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Fluctuations of Bose-Einstein Condensate
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We study the ground state occupation number and its fluctuations for the Bose-Einstein condensate
of trapped atoms using the microcanonical ensemble. The analytic formulas are obtained with the help
of the saddle point method. We show that microcanonical fluctuations below the critical temperature
tend to zero and scale with the number of particle$ AgN. [S0031-9007(97)02871-8]
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The recent achievement of Bose-Einstein condensatiomicrocanonical ensemble, which, we think, could be soon
(BEC) in trapped atoms of dilute gases [1-3] has beetested in the experiment.
quickly followed by the quantitative measurements of the The microcanonical description of a many body system
condensate’s properties. In particular the dependence & difficult because of constraints imposed on a total
the fraction of atoms in the condensate on the temperatuenergy and particle number. That obstacle is traditionally
has been found to be in agreement with the theory of thevercome by applying the grand canonical description
noninteracting Bose gas in a harmonic trap [4]. From thenstead of the microcanonical one. In the thermodynamic
point of view of the textbook thermodynamics the atomiclimit these approaches become equivalent, in the sense
condensate studied by Boulder and MIT groups is an exotithat a relative grand canonical fluctuation of a mean
system: (1) It consists of a finite number of particles. Thisenergy and particle number vanish [10]. Therefore,
number does not fluctuate after the complicated coolingxpectation values are the same for different statistical
process is over. (2) Itis highly nonuniform. The trappingensembles. But the standard deviations may be different.
harmonic potential changes within the condensate. We consider the microcanonical ensemble for a system

And yet the textbook theory of the Bose-Einstein con-of N bosons confined by a 3D isotropic harmonic potential
densation is based on the thermodynamic limit of the uniof frequencyw. The characteristic energgo of the
form, noninteracting gas described by the grand canonicalingle excitation is our unit of energy. Thus, the single-
ensemble. Perhaps the first person to worry about this wasarticle energy isk, = n + 3/2, where n is a non-
Schrédinger [5], long before the present experiments. Heegative integer. The degeneracy of the endtgis equal
considered, however, only the case of a finite number ofo (n + 1)(n + 2)/2. In the case ofN noninteracting
noninteracting bosons in a cell. Later the grand canonicatoms the total energy is simply a sum of single particle
ensemble predictions for the harmonically trapped finiteenergies:U = E + 3N/2 with integer E. The E has
number of noninteracting bosons was made [6—8]. Acthe meaning of a number of excitation quanta. The
cording to this theoryNy)/(N) = 1 — (T/T.)?, where microcanonical partition functiod (N, E) is equal to a
(Nyp) is the mean number of atoms in the condens@f¢, number of completely symmetri/-particle states of a
is the mean total number of trapped atofiss the tem- given total number of excitation quant&, The direct
perature, and’, is the critical temperature. The recent computation of the microcanonical partition function is
experimental results agree with the above formula. Buprobably not possible foiV > 1000. In the interesting
the fluctuations of the condensate fraction certainly do notase of a large number of particlég,> 1 and excitation
agree with the results of the grand canonical ensembleguanta, E > 1, we can use the approximate technique
This last quantity suffers large relative fluctuations whichbased on the saddle point method widely used in statistical
approach 100% as the temperature tends to zero. Henphysics [10].
the theory of the harmonically trapped condensate based The grand canonical partition functio&(z, £), is, by
on a microcanonical ensemble is needed. In the receris definition, related to the microcanonical sUw, E):

Letter [9] these fluctuations were computed in a one di- _ e
mensional model. This cannot be directly compared to the E@ &) =D D T, E), 1)
experiment, which is obviously three dimensional. More- N=0 E=0

over, in one dimension there is no phase transition irwhere ¢ is the Boltzmann factor,é = exp—8) =
the limit of number of particles going to infinity. It is exp(—Aw/kpT), and z is the fugacity related to the
the purpose of this Letter to estimate for the first time thechemical potentialx by the standard formulaz =
fluctuations of the condensate fraction according to thexd 8(+3/2)]. On the other hand, the relatively compact
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expression for the grand canonical partition function, particles in excited levels. Remaininyy = N — N,
_ i 1 (E+1)(E+2)/2 particles are simply spectators occupying the ground state.
Elz,¢) = n<m> ) 2 Pr(N,) can be expressed in terms of the microcanonical

E=0 ' partition function: Pz(N,) = AT(N,,E) = T'(N,,E) —

allows us, at least in principle, to find'(V,E) by  (n, — 1,E). Therefore, the system with, particles in
expanding=(z, £) into power series i and & what can  the ground state appears in the microcanonical ensemble
be done by analytic continuation of the functi@(z, £)  with the probabilitypz(No | N) which is given by

and the Cauchy integral formula
2(z, €) pe(No|N) = AT (N — Ny, E)/T'(N,E). (10)

