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What configuration ofNV point charges on a conducting sphere minimizes the Coulombic energy?
J.J. Thomson posed this question in 1904. Kok 112, numerical methods have found apparent
global minimum-energy configurations; but the number of local minima appears to grow exponentially
with N, making many such methods impractical. Here we describe a topological/numerical procedure
that we believe gives the global energy minimum lattice configuration Moof the form N =
10(m> + n> + mn) + 2 (m, n positive integers). For thos¥ with more than one lattice, we give
a rule to choose the minimum one. [S0031-9007(97)02835-4]

PACS numbers: 02.40.Pc, 02.60.Pn, 41.20.Cv

GivenN unit point charges on the surface of a unit con-for an arbitrarily largeN it may be extremely difficult
ducting sphere, what is the configuration of the charge$o find the global minimum configuration. Generalizing
for which the Coulombic energ{ﬁ."’j:hm 1/Ir; — r;lis  from topological properties of the apparent local minimum
minimized? This question was originally asked by J.Jenergy configurations foN = 100, we here describe a
Thomson long ago [1] and has since been investigated bippological/numerical procedure to generate “lattice” con-
many authors [2—12]. Besides its interest as a physics arfigurations which we think are global minima for Thom-
mathematical optimization problem, the question posegon’s problem for numbers of charges of the foNm=
by Thomson is similar to problems in other fields such10(m* + n?> + mn) + 2 with m andn integers> 0.
as the arrangement of the protein subunits of a protein We can consider the charges on the sphere as vertices of
coat of a spherical virus [13—-15] and the arrangemen& convex polytope. It had been noted thatfar<= N =<
of atoms in a spherical molecule [16]. Somewhat sur60, N = 72, N = 78, N = 100 the minimum-energy con-
prisingly, it turns out that the configuration of minimum figuration usually has 12 vertices with five nearest neigh-
energy for Thomson’'s problem is not the configurationbors (pentamers) anty — 12 vertices with six nearest
which places the charges at the farthest distance from eacteighbors (hexamers) ([7,9], and references therein). We
other, or the configuration of greatest symmetry. For exhave confirmed this for the othét < N = 100 (Table I,
ample, for eight charges, the configuration of minimumRefs. [7,9], and references therein). This observation can
energy is not a cube, but a twisted noncubic rectangulape appreciated from a topological point of view with ref-
parallelepiped [5]. Fo2 = N = 100 by means of exten- erence to Euler’s formula relating faces)( vertices ¥),
sive trials utilizing a number of methods, it appears thatand edgesK) of a convex polytopéF + V = E + 2).
the minimum-energy configurations may have been foundindeed, if all the faces of our polytope are triangles and
[1-12]. However, as the number of closely spaced lowe consider the polytope to consist only of tetramers (ver-
cal minima seems to grow tremendously with [11], tices with four nearest neighborsy.), pentamergVs),
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TABLE 1.
12= N =100 have 12 pentamers an®ty — 12 hexamers.
Exceptions are given in the tableV is the number of charges.
If the polytope containg) quadrilateral facesys pentamers,

V4 tetramers, andV; heptamers, then it can be shown that

Vs + 2Vy — V; — 20 = 12 with all the rest of the vertices
being hexamers\g). To decide if two verticer andw are
nearest neighbors we look at the triangles with verticesy,
and x, wherex ranges over all other vertices.

If the angle

Most apparent minimum-energy configurations for configurations are the ones of minimum energy Aor=

122 andN = 132. We believe that the lattice configura-
tions are the ones of minimum energy fér= {122, 132},

and in general we believe that the lattice configurations
are the ones of minimum energy fof of the form of
Eq. (2). (However, if the ratio ok to n is too large, then
the lattice configuration may not be the one of minimum
energy. See below.) For potential energies of the form

at the vertexx is 90° or more (for anyx) then v and w _ : . .
are not nearest neighbors. We join vertices determined to b{el/rala = 2,3} (wherer is the Euclidean distance be-

nearest neighbors by an edge. The resulting polytopes haéveen charges) we have found that lattice configurations
mainly triangular faces with an occasional quadrilateral facealso appear to be the minimum-energy configurations, with
(Especially for polytopes with quadrilateral faces, there can behe exact location of the charges depending on the poten-
some ambiguity in assignment of nearest neighbors. Anothejig (E.L.A. et al., unpublished data). FoVN =< 312, a

method for doing so with less ambiguity is given in Ref. [22].) number of groups using various methods have also found

N Vs Ve 1Z V4 Q  icosahedral lattices to be minimum-energy configurations

13 10 2 1 [6,7,9,19-22].

