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Systems with Multiplicative Noise: Critical Behavior from KPZ Equation and Numerics
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We show that certain critical exponents of systems with multiplicative noise can be obtained
from exponents of the KPZ equation. Numerical simulations in 1D confirm this prediction and
yield other exponents of the multiplicative noise problem. The numerics also verify an earlier
prediction of the divergence of the susceptibility over an entire range of control parameter values
and show that the exponent governing the divergence in this range varies continuously with control
parameter. [S0031-9007(96)02067-4]

PACS numbers: 64.60.Ht, 02.50.—r, 47.20.Ky

Langevin equations—first order partial differential a critical dimensioni, = 2, below which the transition is
equations in time containing Gaussian random noisgoverned by an analytically inaccessible strong-coupling
terms—capture the macroscopic physics of many clasfixed point. Ford > 2, on the other hand, the transition
sical, stochastic, many-body systems [1]. In the mosts governed by the “weak-coupling” Gaussian fixed point
common situation, one that includes much of equilibriumwith mean-field exponents fdp less than a critical value
statistical mechanics, the noise amplitude is simply a conb.. ForD > D, however, the strong-coupling fixed point
stant. There are, however, important classes of problenis the stable one. A multicritical point occursat= D..
in which the noise amplitude is proportional to a positive In this paper we argue that the critical behavior of MNS
power« of the field variable itself. The well-known case is actually governed by the fixed point of the Kardar-
a = 3 describes the physics of directed percolation andParisi-Zhang (KPZ) model of growing interfaces [6]. This
its many and diverse realizations [2]. mapping is consistent with the phase diagram proposed

This paper deals with “multiplicative-noise” systemsin Ref. [5], and with known exponents of the weak-
(MNS) [3,4], wherein the dominant source of noise iscoupling and multicritical fixed points. It also allows us
external, and hencer = 1. As an example, consider to express the dynamical exponentind the correlation

. . L ks length exponentr of the strong-coupling transition in
the chemical reactions + X o 2X, B+ X = C, for terms of the KPZ exponents. These exponents are found

2
chemical specied, B, C, X, and rate constants;, k,, to be independent of the degrger p of the nonlinearity.
k3. The phenomenological reaction-diffusion equationA lower bound of unity for the order parameter exponent
for the coarse-grained density(x,7) of X particles g in the casep = 0 also emerges. We confirm these
is [3] an/dt = V?’n + yinan — yon> — ysngn, where predictions by calculating numerically in 1D the four
the constantsy; « k; for i = 1,2,3. Suppose one tries independent exponents characterizing the strong-coupling
experimentally to keep the densitieg s fixed externally  transition. We also confirm the rather striking prediction
at valuesn} 5. Despite one’s best efforts there will be in Ref. [5] of an entire domain of values, encompassing

local fluctuationsang,B(},t). Substitutingn, (¥,7) =  the critical valuer., in which the susceptibility of the

ngB + 5n23(;c’ 1) into the above equation yields the system dlverges._ The numerics show that, as |n.the

ge’neric MNS with a single-component field exactly solvable single variable (0D) problem, this region
an(i, 1)/t = V2n — rn — un®? + nny (1) of infinite susceptibility extends to both sides of the

critical point and is controlled by a fixed line with
continuously varying critical exponents [5].

To establish the connection between model (1) and
the KPZ theory, note that the field(x,7) in (1) will

Here r = ylng - )@n%, u = vy,, and the noisen =
v16na — y36npis, without loss of generality, taken to be
Gaussian with strengt®: (n(x,t)n(x’,t')) = DS(x —

x")é(t — t'). Though the chemical reaction problem ) AR X
corresponds te = 0, we also considep = 1. remain positive ifn(x,0) > 0 for all x. In this case

