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Systems with Multiplicative Noise: Critical Behavior from KPZ Equation and Numerics
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We show that certain critical exponents of systems with multiplicative noise can be obtained
from exponents of the KPZ equation. Numerical simulations in 1D confirm this prediction and
yield other exponents of the multiplicative noise problem. The numerics also verify an earlier
prediction of the divergence of the susceptibility over an entire range of control parameter values
and show that the exponent governing the divergence in this range varies continuously with control
parameter. [S0031-9007(96)02067-4]

PACS numbers: 64.60.Ht, 02.50.–r, 47.20.Ky
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Langevin equations—first order partial differenti
equations in time containing Gaussian random no
terms—capture the macroscopic physics of many c
sical, stochastic, many-body systems [1]. In the m
common situation, one that includes much of equilibriu
statistical mechanics, the noise amplitude is simply a c
stant. There are, however, important classes of probl
in which the noise amplitude is proportional to a positi
powera of the field variable itself. The well-known cas
a ­

1
2 describes the physics of directed percolation a

its many and diverse realizations [2].
This paper deals with “multiplicative-noise” system

(MNS) [3,4], wherein the dominant source of noise
external, and hencea ­ 1. As an example, conside

the chemical reactionsA 1 X
k1

%
k2

2X, B 1 X
k3
! C, for

chemical speciesA, B, C, X, and rate constantsk1, k2,
k3. The phenomenological reaction-diffusion equati
for the coarse-grained densityns $x, td of X particles
is [3] ≠ny≠t ­ =2n 1 g1nAn 2 g2n2 2 g3nBn, where
the constantsgi ~ ki for i ­ 1, 2, 3. Suppose one tries
experimentally to keep the densitiesnA,B fixed externally
at valuesn0

A,B. Despite one’s best efforts there will b
local fluctuationsdn0

A,Bs$x, td. SubstitutingnA,Bs $x, td ­
n0

A,B 1 dn0
A,Bs$x, td into the above equation yields th

generic MNS with a single-component field
≠ns$x, tdy≠t ­ =2n 2 rn 2 un21r 1 nh . (1)

Here r ; g1n0
A 2 g3n0

B, u ; g2, and the noiseh ;
g1dnA 2 g3dnB is, without loss of generality, taken to b
Gaussian with strengthD: khs $x, tdhs $x0, t0dl ­ Dds$x 2
$x0ddst 2 t0d. Though the chemical reaction proble
corresponds tor ­ 0, we also considerr ­ 1.

In a previous paper [5] we analyzed the phase struc
of this model, which has two phases, an “active” pha
with knl . 0 and an “absorbing” phase withns $xd ­ 0 for
all $x, that occurs for sufficiently larger. These phases
are separated by a critical point atr ; rc, whererc ­ 0
in mean-field theory. [Note that the vanishing of th
noise amplitude withn makes the right side of Eq. (1
vanish whenns $xd vanishes, thereby causing all dynami
to cease and making the absorbing configurationns $xd ­ 0
a potentially stable phase.] We showed that model (1)
0031-9007y97y78(2)y274(4)$10.00
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a critical dimensiondc ­ 2, below which the transition is
governed by an analytically inaccessible strong-coupl
fixed point. Ford . 2, on the other hand, the transitio
is governed by the “weak-coupling” Gaussian fixed po
with mean-field exponents forD less than a critical value
Dc. ForD . Dc, however, the strong-coupling fixed poin
is the stable one. A multicritical point occurs atD ­ Dc.

In this paper we argue that the critical behavior of MN
is actually governed by the fixed point of the Karda
Parisi-Zhang (KPZ) model of growing interfaces [6]. Th
mapping is consistent with the phase diagram propo
in Ref. [5], and with known exponents of the weak
coupling and multicritical fixed points. It also allows u
to express the dynamical exponentz and the correlation
length exponentn of the strong-coupling transition in
terms of the KPZ exponents. These exponents are fo
to be independent of the degree2 1 r of the nonlinearity.
A lower bound of unity for the order parameter expone
b in the caser ­ 0 also emerges. We confirm thes
predictions by calculating numerically in 1D the fou
independent exponents characterizing the strong-coup
transition. We also confirm the rather striking predictio
in Ref. [5] of an entire domain ofr values, encompassing
the critical valuerc, in which the susceptibility of the
system diverges. The numerics show that, as in
exactly solvable single variable (0D) problem, this regio
of infinite susceptibility extends to both sides of th
critical point and is controlled by a fixed line with
continuously varying critical exponents [5].

