focused and coupled into the polished end face
the sample and propagated along thex axis of the sample.
The radius of the waist inside the sample wasv0 ø
0.1 mm. The confocal parameter for the system w
Z0 ø 6 cm. BecauseZ0 is much greater than the lengt
of the sample, the plane-wave theory of second-harmo
generation (SHG) can be applied to the Gaussian beam

The SHG spectrum of the QPOS of LT was measur
in the range from 0.9 to1.4 mm and from 1.55 to1.7 mm
[Fig. 2(a)], respectively. When the fundamental wav
length was tuned to 0.9726, 1.0846, 1.2834, 1.3650,
1.5699 mm, we obtained QPM second harmonic blu
green, red, and infrared light output with conversion ef
ciencies up to,5% 20% (Table I). According to Eq. (1),
the position of second harmonic peaks may be marked w
fundamental wavelength as∑

I
l

∏
m,n

­
Gm,n

4pfn2sld 2 n1sldg
, (3)

FIG. 2. The SHG spectra measured and calculated in a QP
of LT. Note that (i)s1yld1,4 fi s1yld1,2 1 s1yld1,3 and (ii) the
(2, 2) peak and (4, 3) peak are absent in the spectra.
2753
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of
TABLE I. SHG experiment results of quasiperiodic poling LiTaO3. The fundamental source is a ps-OPO with the repetition
1 Hz and the duration of 23 ps.

Reciprocal
vectors

Fundamental wavelength
smmd

Harmonic
wavelengthsmmd Input Output FWHM Efficiency

Gm,n Calculated Measured Measured energysmJd energysmJd (nm) %

(3,4) 0.9720 0.9726 0.4863 40 3 ,0.3 ,7.5
(2,3) 1.0820 1.0846 0.5423 40 7 ,0.4 ,17.5
(1,2) 1.2830 1.2834 0.6417 33 3 ,0.85 ,9.1
(2,1) 1.3640 1.3650 0.6825 30 2 ,1.1 ,6.7
(1,1) 1.5687 1.5699 0.7845 54 11 ,2.5 ,20.4
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wheren2sld, n1sld are the refractive indexes of fundame
tal and harmonic of LT crystal, respectively. The partic
pating of the multireciprocal vector leads to the multipe
structure of the spectrum. Ifm, n are successive Fibonacc
numbers, orsm, nd ­ sFk21, Fkd, the reciprocal vector can
be rewritten asGm,n ­ Gs,p ­ 2pD21stp , where s, p
are integers, andGs,p ­ Gs,p21 1 Gs,p22, thus theGs,p
is self-similar. However, because of the dispersion effe
although Gs,p presents the self-similarity in reciproca
space, the relations1ylds,p11 ­ s1ylds,p 1 s1ylds,p21

will no longer hold. By careful analysis to the measur
spectrum, we do finds1yld1,4 fi s1yld1,2 1 s1yld1,3.
This differs from the x-ray diffraction and Raman spect
of quasiperiodic superlattice [4] in which the spectru
structures exhibit self-similarity. Moreover, Eq. (3) ca
be rewritten as∑

I
l

∏
s,p

­
st2

4fn2sld 2 n1sldg s1 1 tdl
. (4)

The equation shows that the position of peak (or wa
lengths of phase matching) depends on the structure
rameterl, and does not depend on the thickness of blo
A and B and their ratio. Figure 2(b) shows the re
sult of numerical calculation for the QPOS of LT wit
l ­ 11 mm and lAylB ­ 1.37. Indeed from Figs. 2(a)
and 2(b) we find a close correspondence between the
culated and measured results on the positions and inte
ties of peaks. ForlAylB ­ t, calculation has also show
the positions of corresponding peaks remain unchang
except for their strengths.

The intensities of peaks in Fig. 2 are related to t
effective nonlinear coefficientsdm,n. Fourier transferring
Eq. (2), we can get

dm,n ­ d33

sin

µ
1
2

Gm,nl

∂
1
2

Gm,nl
p

sinXm,n

Xm,n
; (5)

here Xm,n ­ pD21t2smlA 2 nlBd. For a plane-wave
interaction, ignoring depletion of the fundamental field, t
second harmonic intensity can be written as [14]

I2v ­
8p2d2

m,nL2I2
v

n2
I n2c´0l2

sinc2

µ
1
2

DkL

∂
, (6)
2754
-
-
k

t,

d

a

e-
pa-
ks
-

al-
si-

d,

e

e

whereLIv is the length-intensity product associated wi
a particular device geometry;n1, n2 are the refractive in-
dices of the fundamental and harmonic, respectively;l

is the fundamental wavelength;c is the speed of light;
and ´0 is the dielectric constant of vacuum. When th
phase matching condition is satisfiedsDk ­ 0d, the sinc
factor in Eq. (6) is unity. The intensities of peaks a
proportional to the square ofdm,n. In Eq. (5),dm,n con-
tains the two factorssins1y2Gm,nld