1
I'(N.E) = (2mi)? }ér dz }grf d§ZN+1§E+1’ 3) Having this probability, the microcanonical expectation
value Ny and standard deviatiofN, of the ground state

where contours of integration’, and I's have to go . X
occupation number can be easily found:

around pointsz = 0 and ¢ = 0, respectively. It is

convenient to rewrite the function under the integral in . u
Eg. (3) in the form of expp(z, £)]. Then the function No = NZONOPE(NO IN), (11)
¢(z,€)is N
0(z,6) =InE(z,&) — (N + D)Inz — (E + 1)Iné. 52Ny = Z (No — No)’pe(No | N). (12)
(4) M=

Taking the contours through the extrema (saddle points)ve solved numerically Egs. (6) and (7) and analyzed
zo and &y of ¢(z,&) we get forN — =, E — » the the behavior of N, and 8N, for a finite number of

following asymptotic formula: particles. However, the approximate analytic formula
r B 1 E(zo, o) c for the probability pz(No|N) can also be obtained.
(N, E) = [27D(z0, £0)]V/2 ) TTeEHT” (5) Equation (2) is not very useful for the detailed analysis.

Instead, in the interesting limit of — 1 and 8 — 0 the
asymptotic expression can be found with the help of the
Euler summation formula [11]:

= 84(z8) | 5 g3(z¢)
N+1=za%lnE(z,§), (6) In:(<7,,§)=—ln(1—z)+4,8—3+33,8_2

(z¢) | 3
E+1= §%In H(z, €). (7) + 38225 + 3gl(zg) + R, (13)

where D(zg, &) is the determinant of the second deriva-
tives of the functionp (z, £) evaluated at the saddle points.
The equations for the saddle points take the form

The presented method, although quite technical, has alsghere g, (x) = >, x!/I* are the Bose-Einstein func-
its physical interpretation. The grand canonical partitiontions, andR is the remainder which in the limit of

function is, in fact, a weighted sum of microcanonical (1 — ;)/8 « 1 has the following asymptotic form:
partitions. However, for a given value of the fugacity

zo and Boltzmann factog, practically only a few terms R=InV27 — 1 — igl(zf) + 4B 43 + 7,
contribute to the whole sum in Eq. (1). The function 24 1 —z¢
E(z, &) is sharply peaked at, and &, which relates (14)

us to the grand canonical expectation valusi 1 = 54, is given by the infinite series and according to our

(N)andE + 1 = (E). The determinant in Eq. (5) iS @ nymerical evaluations its value can be approximated by
measure of width of the partition functioB(z,¢) and | _ 0.37/720. In the opposite limit of(1 — z)/8 > 1

it also has a simple interpretation in the grand canonicgl,o asymptotic expression @ is given by
ensemble. The determinaf(zq, &) is related to the

, . 5 4
grand canonical fluctuations: R = — ﬁ&(zf) + 6,8—§ (15)

D(zo, &) = [836% — %)/ (3D, (8) =28
where; and 6y are fluctuations of the total energy and Because of the analogy with the grand canonical en-
particle number, respectively, abg is the second order semble, Egs. (6) and (7) may be solved in the standard

correlation functionsyz = (NE) — (N)(E). way [8] in the limit of an infinite number of particles.
The microcanonical partition function can be written in It can be easily shown that in this case the fugacity
the form obtained from the saddle point equations reaches the value
( i ™) one at the critical energg..:
I'(N.E) = > Pg(N,), )
=t E. = 3{@)[N/LO)TP, (16)

where Pg(N,) is the number of completely symmetric where {(n) = g,(1) are Riemannian zeta functions. If
N-particles states (of the total enerd3) of exactlyN, E < E. most of the atoms occupy the ground state. The
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most striking feature of the BEC is the fact that it occurstemperaturekzT. = hiw[N/{(3)]'/? for the infinite sys-
when the excitation per particle is proportional 8> tem. The differences between grand canonical and micro-
and hence goes to infinity for large systems. canonical temperatures become significant in the limit of
The higher order corrections to the approximate solusmall energie£/N <« 1. We want to add that there is
tions of Egs. (6) and (7) can be found by expansion of alalso an experimental ambiguity in measuring condensate

terms into the powers of the parametetN): temperature at very low temperature [4]. Nevertheless,
£3) 37(2) -1 being aware of all the difficulties related to the notion
z1(N) = [N - ?<1 + 2§(3),30>} (17)  of temperature, we express the ground state occupation
0

