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What configuration ofN point charges on a conducting sphere minimizes the Coulombic energy?
J. J. Thomson posed this question in 1904. ForN # 112, numerical methods have found apparent
global minimum-energy configurations; but the number of local minima appears to grow exponentially
with N, making many such methods impractical. Here we describe a topological/numerical procedure
that we believe gives the global energy minimum lattice configuration forN of the form N ­
10sm2 1 n2 1 mnd 1 2 (m, n positive integers). For thoseN with more than one lattice, we give
a rule to choose the minimum one. [S0031-9007(97)02835-4]

PACS numbers: 02.40.Pc, 02.60.Pn, 41.20.Cv
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GivenN unit point charges on the surface of a unit co
ducting sphere, what is the configuration of the char
for which the Coulombic energy

PN
i,j­1;j.i 1yjri 2 rjj is

minimized? This question was originally asked by J
Thomson long ago [1] and has since been investigate
many authors [2–12]. Besides its interest as a physics
mathematical optimization problem, the question po
by Thomson is similar to problems in other fields su
as the arrangement of the protein subunits of a pro
coat of a spherical virus [13–15] and the arrangem
of atoms in a spherical molecule [16]. Somewhat s
prisingly, it turns out that the configuration of minimu
energy for Thomson’s problem is not the configurat
which places the charges at the farthest distance from
other, or the configuration of greatest symmetry. For
ample, for eight charges, the configuration of minimu
energy is not a cube, but a twisted noncubic rectang
parallelepiped [5]. For2 # N # 100 by means of exten
sive trials utilizing a number of methods, it appears t
the minimum-energy configurations may have been fo
[1–12]. However, as the number of closely spaced
cal minima seems to grow tremendously withN [11],
0031-9007y97y78(14)y2681(5)$10.00
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for an arbitrarily largeN it may be extremely difficult
to find the global minimum configuration. Generalizin
from topological properties of the apparent local minimu
energy configurations forN # 100, we here describe a
topological/numerical procedure to generate “lattice” co
figurations which we think are global minima for Thom
son’s problem for numbers of charges of the formN ­
10sm2 1 n2 1 mnd 1 2 with m andn integers. 0.

We can consider the charges on the sphere as vertice
a convex polytope. It had been noted that for12 # N #

60, N ­ 72, N ­ 78, N ­ 100 the minimum-energy con-
figuration usually has 12 vertices with five nearest neig
bors (pentamers) andN 2 12 vertices with six neares
neighbors (hexamers) ([7,9], and references therein).
have confirmed this for the other61 # N # 100 (Table I,
Refs. [7,9], and references therein). This observation
be appreciated from a topological point of view with re
erence to Euler’s formula relating faces (F), vertices (V ),
and edges (E) of a convex polytopesF 1 V ­ E 1 2d.
Indeed, if all the faces of our polytope are triangles a
we consider the polytope to consist only of tetramers (v
tices with four nearest neighbors)sV4d, pentamerssV5d,
© 1997 The American Physical Society 2681
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TABLE I. Most apparent minimum-energy configurations fo
12 # N # 100 have 12 pentamers andN 2 12 hexamers.
Exceptions are given in the table.N is the number of charges.
If the polytope containsQ quadrilateral faces,V5 pentamers,
V4 tetramers, andV7 heptamers, then it can be shown tha
V5 1 2V4 2 V7 2 2Q ­ 12 with all the rest of the vertices
being hexamers (V6). To decide if two verticesy and w are
nearest neighbors we look at the triangles with verticesy, w,
and x, where x ranges over all other vertices. If the angl
at the vertexx is 90± or more (for anyx) then y and w
are not nearest neighbors. We join vertices determined to
nearest neighbors by an edge. The resulting polytopes h
mainly triangular faces with an occasional quadrilateral fac
(Especially for polytopes with quadrilateral faces, there can
some ambiguity in assignment of nearest neighbors. Anot
method for doing so with less ambiguity is given in Ref. [22].

N V5 V6 V7 V4 Q

13 10 2 1
18 8 8 2
21 10 10 1
33 15 17 1 1
53 16 37 2
59 14 43 2
70 20 50 4
71 16 55 2
73 16 57 2
79 15 63 1 1
83 14 67 2

hexamerssV6d, and heptamerssV7d, then

V5 1 2V4 2 V7 ­ 12 , (1)

with all the rest of the vertices being hexamers [17]. Fro
Table I we see that in general the apparent minimu
energy configuration has exactly 12 pentamers andN 2
12 hexamers. Many of the exceptions occur for numbe
of charges such as 33, 70, 71, and 73 which are v
close toN ­ 32 andN ­ 72, which have extremely stable
supposed global minimum configurations (see below).