In a previous paper [5] we analyzed the phase structur@’e ca_n ph%ftc))rm the _Hopf-CoIe [7.] change of variable
of this model, which has two phases, an “active” phasd *>1) = ¢ prod2UC|ng thezequanoln [i]
with (n) >0 and an “absorbing” phase with(¥) = 0 for oh/ot = —r + V2h + (VA) — ue""P" + 9. (2)
all x, that occurs for sufficiently large. These phases  Aside from the u term this is precisely the KPZ
are separated by a critical point at=r., wherer.=0  equation [wherein the standard KPZ nonlineari)?
in mean-field theory. [Note that the vanishing of thehas coefficient unity]. Note, however, that either in the
noise amplitude withh makes the right side of Eq. (1) absorbing phase or at the critical point, the steady-state
vanish whem(x) vanishes, thereby causing all dynamicsvalue ofn is zero, whereupon the steady-state valué of
to cease and making the absorbing configuratioi) =0  is —e. Thus theu term vanishes in steady state, leaving
a potentially stable phase.] We showed that model (1) hadne with precisely the KPZ theory.
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Recall [6] that the phase diagram of the KPZ equation We now describe the numerical simulation of (1) in 1D.
consists of a unique strong coupling phasedos d. =  We discretize the continuum equation as
2, and both weak and strong coupling phases separated by, (; + A¢) = n;(r) + A{—rni(¢) — un;(1)*°
a multicritical point ford > 2. The weak and strong-

coupling regimes occur for noise strengthsthat are, + (1/Ax%) [ni1(1) + ni—y (1) = 2ni(0)]}
respectively, smaller and larger than a critical value. This + VDAt (1), (i =1,2,...,N),
phase diagram is thus encouragingly similar to that of the

MNS. Also the dynamical critical exponenis 2 for both (4)
MNS [5] and KPZ [9] along the line of weak-coupling whereAx is the lattice spacing)¢ is the time step, and
transitions and at the multicritical point, far > 2. 7,(¢) is a Gaussian random number with unit standard de-

Let us now consider the critical exponents for theviation. [We have written Eq. (4) in the Ito interpretation
strong-coupling transition. The dynamical critical expo-[1] of Eq. (1). By replacing- by » — D/2 in all our re-
nentz for the MNS can be computed from the steady-statesults, one converts to the Stratonovich representation [1].]
behavior of response functions right at the critical point,We setAx = 1, At = 0.02, and use periodic boundary
and hence is identical to the valuepin the KPZ theory. conditions with the system size = NAx. We also fix
In particular, thenz = % ford = 1[6]. the noise amplitude/D = 4 and vary the linear coeffi-

To argue that other exponents of the MNS can also béient r as the only control parameter. In the following,
obtained from the KPZ equation requires us to considewe present our numerical results for= 1 [11].
the active state of model (1). Ferslightly less tharr., In numerical simulation, due to the finite time stap,

0 <({(n)< 1 in steady state, implying thak = (1) is very  the property of (1) thak(x, ) > 0 if n(x,0) >0 for all x is
large and negative. Writing(%,7) = (h) + 6h(x,1),one lost. However, itis easy to fix this problem by settingr)
obtains an equation foé/ that is identical to the KPZ to zero if its value becomes negative under Eq. (4). The
equation except for the extra nonlinear term’e(1 )9 effect of this modification is easily estimated. For a single
whereu’ = ue' P Noting that the leading nontrivial time step we can neglect the second term on the right-hand
term in the expansion of this nonlinearity in powerssdéf ~ side (rhs) of (4) because it is of higher orderAm than

is the linear “mass” term-u'(1 + p)&h, we infer that the  the noise term. Then setting negative values:@f) to
main effect of—u’e! *7)%" s to produce a finite correlation 0 is equivalent to truncating the probability distribution of
length ¢ at which the power law correlations of the KPZ 7;(t) so that its minimum is set by, = —1/VDAt¢,
equation are cut off and replaced by exponential behaviognd replacing all then < 9min by 7min. This means,
One concludes that must be the correlation length of the however, that the mean aj;(z) is no longer zero, and
corresponding MNS:; its divergence ms- r, is governed thus a deterministic term proportional ig(z) is gener-

by the critical exponent. In the critical region, i.e., on ated. The resulting effective linear coefficient; can be
length scale$r| < &, theu’ term is negligible, so critical roughly estimated ags = r — /D /2w At [™2 (Nmin —
correlations can be computed from the KPZ equation. 1) exp(—n?/2)dn. The effective strength of the noise is

To calculater from KPZ, take the expectation value of also changed because of the truncation. These changes in
the 81 equation, recall thats#) = 0, and write the extra parameters should not, however, alter the universality class
nonlinear term as-u{n'"*), to obtain of the transition [12].

