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Energy-Exchange Effects in Few-Particle Coulomb Scattering
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For the description of an arbitrary nonrelativistic three-body Coulomb system an analy
approximate wave function is designed which is correct for large interparticle separations. At sh
distances, where the potential energy dominates the kinetic one, the wave function is a linear mix
products each consisting of three two-body Coulomb waves propagatingoff the two-bodyenergy shell
but on the totalenergy shell. The method is employed for the calculations of multiply differential cr
sections for photo-double ionization of helium and for electron, positron, proton, and antiproton-im
ionization of atomic hydrogen. [S0031-9007(97)02917-7]

PACS numbers: 32.80.Fb, 34.10.+x, 34.80.Dp
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The description of the correlated dynamics of fe
charged particles is one of the fundamental unsolv
problems in atomic, molecular, and nuclear physics.
addition to the inherent nonseparability of many-bo
interacting systems, the infinite range of the Coulom
interaction poses a severe obstacle in theoretical tr
ments. For example, in resonant or direct fragmentat
processes involving charged particles the long-range
of Coulomb forces precludes free asymptotic states of
reaction fragments [1–4], which in turn seriously limi
the applicability of standard methods of scattering theo
While the complicated dynamical nature of asympto
Coulombic states has been unraveled in recent ye
[1–4], our knowledge of the fragmentation dynamics
finite interparticle distances is still scarce, in particular,
the strength of the different interactions involved is of t
same order and a perturbative approach is inappropr
An adequate description of the short-range dynam
is, however, imperative, since dissociation amplitud
involve the many-body scattering state in the entire Hilb
space.

This study aims at modeling the reaction dynamics
three arbitrary charged particles at finite interparticle s
arations while maintaining the requirement of exact tre
ment at infinite interparticle distances. For this purpo
following Refs. [5,6], we split the Hilbert space into a
“inner” and a “far zone” depending on whether the t
tal potential is larger or smaller than the kinetic energ
The scattering state in the inner zone is designed with s
cial regard to the fragmentation dynamics. Subsequen
this state is mapped onto the asymptotic solution at
boundary between the inner and the far zone to arrive
an asymptotically correct behavior. Here we operate i
nonrelativistic time-independent framework. To decoup
kinematic from dynamical properties we write the eige
functionC of the total HamiltonianH , at the total energy
E, in the form (atomic units are used throughout)

Csrij , Rkd ­ N expsirij ? kij 1 iRk ? KkdCsrij , Rkd,

(1)
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wherekij denote the momenta conjugate to the interparti-
cle distancesrij , while Rk refers to the position of parti-
cle k with respect to the center of mass of the pairij. Kk

designates the momentum conjugate toRk , andN is a nor-
malization factor. The distortionCsrij , Rkd is solely due
to the presence of the total potential. It can be determined
as an eigensolution of an operatorH whose properties are
most transparent when expressed in the curvilinear coord
nate system

hjk ­ rij 1 k̂ij ? rij; jm ­ rijj,

eijk fi 0; j . i, k [ f1, 3g; m [ f4, 6g. (2)

In terms of (2)H decomposes into twoparametrically
coupled differential operators; an operatorHpar which is
differential in theparaboliccoordinatesj1,2,3 only and an
operator acts only on internal degrees of freedomrij [4].
An additional mixing term arises from the off-diagonal
elements of the metric tensor. The parabolic operatorHpar
is exactly separable in the coordinatesj1···3 for it factorizes
as

Hpar ­
3X

j­1

Hjj , fHjj , Hji g

­ 0; ; i, j [ h1, 2, 3j, (3)

where

Hjj
­

2
mlmrlm

f≠jj
jj≠jj

1 iklmjj≠jj
2 mlmZlmg;

ejlm fi 0, j [ h1, 2, 3j. (4)

In Eq. (4)mij , Zlm denote the reduced mass of the pairij
and their product charge, respectively. Equation (4) is the
Schrödinger equation for two-body Rutherford scattering
expressed in parabolic coordinates [7]. Hence, within
H ø Hpar , the three-body system is considered as the sum
of three spatially decoupled two-body Coulomb systems
on thetwo-body energy shellEij ­ k2

ijy2mij. The exact
regular eigenfunction of the operatorH, within H ø
© 1997 The American Physical Society
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Hpar , has thus the explicit form (outgoing wave bounda
conditions are assumed)

Cpar sj1···6; kijd ­ 1F1sib23, 1, 2ik23j1d

3 1F1sib13, 1, 2ik13j2d

3 1F1sib12, 1, 2ik12j3d. (5)

Using Eq. (1), the eigenstateCpar of H is then readily
deduced. The Sommerfeld parametersbij are given
by bij ­ Zijmijykij . The asymptotic separability
(limj1,2,3!` H ! Hpar ) and the parametric dependenc
of Hjj