To establish the connection between model (1) a
the KPZ theory, note that the fieldns $x, td in (1) will
remain positive if ns $x, 0d . 0 for all x. In this case
one can perform the Hopf-Cole [7] change of variab
ns $x, td ­ ehs $x,td, producing the equation [8]

≠hy≠t ­ 2r 1 =2h 1 s=hd2 2 ues11rdh 1 h . (2)

Aside from the u term this is precisely the KPZ
equation [wherein the standard KPZ nonlinearitys=hd2

has coefficient unity]. Note, however, that either in th
absorbing phase or at the critical point, the steady-st
value ofn is zero, whereupon the steady-state value oh
is 2`. Thus theu term vanishes in steady state, leavin
one with precisely the KPZ theory.
© 1997 The American Physical Society
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Recall [6] that the phase diagram of the KPZ equati
consists of a unique strong coupling phase ford # dc ­
2, and both weak and strong coupling phases separate
a multicritical point for d . 2. The weak and strong
coupling regimes occur for noise strengthsD that are,
respectively, smaller and larger than a critical value. T
phase diagram is thus encouragingly similar to that of
MNS. Also the dynamical critical exponentz is 2 for both
MNS [5] and KPZ [9] along the line of weak-coupling
transitions and at the multicritical point, ford . 2.

Let us now consider the critical exponents for th
strong-coupling transition. The dynamical critical exp
nentz for the MNS can be computed from the steady-st
behavior of response functions right at the critical poi
and hence is identical to the value ofz in the KPZ theory.
In particular, then,z ­

3
2 for d ­ 1 [6].

To argue that other exponents of the MNS can also
obtained from the KPZ equation requires us to consi
the active state of model (1). Forr slightly less thanrc,
0 , knl ø 1 in steady state, implying thath0 ; khl is very
large and negative. Writinghs$x, td ; khl 1 dhs$x, td, one
obtains an equation fordh that is identical to the KPZ
equation except for the extra nonlinear term2u0es11rddh,
whereu0 ; ues11rdh0 . Noting that the leading nontrivia
term in the expansion of this nonlinearity in powers ofdh
is the linear “mass” term2u0s1 1 rddh, we infer that the
main effect of2u0es11rddh is to produce a finite correlation
lengthj at which the power law correlations of the KP
equation are cut off and replaced by exponential behav
One concludes thatj must be the correlation length of th
corresponding MNS; its divergence asr ! rc is governed
by the critical exponentn. In the critical region, i.e., on
length scalesj $xj ø j, theu0 term is negligible, so critical
correlations can be computed from the KPZ equation.

To calculaten from KPZ, take the expectation value o
the dh equation, recall thatkdhl ­ 0, and write the extra
nonlinear term as2ukn11rl, to obtain

2r 1 ks=hd2l 2 ukn11rl ­ 0 . (3)

At the critical point, r ­ rc and n ­ 0, so 2rc 1

ks=hd2lc ­ 0. Subtracting this equation from (3) yield
dW ­ 2dr 1 ukn11rl, wheredr ; rc 2 r, anddW ;
ks=hd2l 2 ks=hd2lc. From the standard scaling of th
KPZ equation [6], one has [10]dW , 2Cj2sx21d, where
C is a positive constant andx the roughness exponen
of a KPZ interface; i.e.,kfhs $x, td 2 hs$0, tdg2l , x2x for
KPZ in steady state. SinceC . 0, dr . 0 in the active
phase, andkn11rl , sdrdb11r . 0, the equation forj
has a solution for smalldr only if the exponentb11r

is greater than unity. For the quadratic nonlineari
r ­ 0, so kn11rl is the order parameterknl, whereupon
this constraint places the nontrivial boundb . 1 on the
order parameter exponentb ; b1. For any value ofr,
one then obtains the resultj , dr2n with n ­ 1ys2 2

2xd. (When the KPZ interface is smooth,x ­ 0 in this
formula.) Note that the KPZ scaling relationz 1 x ­ 2
[6] implies z 2 1y2n ­ 1 for MNS.
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We now describe the numerical simulation of (1) in 1
We discretize the continuum equation as

nist 1 Dtd ­ nistd 1 Dth2rnistd 2 unistd21r

1 s1yDx2d fni11std 1 ni21std 2 2nistdgj

1
p

DDtnistdhistd, si ­ 1, 2, . . . , Nd ,

(4)

whereDx is the lattice spacing,Dt is the time step, and
histd is a Gaussian random number with unit standard
viation. [We have written Eq. (4) in the Ito interpretatio
[1] of Eq. (1). By replacingr by r 2 Dy2 in all our re-
sults, one converts to the Stratonovich representation [
We setDx ­ 1, Dt ­ 0.02, and use periodic boundar
conditions with the system sizeL ­ NDx. We also fix
the noise amplitude

p
D ­ 4 and vary the linear coeffi-

cient r as the only control parameter. In the following
we present our numerical results forr ­ 1 [11].