2 1+py\ _ The first step in studying the critical behavior of
—r FAVAT) — w7 = 0. (3) MNS numerically is to locate the critical point. Starting

At the critical point,r = r. andn =0, so —r. +  with uniform initial conditions and letting the equation

((Vh)*). = 0. Subtracting this equation from (3) yields evolve long enough to reach steady state, we compute

SW = —&r + u(n'*P), wheredr = r. — r,andéW = M = (n;(¢)) for different values ofr, where() denotes
((Vh)*) — ((Vh)*).. From the standard scaling of the both spatial and temporal averages as well as averages
KPZ equation [6], one has [L@W ~ —C&2X~1, where over different independent runs. We average over

C is a positive constant ang the roughness exponent between2 X 10° and 6 X 10° time steps and up to

of a KPZ interface; i.e.{{h(x,t) — h(0,1)]*) ~ x>¥ for 100 independent runs, depending on the system size. To
KPZ in steady state. Sina@ > 0, 6r > 0 in the active handle finite-size effects, we studied different system
phase, andn'*?) ~ (6r)f+» > 0, the equation foré  sizes:N = 100,200,400, 1000. In Fig. 1(a) we show the
has a solution for smalbr only if the exponentB,.,  dependence on the inverse system $iz& of the critical

is greater than unity. For the quadratic nonlinearity,point r.(N) defined by M first becoming numerically

p =0, so(n'*r) is the order parametdr), whereupon indistinguishable from zero in every run. Extrapolating
this constraint places the nontrivial bougd> 1 on the the fitted line [13] toN = determines a critical value
order parameter exponept= gB,. For any value ofp, r.~ —2.18. Figure 1(b) showsM vs ér=r.—r on

one then obtains the resujt~ 8% with » = 1/(2 —  a log-log plot forN =400. The best fit toM ~ (6r)#
2x). (When the KPZ interface is smootly, = 0 in this  vyields [14] 8 = 1.70 = 0.05.

formula.) Note that the KPZ scaling relatign+ y = 2 Also depicted in Fig. 1(b) are the higher order mo-
[6] impliesz — 1/2v = 1 for MNS. ments of the: field: M,, = (n™), with m = 2,3. Evidently
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— 10 . 1.03 = 0.05. These values of andz are in excellent
=er ® Jj ®) AAf agreement with the values 1 afdrespectively, following
// 10?

>oo
gy
3
®

G ,A:;ﬁ from our argument that the critical behavior of MNS is
5 controlled by the KPZ equatiorg, is also>1, consistent
s A:;f with the bound derived from KPZ. To further check
222 / E ah the accuracy of various scaling exponents, we have also
/} Y 2° measured the decay of the average density right at the criti-
aon }/ | el a7 cal point, starting from a homogeneous initial condition
Y 4 M ~ t~?. Using scaling arguments it is easy to express
,I’ 0 in terms of other exponent# = B/(vz). From the
2 e os 0 047 PP 70° numerical values ofg, v, and z, we predictd to be
100N’ dr(=rn) 1.079. In Fig. 3 we ploM versus time at = r., and
FIG.1. (a) r.(N) vs inverse system sizé00/N; (b) (n™) the exponentd thus measured i® = 1.1 = 0.05, in
with m = 1,2,3 vs control paramete6r = r. — r; dashed excellent agreement with the scaling prediction. In the
line with slope 1.7 gives the best fit to the data. same figure we have included the behavior of the higher
order momenta/, 3 4(¢) at the critical point. These plots
strongly suggest that the exponertts = B,,/(vz) for
M, and M3 also have a power law dependence &1  these higher moments are all equabtdn agreement with
M, ~ (8r)P» with B, and B; being equal tog within  the static measurement.
our numerical accuracy. It is not surprising that there Another important characterization of any phase tran-
is anomalous scaling, i.e3, # 28, B3 # 38, and so on, sition is the response function. Though in equilibrium
since the strong coupling fixed point is non-Gaussian, bugystems the fluctuation-dissipation theorem relates the re-
it remains to be seen whethgy, is indeed independent of sponse function to the correlation function, in nonequilib-
m. It is interesting to note that for the zero-dimensionalrjum systems the response and correlation functions can
(single-variable) case, where an exact solution is availablgiffer significantly. Indeed, one of the striking features of
[3,15], all the moments do scale with exactly the same exMNS is that the susceptibility is predicted [5] to diverge
ponent: (n™)= Zm/zF[%]/I‘(—r/ZD), i.e.,, B, =1 over a finite range of control parameters, while the corre-