For

N ­ 10sm2 1 n2 1 mnd 1 2 , (2)

with m andn positive integers andm $ n, a particularly
symmetric icosahedral lattice configuration can be form
with exactly 12 pentamers (and no tetramers or heptame
with the vertices of the pentamers at the vertices of
icosahedron (Fig. 1). The procedure for generating the
tices is given in Fig. 1. ForN ­ 32 (m ­ 1, n ­ 1) and
N ­ 72 (m ­ 2, n ­ 1) this procedure generates the pre
viously known apparent minimum-energy configuration
The next lattice numbers areN ­ 122 (m ­ 2, n ­ 2)
andN ­ 132 (m ­ 3, n ­ 1). It has been noted that for
70 # N # 112 the number of local minima increases a
0.382 exps0.0497Nd [11]. In accordance with this we used
a conjugate gradient [18] starting from 200 and 300 ra
dom configurations forN ­ 122 and 132, respectively,
and did not find an energy lower than the lattice ener
for either value ofN . We also ran from some configu
rations slightly perturbed from the lattice loading. With
out an analytical proof we cannot be sure that the latt
2682
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configurations are the ones of minimum energy forN ­
122 andN ­ 132. We believe that the lattice configura
tions are the ones of minimum energy forN ­ h122, 132j,
and in general we believe that the lattice configuratio
are the ones of minimum energy forN of the form of
Eq. (2). (However, if the ratio ofm to n is too large, then
the lattice configuration may not be the one of minimu
energy. See below.) For potential energies of the fo
h1yraja ­ 2, 3j (where r is the Euclidean distance be
tween charges) we have found that lattice configuratio
also appear to be the minimum-energy configurations, w
the exact location of the charges depending on the pot
tial (E. L. A. et al., unpublished data). ForN # 312, a
number of groups using various methods have also fou
icosahedral lattices to be minimum-energy configuratio
[6,7,9,19–22].

The question arises as to the configuration of minimu
energy for thoseN which can be obtained by substitutin
more than one pair ofm andn into Eq. (2). For example,
for N ­ 912, two icosahedral lattice configurations can b
constructed: one withm ­ 6 andn ­ 5, and another with
m ­ 9 andn ­ 1. Now, for N ­ 42 andN ­ 92 which
would correspond to (m ­ 2, n ­ 0) and (m ­ 3, n ­ 0),
respectively, in Eq. (2) it is known that the minimum
energy configuration isnot the lattice configuration. We
have shown that forN ­ 162 (m ­ 4, n ­ 0) the lattice
configuration is also not the minimum-energy configur
tion (E. L. A. et al., unpublished data, [19–21]). In gen
eral we think that forN ­ 10m2 1 2 [except for the very
special case ofN ­ 12 (m ­ 1, n ­ 0)] the lattice con-
figuration is not the minimum-energy configuration. Fro
the result that the cases of Eq. (2) withn ­ 0 appear not
to be global minima, we hypothesized that for thoseN
that can be obtained by substituting more than one p
of m and n into Eq. (2), the lattice configuration with a
smaller ratio ofm to n has lower energy than the con
figuration with a larger ratio, which might more closely re
semble a configuration withn ­ 0 smyn ­ `d (Table II,
Fig. 2). For example, forN ­ 912 the lattice configura-
tion with m ­ 6, n ­ 5 has a lower energy than the lat
tice configuration withm ­ 9, n ­ 1 (Fig. 2). As well,
we have verified this hypothesis for the other four e
amples of suchN which are less than 2500 (Table II). A
smaller ratio ofm to n may lower the energy by permit-
ting more twisting of the high-energy pentamers with r
spect to each other than for a larger ratio ofm to n. Given
that N of the form of Eq. (2) withn ­ 0 the lattice con-
figurations are not local minima, it may be that for a suffi
ciently large ratio ofm to n the lattice configuration is not
the global energy minimum configuration. (Icosahedr
lattice configurations have been discussed in relation
the Tammes problem—maximization of the minimum di
tance betweenN points on the surface of a unit sphere [23
However, it has been shown that in many cases includ
N ­ 72 an icosahedral lattice and other configurations
high symmetry are not necessarily the best ones for
Tammes problem [24,25].) We note that the trend towa
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FIG. 1(color). Lattice configurations for 132 (a) and 1032 (b) charges. To go from one vertex of a pentamer to another v
a pentamer for 132 charges (a) one goes up three edges and over one edge, while for 1032 charges one goes up nine edg
two edges. Vertices of hexamers are indicated by a small black circle, vertices of pentamers by a small red circle, and
black lines. The other points on the sphere are colored as follows: The potential energy

PN
j­1;jfii

1
jri 2rj j (self-energy term omitted)

is computed at the locationsri of each of the charges. The potential at other points is estimated using a linear finite el
triangular function. The color scale is shown at the right with blue being the lower potential and red being the higher potent
obtain lattice configurations we begin by placing points on the faces of an icosahedron. Essentially, we want to placesN 2 12dy20
points on each of the 20 faces of the icosahedron, taking care not to double count points on the edge between two fac
other 12 points are the vertices of the icosahedron. For example, if one joins any three of the vertices of the pentame
there ares132 2 12dy20 ­ 6 points contained within each resulting equilateral triangle. Specifically, we identify one face o
icosahedron with an equilateral triangle in the complex plane having vertices atf0, sm 1 nhd, smh 1 nh2dg with h ­ expspiy3d.
Points are placed on this first triangle by including all points from the latticek 1 lh (k, l integers) which are contained in or o
the boundary of the triangle. Points on the other faces of the icosahedron can be obtained by 180± rotation about the midpoint of
the edge common to two triangles. We project the points from the icosahedron radially out to a circumscribed unit sphe
then use a conjugate gradient minimization [18] usingE ­