1y2Gm,nl andsinXm,n

Xm,n
. For sins1y2Gm,nld

1y2Gm,nl ,
the smaller the indexesm and n, the larger its value.
While the value ofsinXm,n

Xm,n
depends strongly on the indice

m, n and the ratiolAylB, sinXm,n

Xm,n
is larger when the ratio

nym is closer to ratiolAylB. We calculated the magnitude
of the main dm,n, for lAylB ­ 1.37 and lAylB ­ t ac-
cording to Eq. (5); the results are shown in Table II.
lAylB ­ t, it is well known that the best rational ap
proximations tot occur whenn and m are successive
Fibonacci numbersFk . The largerdm,n corresponds to
sm, nd ­ sFk21, Fkd. However, this does not mean tha
thedm,n has the largest value whenlAylB ­ t. The mag-
nitude of dm,n changes with the ratio oflAylB. The cal-
culated values versus the ratiolAylB from 1 to 2 for
some dm,n are shown in Fig. 3. The curves in Fig. 3
show thatdm,n with low indices, such asd1,1, d1,2, . . .
exhibit a monotonic dependence on the ratiolAylB in
this range, whereas those with high indices, for exam
d2,3, d3,4, . . . oscillate in the same range. From Table
and Fig. 3 we can find the two cases for whichdm,n ­ 0.

TABLE II. The effective nonlinear coefficientsdm,n of quasi-
periodic poling LiTaO3.

jdm,nyd33j

m,n s,p lAylB ­ 1.37 lAylB ­ t

0,1 1,1 0.156 0.286
1,1 1,2 0.546 0.447
1,2 1,3 0.138 0.195
2,3 1,4 0.184 0.191
3,5 1,5 0.018 0.052
3,4 0.098 0.048
4,3 0.001 0.020
2,2 0 0
4,4 0 0
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FIG. 3. The dependence of the effective nonlinear coefficien
dm,n on the ratio oflA andlB.

One issm, nd ­ s2j, 2jd, in which j is an integer, which
corresponds to that the structure parameterl equals an
even number times the coherence length of SHG. T
other is when the ratiolAylB equals a specified value,
e.g., lAylB ­ 1.36 for G3,4, which lead toX4,3 ­ 2p,
and sinX4,3 ­ 0. Thus all peaks, with indicessm, nd in
accord with the two conditions above will disappear i
the spectrum if even the condition of phase matchin
Dk ­ 0 is satisfied. In Fig. 2 the peaks indexed (2, 2
and (4, 3) do not appear in both calculated and measu
spectra because these two peaks satisfy extinction c
ditions: d2,2 ­ 0 and d4,3 ø 0 for lAylB ­ 1.37, respec-
tively. Sincedm,n is a function of ratiolAylB, we may
significantly increase somedm,n by optimizing the struc-
ture design.

In Table I, we present the values of full width at ha
maximum (FWHM) of the SHG signal for various phase
matching wavelengths. They are close to the values pre
cated by theory, which shows that the effective interacti
is over the entire sample length in the SHG process. T
verifies that the sample was poled uniformly.

We can compare the conversion efficiencyhm,n of a
QPOS with thehn of a POS through comparingdm,n
with dn. In main dm,n, d1,1 is maximum, for lAylB ­
1.37, d1,1 ø 0.55d33. In contrast with the largest effective
nonlinear coefficient of a POS in the first-order QPM
d1 ­ 0.64d33. For the equal length-strength paramet
LIv, the conversion efficiencyh1,1 ø 0.75h1, which is
75% of a POS in a first-order QPM process. The re
is comparable with the third-order QPM’sd3 ø 0.2d33
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(see Table II). This can also be seen from Fig. 3. Wh
the ratio lAylB ! 1, d1,1 ! d1 ­ 2d33yp, the rest! 0,
thus the system becomes a periodic superlattice, and
multipeak structure in the spectrum will disappear.

In summary, a one-dimensional QPOS of LT consi
ing of positive and negative ferroelectric domain wi
Fibonacci sequence has been fabricated using the p
field poling technique at room temperature. The seco
harmonic spectrum of the superlattice has been stud
theoretically and experimentally. The spectrum does
exhibit self-similarity because of the dispersion of the r
fractive index of LT. This is in contrast to the x-ra
diffraction and Raman spectra of quasiperiodic super
tices in which spectrum structure reflects the symme
of the quasiperiodic structure. The extinction phenom
non has also been verified experimentally. Freque
conversion efficiencies as high as 5%–20% for SHG
some fundamental wavelengths were measured usin
ps-OPO laser, which efficiencies are comparable with t
of a POS. Our results show the QPOS may be applied
some multiwavelength SHG devices.
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