In numerical simulation, due to the finite time stepDt,
the property of (1) thatnsx, td . 0 if nsx, 0d . 0 for all x is
lost. However, it is easy to fix this problem by settingnistd
to zero if its value becomes negative under Eq. (4). T
effect of this modification is easily estimated. For a sing
time step we can neglect the second term on the right-h
side (rhs) of (4) because it is of higher order inDt than
the noise term. Then setting negative values ofnistd to
0 is equivalent to truncating the probability distribution
histd so that its minimum is set byhmin ­ 21y

p
DDt,

and replacing all theh , hmin by hmin. This means,
however, that the mean ofhistd is no longer zero, and
thus a deterministic term proportional tonistd is gener-
ated. The resulting effective linear coefficientreff can be
roughly estimated asreff ­ r 2

p
Dy2pDt

Rhmin

2` shmin 2

hd exps2h2y2ddh. The effective strength of the noise
also changed because of the truncation. These chang
parameters should not, however, alter the universality c
of the transition [12].

The first step in studying the critical behavior o
MNS numerically is to locate the critical point. Startin
with uniform initial conditions and letting the equatio
evolve long enough to reach steady state, we comp
M ­ knistdl for different values ofr, where k l denotes
both spatial and temporal averages as well as avera
over different independent runs. We average o
between 2 3 105 and 6 3 106 time steps and up to
100 independent runs, depending on the system size.
handle finite-size effects, we studied different syste
sizes:N ­ 100, 200, 400, 1000. In Fig. 1(a) we show the
dependence on the inverse system size1yN of the critical
point rcsNd defined by M first becoming numerically
indistinguishable from zero in every run. Extrapolatin
the fitted line [13] toN ­ ` determines a critical value
rc ø 22.18. Figure 1(b) showsM vs dr ; rc 2 r on
a log-log plot for N ­ 400. The best fit toM , sdrdb

yields [14]b ­ 1.70 6 0.05.
Also depicted in Fig. 1(b) are the higher order m

ments of then field: Mm ­ knml, with m ­ 2, 3. Evidently
275
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FIG. 1. (a) rcsNd vs inverse system size100yN ; (b) knml
with m ­ 1, 2, 3 vs control parameterdr ; rc 2 r; dashed
line with slope 1.7 gives the best fit to the data.

M2 and M3 also have a power law dependence ondr:
Mm , sdrdbm with b2 and b3 being equal tob within
our numerical accuracy. It is not surprising that the
is anomalous scaling, i.e.,b2 fi 2b, b3 fi 3b, and so on,
since the strong coupling fixed point is non-Gaussian, b
it remains to be seen whetherbm is indeed independent of
m. It is interesting to note that for the zero-dimension
(single-variable) case, where an exact solution is availa
[3,15], all the moments do scale with exactly the same e
ponent: knml ­ 2my2Gfm1ryD

2 gyGs2ry2Dd, i.e., bm ­ 1
for all m.

To determine the other critical exponents, we need
calculate the two-point functionCsx, td ­ knsx 1 x0, t 1

t0dnsx0, t0dl in the active phase. We have compute
both Csx, 0d and Cs0, td, for 2r ­ 2.8, 2.6, 2.5, 2.4, 2.34,
2.3, 2.2, 2.215. We usedN ­ 512 and averaged overT ­
106Dt time steps in steady state, and over up to 1
independent runs.

