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Energy-Exchange Effects in Few-Particle Coulomb Scattering
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For the description of an arbitrary nonrelativistic three-body Coulomb system an analytical
approximate wave function is designed which is correct for large interparticle separations. At shorter
distances, where the potential energy dominates the kinetic one, the wave function is a linear mixture of
products each consisting of three two-body Coulomb waves propagafitige two-bodyenergy shell
but on the totalenergy shell. The method is employed for the calculations of multiply differential cross
sections for photo-double ionization of helium and for electron, positron, proton, and antiproton-impact
ionization of atomic hydrogen. [S0031-9007(97)02917-7]

PACS numbers: 32.80.Fb, 34.10.+x, 34.80.Dp

The description of the correlated dynamics of fewwherek;; denote the momenta conjugate to the interparti-
charged particles is one of the fundamental unsolvedle distances;;, while R, refers to the position of parti-
problems in atomic, molecular, and nuclear physics. Ircle k with respect to the center of mass of the pair K,
addition to the inherent nonseparability of many-bodydesignates the momentum conjugat®ig andN is a nor-
interacting systems, the infinite range of the Coulombiamalization factor. The distortio® (r;;, R) is solely due
interaction poses a severe obstacle in theoretical treate the presence of the total potential. It can be determined
ments. For example, in resonant or direct fragmentatioms an eigensolution of an operafdrwhose properties are
processes involving charged particles the long-range taihost transparent when expressed in the curvilinear coordi-
of Coulomb forces precludes free asymptotic states of thaate system
reaction fragments [1—4], which in turn seriously limits .
the applicability of standard methods of scattering theory. {6 = rij + Kij - rij3 &m = rij}s
While the complicated dynamical nature of asymptotic . )

Coulombic states has been unraveled in recent years cije #0: j>ik€[L3) meld6l ()
[1-4], our knowledge of the fragmentation dynamics atin terms of (2) # decomposes into twparametrically
finite interparticle distances is still scarce, in particular, if coupled differential operators; an operatdg,, which is
the strength of the different interactions involved is of thegjtferential in theparabolic coordinatest; » 5 only and an
same order and a perturbative approach is inappropriatgperator acts only on internal degrees of freedeni4].
An adequate description of the short-range dynamicn additional mixing term arises from the off-diagonal
is, however, imperative, since dissociation amplitudessiements of the metric tensor. The parabolic operatQr

involve the many-body scattering state in the entire Hilberis exactly separable in the coordinatgs; for it factorizes
space. as

This study aims at modeling the reaction dynamics of
three arbitrary charged particles at finite interparticle sep-
arations while maintaining the requirement of exact treat-
ment at infinite interparticle distances. For this purpose,
following Refs. [5,6], we split the Hilbert space into an
“‘inner” and a “far zone” depending on whether the to-, hare
tal potential is larger or smaller than the kinetic energy.

The scattering state in the inner zone is designed with spe- .
cial regard to the fragmentation dynamics. Subsequently, ¢ — WimTim
this state is mapped onto the asymptotic solution at the )

boundary between the inner and the far zone to arrive at €jim #0, jE{l,23} (4)

an asymptotically correct behavior. Here we operate in n EQ. (4) i}, Zy» denote the reduced mass of the pigir

n_onrelat_lwstlc tlme—lnd_ependent frgmework._ To deC(_)Upleand their product charge, respectively. Equation (4) is the
kinematic from dynamical properties we write the eigen-

. Mo Schrédinger equation for two-body Rutherford scattering
fun_cUon\Ifof the tota_l Hamlltonlarﬂ-[,at the total energy expressed in parabolic coordinates [7]. Hence, within
E, in the form (atomic units are used throughout) H =~ Hp,, the three-body system is considered as the sum
W(r;, Ry) = Nexplir;j - ki + iRy - Kp)W(r;;, Ry), of three spatially decoupled two-bcz)dy Coulomb systems

on thetwo-body energy shell;; = k;;/2u;;. The exact
(1) regular eigenfunction of the operatdi, within H =

3
Hpar = Hf.f’[Hf.f’Hff]
j=1

=0, Vi je({l23} 3)

[agjfjagj + iklmfjagj = wimZim);
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H.p,r, has thus the explicit form (outgoing wave boundarywhere E' is the intermediate total energy. Sinck™

conditions are assumed) is a linear combination of eigenstates &f (within
W ) _ . . H =~ H,,) it is obvious that { — E)¥™ = 0. To ac-
v 6 Kij) = 1F1(iB2s, 1, —ik par )
par (€163 Kig) = 1 F1 (i 261) count for the neglected pall — H,, the expansion
X 1 Fi(iB13, 1, —ik1367) coefficientsAy;, have to be deduced, e.g., variationally.