[Eq. (4)] on internal degrees of freedom can b
exploited to introduce coupling between the two-bod
subsystems [4]. This approach, however, does not
count for transitions into intermediate virtual states and
applicable only to two electrons moving in the field of
residual ion [8]. To circumvent these shortcomings w
adopt a strategy which is motivated by the measurem
process and the analysis of Refs. [5,9]. In a scatter
experiment the measurable quantities (observables) are
asymptoticmomentakij of the emerging reaction frag-
ments (spin and spatial degrees of freedom are conside
to be decoupled). In the “reaction zone” these quantu
numbers are undetermined. To quantify this picture w
define an inner,momentum-exchange zoneand an outer,
asymptotic zonedepending on whether the total potentia
or the kinetic energy is the dominant quantity. As
well known [5,6], the boundary between these regim
is the Wannier radiusRw which is a scalar quantity. In
the inner zone a two-body subsystemij can assume any
two-body quantum state defined by a particulark0

ij, i.e.,
each two-body subsystem propagatesoff the two-body
energy shellEij. The description of this is well facilitated
by Eqs. (3)–(5) since the momentakij enter in Eqs. (4) as
dummy parameters and are determined only in the ou
asymptotic zone where they are measured. To ensure
invariance of the Schrödinger equation under the introdu
tion of intermediate momentak0

ij we must operate under
the constraint that the total energyE is conserved, i.e.,
the two-body subsystems exchange an indefinite amo
of momentum in the momentum-exchange zone a
virtually occupy all (two-body) continuum states availab
in the energy bandf0, Eg. As the system evolves toward
the Wannier boundaryRw the reaction fragments take
on the (asymptotic) momenta measured in a scatter
reaction. In this model the directionŝkij are fixed by the
boundary conditions [see Eq. (2)]. The exact (regula
eigenfunctionsCpar of H (within H ø Hpar ) are known
and characterized byk0

ij , with E0
ij [ f0, Eg. The general

solution in the inner zone is a linear superposition
Cpar sj1···6; k0

ijd,

Cinsj1···6d ­ N
Z

d3k0
ij d3K0

k Ak0
ij
Cpar sj1···6; k0

ijd

3 dsE 2 E0dd2sk̂ij 2 k̂0
ijdd2sK̂k 2 K̂0

kd,

(6)
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where E0 is the intermediate total energy. SinceCin

is a linear combination of eigenstates ofH (within
H ø Hpar ) it is obvious thatsH 2 EdCin ­ 0. To ac-
count for the neglected partH 2 Hpar the expansion
coefficientsAk0

ij
have to be deduced, e.g., variationally

For many-body continuum states, however, this proc
dure is intractable. Here only the low-energy part
Ak0

ij
is needed since the wave function (6) is defined on

in the inner, momentum-exchange zone whose bound
sRwd scales inversely withE [6]. Within our model the
expansion coefficientsAk0

ij
sj4···6d indicate the occupation

probabilities for the intermediate states characterized
E0

ij [ f0, Eg. According to the Wannier threshold ana
ysis [5], the correlated motion in the interaction regio
is ergodic and hence our assumptionAk0

ij
sj4···6d ­ 1. At

the boundaryRw the functionCin has to be mapped onto
the asymptotic state (5), which can be done as in theR-
matrix approach [9]. Here we smoothly connectCin with
the asymptotic states (5) atRw by writing the three-body
state in the entire Hilbert space in the form

Cexsj1···6; Ed ­ fCin 1 s1 2 fdCpar sj1···6; kijd, (7)

wheref :­ exps2RyRwd is an exponential matching fac
tor andR :­ r12 1 r13 measures the extent of the three
body system. SinceRw and R are scalar quantities, i.e.
they depend onj4···6 only, the wave functionCexsj1···6; Ed
is an eigensolution of the total Hamiltonian within the ap
proximationH ø Hpar ­

P3
j­1 Hjj . As Cpar is asymp-

totically correct for large interparticle separations [2,4
and satisfy the Kato [10] cusp conditions [4] (R is al-
ways large in this case) it follows that these properties a
directly reflected intoCex (limR¿1 f ! 0). ForR ¿ Rw

we fall back to Eq. (5); i.e., in a high-energy scatterin
(Rw ~ 1yE ! 0) the escaping particles directly assum
their experimentally measured momenta. ForR , Rw the
two-body subsystems exchange an indefinite amount
energy. At low energiesRw extends to very large dis-
tances. The three particles then exchange energies
to infinity for E ! 0 and the transformation of the to
tal wave function fromCin to Cpar occurs at very large
distances. This implies that properties of scattering a
plitudes which are derived from asymptotic arguments a
smeared out at threshold. If the integral in Eq. (7) ru
over virtual bound states as well, highly excited Rydbe
states provide, at lower energies, the major contributi
to the wave functionCex. If the HamiltonianH con-
tains short-range (nuclear) interactions, the second te
of Eq. (7) remains unchanged while the signature of the
interactions is carried byCin.