+(N)

for all m. lation function has, more conventionally, a unique critical
To determine the other critical exponents, we need tgoint.
calculate the two-point functiort (x, r) = (n(x + xo, ¢ + To test this prediction numerically in 1D, we add a con-

to)n(xo, o)) in the active phase. We have computedstant source terng on the rhs of Eqg. (4) and calculate
both C(x,0) and C(0, ), for —r =2.8,2.6,2.5,2.4,2.34,
2.3,2.2,2.215. We usedV =512 and averaged ovef =
10°Ar time steps in steady state, and over up to 10( ™

. ¥_ &_—__4
independent runs. ¥ R
We summarize the results in Fig. 2. In Figs. 2(a) anc_ - \,_ 10* %

co

2(b), C(x,0) andC(0, r) are plotted for different values of &
r. It is clear from these figures that the scaling regime
becomes bigger as we approach the critical point an

-r=2.8,2.6,2.5,2.4,2.34,

-r=2.8,2.6,2.5,2.4,2.34,

that the amplitudes of the correlation functions become 232202222215 232245222215
smaller, consistent withC(x, r) vanishing, as it must, in 1",z - s L T T AT
the absorbing phase. In Fig. 2(c) we plot the absolutt X t

value of theconnectedpace and time correlation function 1o
C.(x,t)=C(x,t) — M? at the largest value of, viz., —

2.215. The power law decay of the correlation functions ™
in the scaling regime can be characterized®yo0, 1) =

(©)

60 IC (09!
A—AIC,(x,0)

A;(r)= and C.(x,0)=A,(r)x~® with the exponents & Zw
a;=1.08 £0.04 and a, = 1.65 = 0.07. In conventional % =
notation this corresponds to exponemts=2 —d + a, =  ° A 10"
2.65 £0.07andz = a,/a, = 1.53 £ 0.07. InFig. 2(d) we 10"} 2215 Y
plot the dependence of the amplitudes of the spatial an ' o L .
temporal correlation functiong\,(r) andA,(r), on ér in e e " o’
the scaling regime; these can be fitted Ay, (r) ~ 6r* , ) ,
with the exponent = 1.7 = 0.07. FIG. 2. (a) and (b) show the spatial and temporal correlation
From these measured values of the four expongnts funct|on_s with _dn"ferent values .Ofr <re; (c) connecte_d
. ; ' correlation functions at = —2.215; dashed lines are fits with
z, andA, we obtain the correlation length exponerfrom  sjopes 1.08 and 1.65; (d) amplitudes of the correlation functions
the scaling relation [5p = 28 — A)/(d — 2 + n) =  vs ér; dashed line has slope 1.7.
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10° r . the absorbing phase when the bare mass vanishes, i.e.,
at r =0 in the Ito representation. However, because of
the shift in» due to our numerical algorithm, the lower
boundary of this region is shifted te>0. A clearer
way to test the prediction is therefore to make the Hopf-
Cole transformatiom = ¢” first, and then simulate the
equation fork, noting that the external field will have the
form ¢e~". Because the Hopf-Cole relation automatically
guarantees that the field is positive definite, there is no
need to alter the numerical algorithm, g6~ = 0) should
equal 1. We have verified this in a simulation.
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FIG. 4. (a) Order parameter vs external field at values of
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explained in text; (b) susceptibility exponent Nssusceptibility
diverges for a range of values.
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