For many-body continuum states, however, this proce-
X 1F(iB12, 1, —iki2€3).  (5)  dure is intractable. Here only the low-energy part of

Using Eq. (1), the eigenstat¥,,. of # is then readily Akb is peeded since the wave function (6) is defined only
deduced. The Sommerfeld parameteds are given N the |nner,_momentum-exchange_ zone whose boundary
by Bi; = Zyjumi;/kj. The asymptotic separability (R,) scales inversely witle [6]. Within our model the
(img,, o H — Hy,) and the parametric dependence &xpansion coeﬁ|0|enmk;/(§4...§) indicate the occupation

of He, [Eq. (4)] on internal degrees of freedom can bepr/obabllltles for the |'ntermed|ate states characterized by
exploited to introduce coupling between the two-bodyZi; € [0.E]. According to the Wannier threshold anal-
subsystems [4]. This approach, however, does not adSiS [5],.the correlated motion in .the interaction region
count for transitions into intermediate virtual states and idS ergodic and hence our assumptiog, (£s..) = 1. At
applicable only to two electrons moving in the field of a the boundang,, the functionW™ has to be mapped onto
residual ion [8]. To circumvent these shortcomings wethe asymptotic state (5), which can be done as inRhe
adopt a strategy which is motivated by the measurementatrix approach [9]. Here we smoothly conndct with
process and the analysis of Refs. [5,9]. In a scatteringh€ asymptotic states (5) &, by writing the three-body
experiment the measurable quantities (observables) are tgEate in the entire Hilbert space in the form
asymptoticmomentak;; of the emerging reaction frag- in

mgntsp(spin and spatiajl degrees of fr?eegom are consigered\PeX(fl'"“ E) = f¥" + (1 = %16 ki), (7)

to be decoupled). In the “reaction zon_e” th_ese_quanturqvheref .= exp(—R/R,,) is an exponential matching fac-
nur_nbers are undetermined. To quantify this picture Wgor andR = 1, + ri3 measures the extent of the three-
define an innermomentum-exchange zoaed an outer, o4y system. Sinc®,, andR are scalar quantities, i.e.,
asymptotic zpnelepend_mg on Whet'her the totql potentlgl they depend 0i4..¢ only, the wave functionVex (1..¢; E)

or the kinetic energy is the dominant quantity. AS iSig g eigensolution of the total Hamiltonian within the ap-
well known [5,6], the boundary between these regimes oximationH ~ Hpy = zj?leg,-- As W, is asymp-

is the Wannier radiu®,, which is a scalar quantity. In toically correct for large interparticle separations [2,4]
the inner zone a two-body subsystéjncan assume any .4 satisfy the Kato [10] cusp conditions [4§ (s al-

two-body quantum state defined by a particukdy, i.e., ways large in this case) it follows that these properties are
each two-body subsystem propagatdé the two-body  girectly reflected intoVe, (imgs1 f — 0). FOrR > R,
energy shelE;;. 'I_'he description of this is \(vell facilitated e fall back to Eq. (5); i.e., in a high-energy scattering
by Egs. (3)(5) since the momerkg enterin Eqs. (4)as (g '« 1/E — 0) the escaping particles directly assume
dummy parameters and are determined only in the outgf,q;, experimentally measured momenta. Ror R,, the
asymptotic zone where they are measured. To ensure thg, hogy subsystems exchange an indefinite amount of
invariance of the Schrodinger equation under the mtroducénergy. At low energie®, extends to very large dis-

- . - /
tion of intermediate momentk,; we must operate under (ances The three particles then exchange energies up
the constraint that the total enerdy is conserved, i.e., to infinity for E — 0 and the transformation of the to-

the two-body su'bsystems exchange an indefinite amouRt; \vave function from¥™ to W,,, occurs at very large
of momentum in the momentum-exchange zone andisiances. This implies that properties of scattering am-
virtually occupy all (two-body) continuum states available iy, des which are derived from asymptotic arguments are

in the energy banfD, £]. As the system evolves towards gmeareqd out at threshold. If the integral in Eq. (7) runs

the Wannier boundang,, the reaction fragments take e yirtual bound states as well, highly excited Rydberg

on the (asymptotic) momenta measured in a scatteringiates provide, at lower energies, the major contribution
reaction. In this model the directiorks; are fixed by the to the wave function®.,. If the Hamiltonian#{ con-
boundary conditions [see Eq. (2)]. The exact (regularkying short-range (nuclear) interactions, the second term
eigenfunctions¥y,, of 3 (within H ~ Hp,) are known Eq. (7) remains unchanged while the signature of these
and characterized b¥/;, with Ej; € [0,E]. The general i ieractions is carried byin.
solution in /the inner zone is a linear superposition of |, 5 reaction leading to three-body continuum states
Wpar (£1-65 ki), scattering amplitudes are determined by transition ma-
in . 3y 3l L trices of the form (prior form)T = (V. |W|i), where
VE(Er0) = N f &k K A Wpar (€165 K7y) li) is the initial state of the three-body System and
W is the perturbation operator due to which the final
state ¥, is achieved. Introducing hyperspherical mo-