18 8 8 2 The question arises as to the configuration of minimum

21 10 10 1 energy for those&v which can be obtained by substituting

33 15 17 1 1 more than one pair ofi andn into Eq. (2). For example,

53 16 37 2 for N = 912, two icosahedral lattice configurations can be

59 14 43 2 constructed: one with: = 6 andn = 5, and another with

0 20 50 4 m=9andn = 1. Now, forN = 42 andN = 92 which

71 16 55 2 _ _ _ _

73 16 57 5 would correspondtaf = 2,n = 0)and n = 3,n = 0),

79 15 63 1 1 respectively, in Eq. (2) it is known that the minimum-

83 14 67 > energy configuration isot the lattice configuration. We
have shown that foN = 162 (m = 4, n = 0) the lattice
configuration is also not the minimum-energy configura-

hexamergVs), and heptamerg/;), then tion (E. LA et al., unpublishezd data, [19-21]). In gen-

Vs +2Vs — Vo = 12, @ eral we think that fotv = 10m= + 2 [except for the very

i i i special case oN = 12 (m = 1,n = 0)] the lattice con-
with all the rest of the vertices being hexamers [17]. Fromyjg,ration is not the minimum-energy configuration. From
Table | we see that in general the apparent miniMuMspa result that the cases of Eq. (2) with= 0 appear not
energy configuration has exactly 12 pentamers &né 5 pe global minima, we hypothesized that for thdge

12 hexamers. Many of the exceptions occur for nuUmberg, ¢ can pe obtained by substituting more than one pair

of charges such as 33, 70, 71, and 73 which are very: = - 4 “into E : : ; ;
> o . g. (2), the lattice configuration with a
closetoV = 32andN = 72, which have extremely stable (- 1240 ofm to n has lower energy than the con-

supposed global minimum configurations (see below). figuration with a larger ratio, which might more closely re-

For semble a configuration with = 0 (m/n = «) (Table I,

N = 10(m*> + n* + mn) + 2, (2)  Fig. 2). For example, foN = 912 the lattice configura-
with m andn positive integers ane: = n, a particularly  tion with m = 6, n = 5 has a lower energy than the lat-
symmetric icosahedral lattice configuration can be formedice configuration withe = 9, n = 1 (Fig. 2). As well,
with exactly 12 pentamers (and no tetramers or heptamersje have verified this hypothesis for the other four ex-
with the vertices of the pentamers at the vertices of ammples of suctiv which are less than 2500 (Table Il). A
icosahedron (Fig. 1). The procedure for generating the lasmaller ratio ofm to n may lower the energy by permit-
ticesisgiveninFig. 1. FoN =32 (m = 1,n = 1) and ting more twisting of the high-energy pentamers with re-
N =72 (m = 2, n = 1) this procedure generates the pre-spect to each other than for a larger ratiorofo n. Given
viously known apparent minimum-energy configurationsthat N of the form of Eq. (2) withn = 0 the lattice con-
The next lattice numbers a®® = 122 (m = 2, n = 2)  figurations are not local minima, it may be that for a suffi-
andN = 132 (m = 3, n = 1). It has been noted that for ciently large ratio ofxn to n the lattice configuration is not
70 = N = 112 the number of local minima increases asthe global energy minimum configuration. (lcosahedral
0.382 exp(0.0497N) [11]. In accordance with this we used lattice configurations have been discussed in relation to
a conjugate gradient [18] starting from 200 and 300 ranthe Tammes problem—maximization of the minimum dis-
dom configurations fotv = 122 and 132, respectively, tance betweetV points on the surface of a unit sphere [23].
and did not find an energy lower than the lattice energyHowever, it has been shown that in many cases including
for either value ofN. We also ran from some configu- N = 72 an icosahedral lattice and other configurations of
rations slightly perturbed from the lattice loading. With- high symmetry are not necessarily the best ones for the
out an analytical proof we cannot be sure that the lattic@ammes problem [24,25].) We note that the trend toward
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FIG. 1(color). Lattice configurations for 132 (a) and 1032 (b) charges. To go from one vertex of a pentamer to another vertex of
a pentamer for 132 charges (a) one goes up three edges and over one edge, while for 1032 charges one goes up nine edges and ove
two edges. Vertices of hexamers are indicated by a small black circle, vertices of pentamers by a small red circle, and edges by
black lines. The other points on the sphere are colored as follows: The potential Q’_rﬁérlg%i ﬁ (self-energy term omitted)

