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Several important dynamical aspects of parametrically excited multisolitons are observed exper
tally and further simulated with the parametrically driven, damped nonlinear Schrödinger equa
These aspects include the three basic modes of soliton-soliton interactions, the chaotic motions
solitons, and transitions among different soliton states. [S0031-9007(97)02866-4]

PACS numbers: 43.25.+y, 47.20.Ky, 47.35.+i
u

e
e

re
i
i
n
tio
a

e

S
e
d
,

b
m

v
u

c
b
th

l
d

n
a

n
ce

ross
he
s,

,

1).
ter
].

ty
of

. 1

s
n

d
h,

ce-
tly

tton,
le.

nd

II)
A class of nonlinear resonant phenomena in vario
physical media are described by theparametrically driven,
damped nonlinear Schrödinger equation(PDNLS) [1]

isft 1 afd 1 fXX 1 2jfj2f 1 ge22ibtfp  0 ,

(1)
or by the autonomous one

isct 1 acd 1 cXX 1 sb 1 2jcj2dc 1 gcp  0 ,

(2)
wherecsX, td  eibtfsX, td. These phenomena includ
the Faraday resonance in fluid dynamics [2,3], localiz
structures in nonlinear lattices [4], self-localized structu
in granular materials [5], parametric generation of sp
waves in ferro- and antiferromagnets [6], instabilities
plasma [7], and amplitude modulation in Josephson ju
tion [8]. In all these cases, a suitable parametric excita
of the system can generate and sustain a solitonic w
known as theparametrically excited(PE)soliton,a type of
which was realized in an oscillating water tank [9]. In th
absence of a parametric drive, i.e.,g exps2ibtdfp  0,
Eq. (1) is nothing but the nonlinear Schrödinger (NL
equation with linear damping. The introduction of th
drive not only balances the energy dissipation but also
termines the distinct nature of the soliton. For example
single soliton is never propagating [9], and it can exhi
various bifurcation and chaotic behaviors in some para
eter regions [1].

More than one PE soliton has already been obser
in an oscillating channel [9,10], each being identical b
with different polarities. However, the dynamic problem
about multisolitons, especially the soliton-soliton intera
tions, still remain unclear or unresolved so far. The o
jective here is to explore these problems. Referring to
polarities, we shall use symbols “"” and “#” to denote a
positive and negative polarity, respectively. For examp
Ss""d stands for the double solitons of like polarity, an
Ss"#d for the double solitons of opposite polarity, etc.

We carry out our experiments by using an oscillati
water trough [9,10]. The trough is made of Plexigl
and contains pure water in the region:0 , x , l, 0 ,

y , b, and 2h , z , 0 (l ¿ b, h). Under a vertical
drive, it oscillates in the simple formz0  ad coss2vtd,
wheread and fd  vyp are the driving amplitude and
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frequency, respectively. In order to make the solito
formations easier, we have minimized the water surfa
tension coefficient down to about37.6 dyneycm2. In this
implementation, PE solitons appear as some surface c
waves but modulated with solitary-wave envelopes in t
x direction [9]. The governing equation for the envelope
i.e., Eq. (2), has been derived by Miles [2]. Letk  pyb,
T  tanhskhd, and k  2k

p
TyfT 1 khs1 2 T2dg, and

assumee is a small parameter (0 , e ø 1) that measures
the strength of nonlinearity. Then, in Miles’s theory
sx, td is mapped tosX, td in Eq. (2) ast  e2vt and
X  ekx, ands fd , add is related tosb, gd as

b 
v2 2 v

2
01

2v2e2
, g 

v2ad

ge2
, (3)

whereg is the acceleration of gravity, andv01 
p

gkT
the linear eigenfrequency of the transverse mode (0,
For the details as well as the incorporation of the wa
surface tension, readers are referred to Miles’s work [2