PN
i,j­1;j.i 1yjri 2 rjj to obtain the final location of the charges.
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smaller energy spacing between the pairs of states in
ble II is consistent with the bunching of local minima
closer to the global minimum described in Ref. [22]. Ou
values of the energy forN ­ 122, 132, . . . , 912, . . . agree
well with empirical formulas [8,19] for the energy of the

TABLE II. For N , 2500 when two lattice configurations
have the same number of charges, the configuration with
smaller ratio ofm to n has a lower energy. The construction o
the lattices, see Fig. 1.

N m n Energy

912 6 5 400 660.1320
9 1 400 662.3832

1332 9 4 860 260.5582
11 1 860 264.5477

1472 7 7 1 052 197.474
11 2 1 052 200.022

2172 9 8 2 302 877.842
13 3 2 302 880.777

2472 11 7 2 987 501.183
14 3 2 987 505.566
a-

r

a

minimum-energy configuration for a givenN. Though,
not surprisingly, the energies of the lattice configuratio
are somewhat lower than predicted as the lattices are
good configurations.

[Using algebraic number theory [26] it can be shown th
thoseN for which more than one icosahedral lattice can
constructed are of the formN ­ 10k23jp

m1
1 p

m2
2 . . . pmn

n 1

2 where k is an integer.0 with no prime factors; 1
mod 6; j is an integer$0; p1, . . . , pn are distinct prime
numbers; 1 mod 6;m1, . . . , mn are integers$0; and at
least one ofn or m1 is $2. The number of icosahedra
lattices which can be constructed for such anN is equal
to 0.5sm1 1 1d sm2 1 1d · · · smn 1 1d, rounding up if this
expression is not an integer. For example, forN ­ 912,
k ­ 1, j ­ 0, n ­ 2, p1 ­ 7, m1 ­ 1, p2 ­ 13, m2 ­ 1,
and the number of icosahedral lattices is two.]

As mentioned, many examples of apparent minimu
energy configurations which do not have exactly 12 p
tamers—N ­ h33, 70, 71, 73j—have numbers of charge
close to the apparent lattice global energy minimum c
figurations forN ­ 32 andN ­ 72. This may result be-
cause the lattice configurations are so symmetric that
2683
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r
FIG. 2(color). Lattice configurations forN ­ 912: (a) m ­ 6, n ­ 5, (b) m ­ 9, n ­ 1. The configuration in (a) has a smalle
ratio of m to n than the configuration in (b) and also a lower energy. For construction of the lattices, see Fig. 1.
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would be difficult to add or subtract one or two charge
and still have a good minimum with exactly 12 pentame
(For N ­ 13 there exists no configuration of charges wit
12 pentamers and 1 hexamer [27].)

There may be other families of solutions besides t
icosahedral lattices. For example, the apparent minimu
energy configuration forN ­ 78 has aT4 (tetrahedral)
symmetry [9]. We have constructed an analog of thisT4

solution forN ­ 78 with N ­ 306 (E. L. A. et al.,unpub-
lished data) which we suspect is the minimum energy co
figuration forN ­ 306; however, the number of random
trials necessary to get confidence that thisT4 configura-
tion for N ­ 306 is the global minimum seems prohibitive
Perhaps, similar toN ­ h33, 70, 71, 73j, the reason that the
apparent global minimum configuration forN ­ 79 does
not have exactly 12 pentamers may be because it is diffic
to add one charge to the very symmetricT4 configuration
for N ­ 78 and still obtain a good minimum with exactly
12 pentamers. Recently, very good low-energy configu
tions have been found forN ­ h137, 146j [19].

For N ­ 10sm2 1 n2 1 mnd 1 2 with m, n positive
integers we have given a method for generating config
rations which we think are global minima for Thomson
problem, and tested these configurations extensively
N ­ 122 and 132. We have hypothesized that in cas
in which more than one pair ofm and n give a lattice
configuration with the sameN the configuration with the
smaller ratio ofm to n have a lower energy and verified
this hypothesis for the five suchN , 2500. Given that
for n ­ 0 the icosahedral lattices are not the minimum
energy configurations, there is an interesting open ques
as to whether the lattices remain minimum-energy config
rations as the ratio ofm to n grows large. The topological
2684
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patterns and symmetries manifest in the lattice configu
tions for Thomson’s problem also appear in a diverse ar
of other physical and biological systems [13–16]. The
configurations may be useful for benchmarking optimiz
tion methods.
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