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Dynamics of Multisoliton Interactions in Parametrically Resonant Systems
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Several important dynamical aspects of parametrically excited multisolitons are observed experimen-
tally and further simulated with the parametrically driven, damped nonlinear Schrédinger equation.
These aspects include the three basic modes of soliton-soliton interactions, the chaotic motions of the
solitons, and transitions among different soliton states. [S0031-9007(97)02866-4]

PACS numbers: 43.25.+y, 47.20.Ky, 47.35. +i

A class of nonlinear resonant phenomena in variousrequency, respectively. In order to make the soliton
physical media are described by th&rametrically driven, formations easier, we have minimized the water surface
damped nonlinear Schrédinger equati@PDNLS) [1] tension coefficient down to aboB7.6 dyne/cn?. In this

i(p, + ad) + dxx + 2lp1Pp + ye 27" =0, implementation, PE solitons appear as some surface cross

waves but modulated with solitary-wave envelopes in the
(1) xdirection [9]. The governing equation for the envelopes,

or by the autonomous one i.e., Eq. (2), has been derived by Miles [2]. let= 7 /b,
i, + a) + xx + (B + 214y + yy* =0, T = tanh(kh), and k = 2k\/T/[T + kh(1 — T?)], and
2 assume is a small parametef(< € < 1) that measures

wherey(X, 7) = /7 (X, 7). These phenomena include the strength of nonlinearity. Then, in Miles’s theory,

the Faraday resonance in fluid dynamics [2,3], Iocalizeti?
structures in nonlinear lattices [4], self-localized structures
in granular materials [5], parametric generation of spin w? — wh w’ay
waves in ferro- and antiferromagnets [6], instabilities in B = 2w2e? Y= ge? ’ (3)
plasma [7], and amplitude modulation in Josephson junc-
tion [8]. In all these cases, a suitable parametric excitatiomnvhereg is the acceleration of gravity, angly; = /gkT
of the system can generate and sustain a solitonic wavéhe linear eigenfrequency of the transverse mode (0, 1).
known as theparametrically excitedPE)soliton,a type of  For the details as well as the incorporation of the water
which was realized in an oscillating water tank [9]. In the surface tension, readers are referred to Miles’s work [2].
absence of a parametric drive, i.¢.exp(—iB7)¢* = 0, We first describe the experimental results $¢f). As
Eq. (1) is nothing but the nonlinear Schroédinger (NLS)already reported [9,10], the double solitons of like polarity
equation with linear damping. The introduction of the will interact with each other in a repeated sequence of
drive not only balances the energy dissipation but also deattractions, collisions, and repulsions. For example, Fig. 1
termines the distinct nature of the soliton. For example, ahows the interactions and motions at the paramétess
single soliton is never propagating [9], and it can exhibitb X h =20 X 2.5 X 2 cm?, ag = 0.75 mm, andf, =
various bifurcation and chaotic behaviors in some parami0.06 Hz. We shall refer to this interaction pattern as
eter regions [1]. M-l. A few of the new facts are further observed in
More than one PE soliton has already been observedur recent inspection. Whea, is decreased to certain
in an oscillating channel [9,10], each being identical butvalue, S(1T) will degenerate intoS(f). On the other
with different polarities. However, the dynamic problemshand, asa, increases, the oscillation diminishes and
about multisolitons, especially the soliton-soliton interac-each soliton becomes standing. In a very long trough,
tions, still remain unclear or unresolved so far. The obe.g.,I X b X h = 40 X 3 X 2 cn?, the oscillating pair
jective here is to explore these problems. Referring to théecomes unstable due to the excitations of other surface-
polarities, we shall use symbol§"“and “|” to denote a wave modes, but the unwanted excitations may be greatly
positive and negative polarity, respectively. For examplesuppressed by adding some absorbent, such as cotton,
S(1) stands for the double solitons of like polarity, and on both end walls, which leads to the pair more stable.
S(1l) for the double solitons of opposite polarity, etc. Obviously, the oscillation mode is internal &11). In a
We carry out our experiments by using an oscillatingsenseS(11) is of a “bound staté,or “bound-pair”
water trough [9,10]. The trough is made of Plexiglas By contrast, the behaviors ¢f(f]) are quite different.
and contains pure water in the regidh< x <[, 0 <  Two distinct dynamical modes are observed. One is found
y <b,and—h <z <0 (I > b,h). Under a vertical in a shorter trough, e.gl,X b X h =20 X 3 X 2 cn?.
drive, it oscillates in the simple formy = a,co92wt),  Figure 2(b) shows the interactions and oscillations (M-II)
wherea, and f;, = w /7 are the driving amplitude and under a drive, sayf; = 9.7 Hz anda, = 0.8842 mm.