We summarize the results in Fig. 2. In Figs. 2(a) an
2(b), Csx, 0d andCs0, td are plotted for different values of
r . It is clear from these figures that the scaling regim
becomes bigger as we approach the critical point a
that the amplitudes of the correlation functions becom
smaller, consistent withCsx, td vanishing, as it must, in
the absorbing phase. In Fig. 2(c) we plot the absolu
value of theconnectedspace and time correlation function
Ccsx, td ­ Csx, td 2 M2 at the largest value ofr, viz., –
2.215. The power law decay of the correlation functio
in the scaling regime can be characterized byCcs0, td ­
Atsrdt2at and Ccsx, 0d ­ Axsrdx2ax with the exponents
at ­ 1.08 6 0.04 and ax ­ 1.65 6 0.07. In conventional
notation this corresponds to exponentsh ; 2 2 d 1 ax ­
2.65 6 0.07 andz ; axyat ­ 1.53 6 0.07. In Fig. 2(d) we
plot the dependence of the amplitudes of the spatial a
temporal correlation functions,Axsrd andAtsrd, on dr in
the scaling regime; these can be fitted byAx,tsrd , drD

with the exponentD ­ 1.7 6 0.07.
From these measured values of the four exponentsb, h,

z, andD, we obtain the correlation length exponentn from
the scaling relation [5]n ­ s2b 2 Ddysd 2 2 1 hd ­
276
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1.03 6 0.05. These values ofn and z are in excellent
agreement with the values 1 and3

2 , respectively, following
from our argument that the critical behavior of MNS
controlled by the KPZ equation;b2 is also.1, consistent
with the bound derived from KPZ. To further chec
the accuracy of various scaling exponents, we have a
measured the decay of the average density right at the c
cal point, starting from a homogeneous initial conditio
M , t2u . Using scaling arguments it is easy to expre
u in terms of other exponents:u ­ bysnzd. From the
numerical values ofb, n, and z, we predict u to be
1.079. In Fig. 3 we plotM versus time atr ­ rc, and
the exponentu thus measured isu ­ 1.1 6 0.05, in
excellent agreement with the scaling prediction. In t
same figure we have included the behavior of the hig
order momentsM2,3,4std at the critical point. These plots
strongly suggest that the exponentsum ­ bmysnzd for
these higher moments are all equal tou, in agreement with
the static measurement.

Another important characterization of any phase tra
sition is the response function. Though in equilibriu
systems the fluctuation-dissipation theorem relates the
sponse function to the correlation function, in nonequili
rium systems the response and correlation functions
differ significantly. Indeed, one of the striking features
MNS is that the susceptibility is predicted [5] to diverg
over a finite range of control parameters, while the cor
lation function has, more conventionally, a unique critic
point.

To test this prediction numerically in 1D, we add a co
stant source termf on the rhs of Eq. (4) and calculat

FIG. 2. (a) and (b) show the spatial and temporal correlat
functions with different values ofr , rc; (c) connected
correlation functions atr ­ 22.215; dashed lines are fits with
slopes 1.08 and 1.65; (d) amplitudes of the correlation functio
vs dr; dashed line has slope 1.7.
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FIG. 3. Power-law decay in time of various moments of t
order parameter at the critical pointr ­ rc.

the average densityMsf, rd for small values off and for
each value ofr. In Fig. 4(a) we show the dependence
Msf, rd on f for different values ofr around the critical
point rc. We can fit the curves for smallf by Msf, rd ­
Ms0, rd 1 Bsrdfgsrd for smallf, whereMs0, rd is the or-
der parameter in the absence of any external source,
B(r) is a function ofr. The static susceptibility is de
fined asx ; limf!0 ≠My≠f ­ limf!0 Bsrdgsrdfgsrd21,
so the susceptibility diverges whengsrd , 1. According
to Fig. 4(b), where we show the dependence onr of the
susceptibility exponent,gsrd 2 1, x diverges not just in the
absorbing phase, but in the whole region3.2 . r . 25.9
surrounding the critical pointrc ­ 22.18. Both the contin-
uous variation of this exponent withr , and the divergence
of x in both the active and absorbing phases nearrc also
occur in the exactly solvable 0D problem [5].

Another quantitative prediction of our previous pap
[5] is that the region of divergingx should terminate in

FIG. 4. (a) Order parameter vs external field at values or
nearrc; dashed lines are fits toMsf, rd 2 Ms0, rd , fgsrd, as
explained in text; (b) susceptibility exponent vsr; susceptibility
diverges for a range ofr values.
e
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the absorbing phase when the bare mass vanishes,
at r ­ 0 in the Ito representation. However, because
the shift in r due to our numerical algorithm, the lowe
boundary of this region is shifted tor . 0. A clearer
way to test the prediction is therefore to make the Hop
Cole transformationn ­ eh first, and then simulate the
equation forh, noting that the external field will have the
form fe2h. Because the Hopf-Cole relation automatical
guarantees that then field is positive definite, there is no
need to alter the numerical algorithm, sogsr ­ 0d should
equal 1. We have verified this in a simulation.
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