We first describe the experimental results forSs""d. As
already reported [9,10], the double solitons of like polari
will interact with each other in a repeated sequence
attractions, collisions, and repulsions. For example, Fig
shows the interactions and motions at the parametersl 3

b 3 h  20 3 2.5 3 2 cm3, ad  0.75 mm, andfd 
10.06 Hz. We shall refer to this interaction pattern a
M-I. A few of the new facts are further observed i
our recent inspection. Whenad is decreased to certain
value, Ss""d will degenerate intoSs"d. On the other
hand, asad increases, the oscillation diminishes an
each soliton becomes standing. In a very long troug
e.g., l 3 b 3 h  40 3 3 3 2 cm3, the oscillating pair
becomes unstable due to the excitations of other surfa
wave modes, but the unwanted excitations may be grea
suppressed by adding some absorbent, such as co
on both end walls, which leads to the pair more stab
Obviously, the oscillation mode is internal toSs""d. In a
sense,Ss""d is of a “bound state,” or “ bound-pair.”

By contrast, the behaviors ofSs"#d are quite different.
Two distinct dynamical modes are observed. One is fou
in a shorter trough, e.g.,l 3 b 3 h  20 3 3 3 2 cm3.
Figure 2(b) shows the interactions and oscillations (M-
under a drive, say,fd  9.7 Hz and ad  0.8842 mm.
© 1997 The American Physical Society
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FIG. 1. Interactions and motions of the double solitonsSs""d.
(a) Photo; (b) M-I in a period:T0 ! T4.

In this mode, both solitons oscillatein phase in the x
direction, with a period about 10 s. Once a soliton collid
on its nearby end wall, the other must be away from
other end wall, and they soon change their directions
motions. In this case,l , 2l, wherel is the extension of a
soliton (l , 7 cm), and considerable parts of the solitar
wave envelopes overlap. Thus the behavior should re
from the tight coupling between the solitons, as well
the strong boundary effect [10]. The other mode (M-I
is observed in a longer trough, say,l 3 b 3 h  40 3

3 3 2 cm3. A careful observation shows that there alwa
exists a repulsion between the opposite polarity solito
the closer they are, the stronger the repulsion is. L
they are pushed close to the two end walls, respectiv
and are eventually “captured” by the boundaries in a lo
term evolution,typically several hours or even more tha
one day. In the final steady state, they are separa
by approximately 32 cm, so there is a little overlap
between. As expected, each soliton would behave a
boundary one, which has been reported earlier [10]. W
surprises us here is the synchronous oscillations betw
the weakly coupledsolitons, which, as opposed to M-I
are exactly 180± out of phase. Figure 2(c) shows the
interaction and motion (M-III) whenad  0.819 mm and
fd  9.7 Hz. The oscillation period varies slightly with
sad , fdd, and is typically 20 s. Both M-II and III exist only
in limited ranges ofsad , fdd. Whenad is decreased to a
certain value, one of them or both will be attached to
end walls, displaying halves of the envelopes; while, a
largead, the solitons become standing.

It is found that the three modes are basic to the sys
and exist in many other multisoliton states. For instan
the 4-soliton stateSs"##"d realized in a trough ofl 3

b 3 h  30 3 2.5 3 2 cm3 will oscillate in a pattern
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FIG. 2. Interactions and motions of the double solitonsSs"#d.
(a) Photo; (b) M-II in a period:T0 ! T4; (c) M-III in a
period:T0 ! T4.

FIG. 3. Interactions and motions of the 4 solitonsSs"##"d.
(a) Photo; (b) interactions in a period:T0 ! T4.
2745
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shown in Fig. 3 whenad  1.25 mm andfd  11.0 Hz.
As we can see, this pattern is a simple combination of M
and II. The similar situation also occurs in the states s
asSs""#d, Ss""##d, andSs""##"d.

Could the PDNLS equation describe the observati
above or even give us more information of the system
a more general sense? Owing to the nonintegrability,
attempt to answer the question here by invoking numer
solutions. We integrate Eq. (2) by using an implicit finit
difference algorithm with respect toX and the fourth
order Runge-Kutta-Fehlbergalgorithm with respect tot.
The boundary conditionscX jX0, L  0 are incorporated,
whereL  ekl, and the computation error is controlle
within 1026.