_ _ . probability pr(No | N) in terms of 8y (as it is related to
The approximate expressions for the saddle points hawe microcanonical temperature) instead of enéfgyDe-

the form noting this function bypz(Ny | N) we have
20 =1—z1(N) + z}(N) + z}(N) ps(No | N) = [y122(N.) + 29223 (N,)]e @) =2
{B)( £R2) | 3{(3) 5BolnBo VIR A REAUA)
— , (18 e : (23)
8 ( (3) " a@ 240) ) (18)

whereN, = N — Ny is the number of excited particles.
Bo — <3§(4)>1/4[1 n £(3) <3§(4)>1/4} (19) In Fig. 1 we present the microcanonical population
0 E 4,4\ E ' of the ground state as a function of the microcanonical

These solutions are obtained with the assumption thdfmperature measured in units ¢ for the reIaFiver
20~ 1 and By ~ 0; i.e., they correspond to the con- small system ofN = 1000 and N = 10000 partlcles.
densed phase There is perfect agreement between the numerically

Finally we have defined all quantities which are neces®Ptained occupation number and the results based on

sary for a microcanonical description of the condensatdN€ Probability functloan(Noj N)' The microcanonical

We do not present here solutions fgy and &, corre- mean _values are almost !‘”d'S"F‘Q‘."Shab'e.f“.”T‘ the grand
sponding to the normal phase above the critical pointc@nonical averages, i.e., in the limit of the infinite system
However, we want to stress that some contribution to th&"€an number of particles in the condensate follows again

N — _ 3
microcanonical fluctuations originates at that region of pa-the IaWNO/N il .1 (T/Tc). . .
The situation is completely different in the case of fluc-

rameters and, therefore, our approximate expression pre-

sented below has some systematic error in the vicinity O}l;atrllons. It c(:jan be shown using Eq.b(23g tlhat ﬂr:JCtuat.'onl
the critical point. After some algebra the microcanonical® the ground state occupation number below the critica

; ; 2 1/2 ~
partition function can be approximated by temperature is proportional fa, (V)1 + zi(N)y2]'? =~
E 1/+/N. Therefore, in the limit of an infinite particle num-

E \3/4 3 1/2 - . . . ..
INT(N,E) = 4 (4)(_> + = (3)<_> ber the microcanonical fluctuations vanish. A similar
¢ 3{(4) 2 ¢ 3{(4) scaling law in the case of a canonical description has been
— 21(N)y1 — 2Z2(N)ya, (20) reported recently [12]. In Fig. 2 we present the micro-

. _ _ . canonical fluctuations based on the numerical solutions of
where functionsy; and arey, are defined in the following

way:

{(3) { <8g(2) 155(3))} 10
=14+ =1+ - , (21
" sl TP\ T uw )| @Y
7
_ g<3>(§(2> 30 5501n60> 22) o
B \¢B) 4@ 203 ) z .
The above expression does not have an asymptotic z
character. We left only leading terms proportional to
E3/* and E'/? neglecting terms of the order &'/* and 0.25
smaller. Although terms containing(N) are rather small

compared to the neglected ones, we have to keep them as 0.0 -
they are the largest corrections depending on the number 0-0 0.3 0.6 0.9 12
of particles. The range of validity of Eqg. (20) is defined
approximately by the conditioF < E.. FIG. 1. Relative occupation of the ground stidg/N as a

It can be easily checked that the microcanonical temfunction of the microcanonical temperature for the system of
perature defined through the conditidw /(kp Tomic) = N = 1000 and N = 10000 particles. Full lines represent the

= . numerical results while the dashed lines correspond to the
Bmic = 0InT'(N,E)/oE is almost equal to the grand analytic formula. The saddle point method does not allow

canonical on€l' ;. = T (OF Bmic = ,30)- Equatiqns (1_6_) us to determine the ground state population for very low
and (19) allow us to introduce the microcanonical criticaltemperatures.
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0.06 temperature and the fraction of condensed atoms by
the amount of a few percent [13]. The qualitative

0.045 estimation of condensate fluctuations can be found in
[12]. This estimation shows that interatomic repulsion

E would enforce smaller fluctuations if the interaction is
= 003 sufficiently strong. In real experiments there are other
o sources of fluctuations. In particular, if the results are
0.015 collected from many different realizations of the BEC,
then the total number of particldé cannot be treated as

00 constant. The microcanonical fluctuations can therefore

0.0 be regarded as the lower bound of fluctuations in the

experiments with BEC.
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