(6) mentax = E'; tana = (Ki/kij)/mij/mr where p; =

X 8(E — E"8%(k;; — ki;)8* (K, — K}),
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mi(m; + m;)/ >, m;, and performing the integrals in- of intermediate virtual transitions, given kg, which

volved in (6), the amplitud& reads may interfere to result in the measured cross section.
7/2 The present method is applicable to an arbitrary three-
T =T + Cf da sir 2aT*, (8) body Coulomb system. Here we investigate the one-
0 photon double ionization of H&S¢) (DPI) and include in
whereC = Nﬂ?j/2,u2/2E2 and the integral (6) continuum states only. As momentum-
@ ] . exchange effects occur at shorter distan¢Rs< R,,)
T = fWpar (€161 )W, the velocity form of the dipole operator is employed
T = (1 = f)®par(&1.6: ki) IWi). (9) (first-order perturbation theory for the radiation field is

] ) ] ) assumed). Neglecting energy exchange between the two-
If virtual bound states are included the integral in Eq. (8)body subsystems results in the approximatid, —
contains a sum over these states. From Eq. (8) it iy which has been employed for the calculations of the
obvious that a transition to an asymptotic state defined byg|ative angular distributions of electrons following DPI
the measured momenlg; occurs via an infinite number \yith remarkable success [11,12]. From Figs. 1(a) and
1(b) it is evident that energy-exchange effects strongly
depend on the configuration in which the two electrons
(a) are emitted. A drastic influence is observed when the
two electrons escape with low and asymmetric energies
[Fig. 1(b)] in which case the symmetry of the initial-
state {S¢) and the final-state electronic repulsion imposes
less severe restrictions on the angular distribution than
in the case of equal-energy electrons [12]. In Fig. 2 the
electron- and positron-impact ionization of atomic hydro-
gen is considered. For electron impact the approximation
H — Hp,, = 0 leads to some discrepancy between theory
and experiment in the binary region. The recoil regime is
well described. The present model provides no evidence

s Y . for two additional shoulders predicted by the convergent

0.0 90.0 180.0 270.0 360.0  close coupling (CCC) calculations [13]. Differences be-
9, [deg] tween electron and positron impact as observed in Fig. 2
can be traced to final-state interactions. For proton and
antiproton impact [Figs. 3(a) and 3(b)] the projectile is
(b) mainly scattered into the forward direction and different
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FIG. 1. (a) The triply differential cross section (TDCS) for

the double ionization of H&S¢) by a linearly polarized photon. FIG. 2. The TDCS for the coplanar electron-impact ionization
One electron is detected along the direction of the polarizatiorof atomic hydrogen calculated using the wave function (7)
vector () while the other electron is detected, in coincidence(solid curve). The incident energy is 54.4 eV. One electron
with the first one, under an angh, with respect toe. The s detected under an angle of 350ith respect to the incident
two equal-energy electrons escape with a total excess energirectionk;, whereas the other one is detected under an angle
of 4eV. The relative experimental data are due to [16].6 with respect tdk; and with an energy of 5 eV. Experimental
Representing the final state by Eq. (7) [®g. = ¥,,] results data are due to Ref. [17] with error bars indicating the
in the solid [dashed curve scaled downbg§]. The initial state  uncertainty in the absolute value. The CCC results (solid
is represented by a Hylleraas wave function which containdight curve) are taken from Ref. [13] where comparison with
radial and angular correlations. (b) The same as in (a) but tha number of other models is made. Predictions of the present
electron fixed toe is detected with an energy of 3.3 eV. study for positron impact are included (dashed curve).
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the field of the projectile [electrons captured into the
projectile’s continuum (ECC), ECC electrons with. —
0]. Detailed study showed that these electrons are ejected
via multiple scattering from both nuclei in events with
large deflection of the projectile.

In conclusion, transitions into two-body virtual states
have been included for the first time into analytical cor-
related three-body wave functions with correct asymptotic

Cross Section [a.u.]
f—
[—]

10 . . "
behavior. To elucidate the effect of these transitions, scat-
. tering amplitudes for photo-double ionization and elec-
10° L L L tron, positron, proton, and antiproton-impact ionization
0 100 200 300 : . .
leading to three-body continuum final state have been cal-
Secondary-Electron Energy [eV]
culated.
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