Our main results are summarized in Fig. 4. These
the stability diagrams in thesb, gd plane for the three
modes described above. For M-I, we present here
result for a relatively long trough (L  25.09), in which
the boundary effect is insignificant. On the diagram

FIG. 4. The parameter regions for M-I, II, and III, respe
tively. (M-I) L  25.09, a  0.4519; (M-II) L  12.55, a 
0.5896; (M-III) L  25.09, a  0.5896.
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the point (1) corresponds tol 3 b 3 h  40 3 3 3

2 cm3, ad  0.63 mm, andfd  9.7 Hz when e takes
0.3089, while (2) and (3) are the direct translation
of the experimental parameters (e  0.3296). Figure 5
shows the simulations at these points. Obviously, t
computations reproduce the observations quite well.

In all these modes, if varyingg out of the stability
regions, then the experimentally observed transitions a
degenerations have been reproduced too, e.g.,Ss""d !
Ss"d at the lower bound of region (M-I). For M-II and
III, a careful investigation further reveals the existenc
of some finer and complex nonlinear structures in th
vicinity of the lower boundaries of the regions. Asg is
gradually decreased,Ss"#d manifests itself as periodic!
quasiperiodic! chaotic oscillation, and then, transits to
a “1.5” soliton state, one being attached to a bounda
Plotted in Fig. 6 is the phase portrait on the third stag
of the scenario. It is identified as a strange attracto
signifying the onset of chaos.

For better understanding of the soliton dynamic
we have further inspected several dynamical quantiti

FIG. 5. Simulations of the three modes at the points deno
by (1), (2), and (3) in Fig. 4 [h  Imscd].
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FIG. 6. Phase trajectory ofSs"#d at the point “y” in Fig. 4
(M-II), where sb, gd  s20.5192, 0.8018d [j  Rescd, h 
Imscd].

namely, the “particle” numberN, momentumM, and
energyE. They are formulated as

Nstd 
Z L

0
jcsX, tdj2 dX ,

Mstd 
Z L

0
ImscpcXd dX ,

Estd 
1
2

Z L

0
fbjcj2 1 gResc2d

(4)

1 jcj4 2 jcX j2g dX .

These quantities are conservative for the NLS solitons,
for the PDNLS equation (2), it follows from (4) that

DtN  2g
Z L

0
Im

°
c2

¢
dX ,

DtM  fjcj4 1
1
2 sjcj2dXXgL

0 , (5)

DtE  2a
Z L

0
jcj4dX .

where Dt ;
≥

d
dt 1 2a

¥
. As we can see, in genera

N, M, and E vary with t. For instance, ascs , td is
periodic for the three modes,N andE are clearly periodic
too as t ! `. For M-I and III, M ! 0 due to the
symmetry of the motions, but for M-II,M fi 0 ast ! `,
and its direction changes alternately in the6x direction.
Figure 7 gives an example of the variations.
ut

FIG. 7. Variations ofN and E in the oscillating pairSs""d
(M  0).

To summarize, many interesting behaviors of the P
solitons, in particular, the three basic dynamical mode
are revealed experimentally, and they are all confirmed
the simulations to Eq. (2). M-I is shown to be interna
to Ss""d; while M-II and III in Ss"#d are the results of
the dynamical balances between the repulsion of t
solitons and the boundary influence. By applying th
“mirror effect” [10], we see thatSs"##"d is simply a
periodic extension ofSs"#d, and they are all equivalent
to the periodic solitary-wave chainSs? ? ? "##""##""##" ? ? ?d
in an infinite waveguide. In the virtual state, every tw
neighboring solitons of like polarity would form a bound
pair, acting as a classic “oscillator” (M-I). Depending
on the strength of coupling, neighboring oscillators, wit
their polarities opposite to each other, would be locke
either in phase (M-II) or 180± out of phase (M-III).
Insufficient energy feed would have the oscillators out
steps, thus leading to chaos, and then, the collapse of
or more bound pairs.
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