In a reaction leading to three-body continuum stat
scattering amplitudes are determined by transition m
trices of the form (prior form)T ­ kCexjW jil, where
jil is the initial state of the three-body system an
W is the perturbation operator due to which the fin
state Cex is achieved. Introducing hyperspherical mo
menta k ­ E0; tana ­ sK 0

kyk0
ijd

q
mijymk where mk ­
2713
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l ml , and performing the integrals in
volved in (6), the amplitudeT reads

T ­ Tasy 1 C
Z py2

0
da sin2 2aTa , (8)

whereC ­ N m
3y2
ij m

3y2
k E2 and

Ta ­ kfCpar sj1···6; adjW jil,

T asy ­ ks1 2 fdCpar sj1···6; kijdjW jil. (9)

If virtual bound states are included the integral in Eq.
contains a sum over these states. From Eq. (8) i
obvious that a transition to an asymptotic state defined
the measured momentakij occurs via an infinite numbe

FIG. 1. (a) The triply differential cross section (TDCS) fo
the double ionization of Hes1Sed by a linearly polarized photon
One electron is detected along the direction of the polariza
vector (e) while the other electron is detected, in coinciden
with the first one, under an angleu12 with respect toe. The
two equal-energy electrons escape with a total excess en
of 4 eV. The relative experimental data are due to [1
Representing the final state by Eq. (7) [orCex ø Cpar ] results
in the solid [dashed curve scaled down by1.8]. The initial state
is represented by a Hylleraas wave function which conta
radial and angular correlations. (b) The same as in (a) but
electron fixed toe is detected with an energy of 3.3 eV.
2714
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of intermediate virtual transitions, given byTa , which
may interfere to result in the measured cross section.

The present method is applicable to an arbitrary thre
body Coulomb system. Here we investigate the on
photon double ionization of Hes1Sed (DPI) and include in
the integral (6) continuum states only. As momentum
exchange effects occur at shorter distancessR , Rwd
the velocity form of the dipole operator is employed
(first-order perturbation theory for the radiation field is
assumed). Neglecting energy exchange between the tw
body subsystems results in the approximationCex ­
Cpar , which has been employed for the calculations of th
relative angular distributions of electrons following DPI
with remarkable success [11,12]. From Figs. 1(a) an
1(b) it is evident that energy-exchange effects strong
depend on the configuration in which the two electron
are emitted. A drastic influence is observed when th
two electrons escape with low and asymmetric energi
[Fig. 1(b)] in which case the symmetry of the initial-
state (1Se) and the final-state electronic repulsion impose
less severe restrictions on the angular distribution tha
in the case of equal-energy electrons [12]. In Fig. 2 th
electron- and positron-impact ionization of atomic hydro
gen is considered. For electron impact the approximatio
H 2 Hpar ­ 0 leads to some discrepancy between theor
and experiment in the binary region. The recoil regime i
well described. The present model provides no eviden
for two additional shoulders predicted by the convergen
close coupling (CCC) calculations [13]. Differences be
tween electron and positron impact as observed in Fig.
can be traced to final-state interactions. For proton an
antiproton impact [Figs. 3(a) and 3(b)] the projectile is
mainly scattered into the forward direction and differen

FIG. 2. The TDCS for the coplanar electron-impact ionizatio
of atomic hydrogen calculated using the wave function (7
(solid curve). The incident energy is 54.4 eV. One electro
is detected under an angle of 350± with respect to the incident
direction ki, whereas the other one is detected under an ang
u with respect toki and with an energy of 5 eV. Experimental
data are due to Ref. [17] with error bars indicating the
uncertainty in the absolute value. The CCC results (soli
light curve) are taken from Ref. [13] where comparison with
a number of other models is made. Predictions of the prese
study for positron impact are included (dashed curve).
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FIG. 3. The energy spectrum of secondary electrons ejec
from atomic hydrogen upon proton (solid curve) and antiprot
(dashed curve) impact with incident energy of 95 keV. In (
the electrons are detected at an angle of 15± with respect to the
incident beam, whereas in (b) this angle is fixed to 150±. In
(b) calculations usingCex ø Cpar are included (dotted curve)
The absolute experimental data are due to Ref. [18] wh
comparison with other theories can be found.

ionization mechanisms are distinguished via the particl
relative velocities (sinceZij ­ 61). The most notable
difference between proton and antiproton impact appe
at a diminishing relative velocity vectorvpe of projectile-
electron system [Fig. 3(a)]. This is due to the decisive
different analytical behavior of the projectile-electro
density of state which, forype ! 0, is of the form
exps21yyped ! 0 for antiproton and1yype ! ` for
proton impact [14,15]. The ridge structure in Fig. 3(
which appears at an electron velocity equal to twi
the projectile’s velocity (in the target frame) is du
to a direct projectile-electron encounter [14]. Energ
exchange effects are prominent in the region where
high-energy electron is ejected backwards [Fig. 3(b
In this case the electron cannot be viewed as emit
in the field of the target (slow soft electrons) nor
ed
n
)

re
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e

-
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the field of the projectile [electrons captured into th
projectile’s continuum (ECC), ECC electrons withype !

0]. Detailed study showed that these electrons are ejec
via multiple scattering from both nuclei in events wit
large deflection of the projectile.

In conclusion, transitions into two-body virtual state
have been included for the first time into analytical co
related three-body wave functions with correct asympto
behavior. To elucidate the effect of these transitions, sc
tering amplitudes for photo-double ionization and ele
tron, positron, proton, and antiproton-impact ionizatio
leading to three-body continuum final state have been c
culated.
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