,1) is mapped to(X,7) in Eq. (2) ast = €’wt and
= ekx, and( f4, ay) is related to(B, v) as
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FIG. 1. Interactions and motions of the double solitsit).
(a) Photo; (b) M-I in a periodT0 — T4.

In this mode, both solitons oscillate phasein the x
direction, with a period about 10 s. Once a soliton collides
on its nearby end wall, the other must be away from the
other end wall, and they soon change their directions of
motions. Inthis casé,~ 2\, wherea is the extension of a
soliton (A ~ 7 cm), and considerable parts of the solitary-

wave envelopes overlap. Thus the behavior should result

from the tight coupling between the solitons, as well as
the strong boundary effect [10]. The other mode (M-III)
is observed in a longer trough, sayx b X h = 40 X

3 X 2 cm?. A careful observation shows that there always
exists a repulsion between the opposite polarity solitons;
the closer they are, the stronger the repulsion is. Last,

they are pushed close to the two end walls, respectivel5IG. 2.

term evolutiontypically several hours or even more than Period:T

one day. In the final steady state, they are separated
by approximately 32 cm, so there is a little overlap in
between. As expected, each soliton would behave as ¢
boundary one, which has been reported earlier [10]. What
surprises us here is the synchronous oscillations betweel
the weakly coupledsolitons, which, as opposed to M-II,
are exactly 180° out of phase. Figure 2(c) shows the
interaction and motion (M-IIl) whea,; = 0.819 mm and

fa = 9.7 Hz. The oscillation period varies slightly with
(aq, f4), and is typically 20 s. Both M-Il and Ill exist only

in limited ranges oflay, f4). Whena, is decreased to a
certain value, one of them or both will be attached to the
end walls, displaying halves of the envelopes; while, at a
largeay, the solitons become standing.