is computed at the locations of each of the charges. The potential at other points is estimated using a linear finite element
triangular function. The color scale is shown at the right with blue being the lower potential and red being the higher potential. To
obtain lattice configurations we begin by placing points on the faces of an icosahedron. Essentially, we want(1é plak®/20

points on each of the 20 faces of the icosahedron, taking care not to double count points on the edge between two faces. The
other 12 points are the vertices of the icosahedron. For example, if one joins any three of the vertices of the pentamers in (a)
there are(132 — 12)/20 = 6 points contained within each resulting equilateral triangle. Specifically, we identify one face of an
icosahedron with an equilateral triangle in the complex plane having verti¢eés(at + nz), (my + nn?)] with n = exp(7i/3).

Points are placed on this first triangle by including all points from the lattice [ (k, [ integers) which are contained in or on

the boundary of the triangle. Points on the other faces of the icosahedron can be obtained mmtat®d about the midpoint of

the edge common to two triangles. We project the points from the icosahedron radially out to a circumscribed unit sphere. We
then use a conjugate gradient minimization [18] usthg= Zﬁ-‘szl;j>i 1/Ir; — r;| to obtain the final location of the charges.

smaller energy spacing between the pairs of states in Taninimum-energy configuration for a giveM. Though,
ble 1l is consistent with the bunching of local minima not surprisingly, the energies of the lattice configurations
closer to the global minimum described in Ref. [22]. Our are somewhat lower than predicted as the lattices are such
values of the energy fav = 122,132,...,912,... agree  good configurations.
well with empirical formulas [8,19] for the energy of the [Using algebraic number theory [26] it can be shown that
thoseN for which more than one icosahedral lattice can be
TABLE Il. For N <2500 when two lattice configurations constructed are of the fortd = 10k23jp1”1p£”2 LpM 4
have the same number of charges, the configuration with & \vherek is an integer>0 with no prime factors= 1
smaller ratio ofmto n has a lower energy. The construction of . . . . .
mod 6;j is an integer=0; py,..., p, are distinct prime

the lattices, see Fig. 1. _
numbers= 1 mod 6;m,,...,m, are integers=0; and at

N m n Energy least one of: or m; is =2. The number of icosahedral
912 6 5 400660.1320 lattices which can be constructed for suchMris equal
9 1 400662.3832 t00.5(m; + 1)(my + 1)---(m, + 1), rounding up if this
1332 9 4 860 260.5582 €Xpression is not an integer. For example, for= 912,
11 1 8602645477 k=1,j=0,n=2,pr=7,m = 1,py =13,m = 1,
1472 7 7 1052197.474 @and the number of icosahedral lattices is two.]
11 2 1052 200.022 As mentioned, many examples of apparent minimum-
2172 9 8 2302877.842 SNEray configurations which do not have exactly 12 pen-
13 3 5302880 777 tamers—N = {33,70,71,73}—have numbers of charges
close to the apparent lattice global energy minimum con-
2412 11;[ 37 225?57755(())51.5}563 figurations forN = 32 andN = 72. This may result be-

cause the lattice configurations are so symmetric that it
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FIG. 2(color). Lattice configurations fa¥ = 912: (@) m = 6, n = 5, (b)m = 9, n = 1. The configuration in (a) has a smaller
ratio of m to n than the configuration in (b) and also a lower energy. For construction of the lattices, see Fig. 1.

would be difficult to add or subtract one or two chargespatterns and symmetries manifest in the lattice configura-
and still have a good minimum with exactly 12 pentamerstions for Thomson’s problem also appear in a diverse array
(For N = 13 there exists no configuration of charges with of other physical and biological systems [13—16]. These
12 pentamers and 1 hexamer [27].) configurations may be useful for benchmarking optimiza-
There may be other families of solutions besides thdion methods.
icosahedral lattices. For example, the apparent minimum- We thank Frank Graziani and Andrew Gleason.
energy configuration fov = 78 has aT, (tetrahedral) E.R.R. was partially supported by the Fannie and John
symmetry [9]. We have constructed an analog of fhjs Hertz Foundation. This work was performed by the
solution forN = 78 with N = 306 (E. L. A. etal.,unpub- Lawrence Livermore National Laboratory under the aus-
lished data) which we suspect is the minimum energy conpices of the U.S. Department of Energy under Contract
figuration for N = 306; however, the number of random No. W-7405-Eng-48.
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