It is found that the three modes are basic to the system
and exist in many other multisoliton states. For instance,
the 4-soliton stateS(1ll) realized in a trough ofl X
b X h =30 X 25 X 2cm® will oscillate in a pattern
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FIG. 3.
(a) Photo; (b) interactions in a periol0 — T4.
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Interactions and motions of the double solitc_smﬁ).
and are eventually “captured” by the boundaries in a longa) Photo; (b) M-Il in a period:70 — 74; (c) M-lll in a
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Interactions and motions of the 4 solitoS§lll1).
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shown in Fig. 3 whem; = 1.25 mm andf; = 11.0 Hz.  the point (1) corresponds té X b X h =40 X 3 X
As we can see, this pattern is a simple combination of M-2 cm?®, a; = 0.63 mm, andf,; = 9.7 Hz when € takes
and Il. The similar situation also occurs in the states suc.3089, while (2) and (3) are the direct translations
asS1D), S, andSATLUD). of the experimental parameters € 0.3296). Figure 5
Could the PDNLS equation describe the observationshows the simulations at these points. Obviously, the
above or even give us more information of the system ircomputations reproduce the observations quite well.
a more general sense? Owing to the nonintegrability, we In all these modes, if varyings out of the stability
attempt to answer the question here by invoking numericalegions, then the experimentally observed transitions and
solutions. We integrate Eq. (2) by using an implicit finite- degenerations have been reproduced too, &(f) —
difference algorithm with respect t&X and the fourth S(1) at the lower bound of region (M-I). For M-Il and
order Runge-Kutta-Fehlberglgorithm with respect ta.  1ll, a careful investigation further reveals the existences
The boundary conditiongy|x—o,, = 0 are incorporated, of some finer and complex nonlinear structures in the
whereL = ekl, and the computation error is controlled vicinity of the lower boundaries of the regions. Asis
within 107°. gradually decreased,(1]) manifests itself as periodie>
Our main results are summarized in Fig. 4. These arguasiperiodic— chaotic oscillation, and then, transits to
the stability diagrams in thég,v) plane for the three a “1.5” soliton state, one being attached to a boundary.
modes described above. For M-I, we present here thPlotted in Fig. 6 is the phase portrait on the third stage
result for a relatively long troughZ(= 25.09), in which  of the scenario. It is identified as a strange attractor,
the boundary effect is insignificant. On the diagramsgsignifying the onset of chaos.
For better understanding of the soliton dynamics,
we have further inspected several dynamical quantities,
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FIG. 4. The parameter regions for M-I, Il, and lll, respec-
tively. (M-1) L = 25.09, « = 0.4519; (M-Il) L = 12.55, @ = FIG. 5. Simulations of the three modes at the points denoted
0.5896; (M-1ll) L = 25.09, a = 0.5896. by (1), (2), and (3) in Fig. 44 = Im()].
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FIG. 6. Phase trajectory of(f|) at the point 4" in Fig. 4
(M-1), where (B,y) = (~0.5192,0.8018) [¢ = Re(),n =
Im(e)].

namely, the “particle” numberN, momentumM, and
energyE. They are formulated as

L

N(r) = fo (X, DI dX |
L

M(r) = fo MG~ hx) dX .

L
B = 5 [ T8I + yRety?)

+ gt — lyxIPlax.
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FIG. 7. Variations ofN and E in the oscillating pairS(i1)
M = 0).

To summarize, many interesting behaviors of the PE
solitons, in particular, the three basic dynamical modes,
are revealed experimentally, and they are all confirmed by
the simulations to Eq. (2). M-I is shown to be internal
to S(11); while M-Il and IIl in S(1|) are the results of
the dynamical balances between the repulsion of the
solitons and the boundary influence. By applying the
“mirror effect” [10], we see thatS({ll1) is simply a
periodic extension ofS(1]), and they are all equivalent
to the periodic solitary-wave chasi(- - - 1UITUITUT - - +)
in an infinite waveguide. In the virtual state, every two
neighboring solitons of like polarity would form a bound
pair, acting as a classic “oscillator” (M-1). Depending
on the strength of coupling, neighboring oscillators, with
their polarities opposite to each other, would be locked
either in phase (M-Il) or 180 out of phase (M-IlI).
Insufficient energy feed would have the oscillators out of
steps, thus leading to chaos, and then, the collapse of one
or more bound pairs.

The work is supported by the National Science Founda-
tion of China (No. 19204008) and the State Key Lab. of
Modern Acoustics of Nanjing University.

These quantities are conservative for the NLS solitons, but

for the PDNLS equation (2), it follows from (4) that
L
AN = 27[
0

AM =yt + 3(191P)xx s, (5)

Im(y?) dX

L
AE = —a[ ly|*dX .
0

d .
where A, = (; + 2a>. As we can see, in general,

N, M, and E vary with 7. For instance, a®(, ) is
periodic for the three modeb| andE are clearly periodic
too ast — . For M-l and Ill, M — 0 due to the
symmetry of the motions, but for M-IM # 0 asT — o,
and its direction changes alternately in the direction.
Figure 7 gives an example of the variations.
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