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A statistical theory of the folding dynamics of an ensemble of random heteropolymers is developed.
The predicted relaxation is consistent with the glassy behavior of quenched disorder and is singled out
by a generic least action principle: In processes of increasing difficulty, the logarithmic growth in time
of the expected activation barrier yields the fastest relaxation pathway. [S0031-9007(97)02780-4]

PACS numbers: 87.15.He, 87.10.+e, 87.15.Da

The so-called logarithmic relaxation is found in statisti- The search in conformation space performed by a poly-
cal ensembles of equivalent entities with quenched disomer chain that forms intramolecular interactions under
der whose dynamics is mapped on a complex free energn vitro solvent conditions is neither a downhill process nor
landscape [1-3]. By logarithmic relaxation we mean arthe result of a random exploration in conformation space
averaged behavior characterized by a logarithmic growtfi8—12]. To determine the statistics upon which the dy-
of the expected encountered activation barrier which ahamics are built, we pick the enthalgy (H = 0) of a
time ¢ is of the order of Ift/7), with 7 being a charac- folded state as the relevant coordinate, assigiing 0
teristic time scale. This slow growth has been found tao the random coil conformation (RC). This choice is ap-
be expedient in specific systems [1] which relax with anpropriate since enthalpy changes result from heat released
increasing level of difficulty in a rugged landscape. Anand transferred to the statistical bath (the solvent) due to
illustration of this instance is provided by a collection intramolecular contact formation and, consequently, the
of the order of Avogadro’s number-10%?) of polymer enthalpic content of a specific state depends directly on the
molecules of fixed length with a random primary sequenceontact pattern (CP) to which the state is associated. Thus,
folding intramolecularly undein vitro solvent conditions our statistical theory holds valid for RNA [1], in which
[1-4]. The molecules undergo folding events in an asyneach intrachain secondary contact is saturating, or for
chronous manner and only their statistical behavior idrustration-free model biopolymers [1,2,10], in which the
amenable to a physical treatment. Their relaxation towardenthalpic content can be lowered only by contact forma-
foldings of increasing complexity has been accounted fotion. Furthermore, the dynamics at the level of transitions
by implementing a kinetic theory [5] rooted in the randombetween CP’s are understood and have been effectively
energy model (REM) [6]. Our aim in this work is to cast modeled [7,10]. Thus, our theory aims at defining the sta-
this behavior in terms of a variational principle. Such atistical dynamics along a single coordinate as a pro-
formulation has been shown to be essential to understandction of the dynamics within the CP space for random
the expediency of the folding process, in particular to ex-copolymers in the long chain limit.
plain how the process circumvents the scenario of exhaus- The choice ofH as the natural coordinate hinges upon
tive random search in conformation space [7]. the validity of an adiabatic scenario in which each CP is

Focusing on relaxation processes of increasing diffiregarded as a quasiequilibrium state [1-5,7—-12]. This
culty, it becomes intuitively obvious that the fastest processneans that, in dealing with folding events, the fast dihe-
would correspond to a logarithmic growth of activation dral torsions are integrated out as conformational entropy
barriers, since such a growth is the slowest possible. Thewf the chain (cf. [13]). This tenet is in full agreement
the following question arises: Is it possible to derive a leastvith most treatments of the folding problem known to the
action principle such that the glassy logarithmic relaxatiorauthors [1-5,7—12]. The theory is built upon Hrlevel
described above is singled out as a brachistochrone or leaditribution compatible with the coarse CP description of
over-all-time relaxation pathway? conformation space. Within the CP space, the dynam-

In order to answer this question, we shall first developics are determined following a general scheme [7,10]:
a formal scheme with minimal detail that effectively re- The kinetic barrierB associated to a contact formation
produces the statistics of the folding dynamics for an enB = B(loop) is entropic in nature since the transition state
semble of random heteropolymers. Then, we shall provén the rate-limiting step entails a loop closure with the
that the expected relaxation leading to increasing strucconcurrent loss in conformational freedom [7]. Once the
tural complexity obeys a variational principle which actu- contact regions have been brought to proximity, bond for-
ally encompasses a broad range of phenomena involvingiation becomes a downhill event since the entire cost has
systems with quenched disorder. been borne up by the entropg(loop) = —TAS(loop),
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where AS(loop) is the entropy loss associated to loop P(H,1), 0P (H,t)/dt, as the cumulative result of elemen-
closure [7]. The computation of this quantity incorporatestary transitions to and from levels with enthalpy The
an estimate of the conformational constraints determinethtegrals in which transitional contributions are added up
by polar group orientation towards bulk solvent, as well ashave the valugd as the upper or lower integration limit
excluded volume effects reflecting the self-avoiding naturelepending on whether the transitions involve states below
of the chain [4,7]. On the other hand, the kinetic barrieror aboveH, respectively. Thus, the equation reads
associated to contact dismantling,= B(del), is of en-
thalpic origin, since deletion of an intramolecular contact dP(H,1)/fdt
requires heat absorption in the rate-limiting step in the H
same amount as that releasAd/, upon formation of the = Q(H)[ exd(H' — H)/RT)P(H',1) dH'
contact. Once the intramolecular bonds are broken, o -
the resulting gain in conformational freedor_n_ enables — P(H, t)] exd(H' — H)/s]Q(H') dH'
further loop-opening steps to occur at no additional cost —o
[10]. Thus, we geB(del) = —AH. 0

This kinetic treatment of CP transitions involving + Q(H)f exd(H — H')/s]P(H',t) dH'
Arrhenius-like barriers is consistent with the approxi- "

0
mation introduced in that we regard each CP as a — P(H.t ] exd(H — H/RT1Q(H) dH'. (4
quasiequilibrium state, thus validating the thermodynamic (. 1) H H( J/RTJQ(H) - 4

estimation of the kinetic barriers. This Arrhenius kinetics - ,
. ; . The two sources of probability represented by the first
ansatz overlooks conformational detail, such as specifi¢

: and third terms in the right-hand side of Eq. (4) give the
geometry, beyonq that necessary to specify the thermoc%ositive rate of probability change due to elementary tran-
namic quantities indicated above.

. r_, ; /
We introduce the density of conformations with en- sitions /7 H, from levels with enthalpy” below and

thalpy H: Q(H)/Q = F(H), where Q(H) and Q are aboveH, respectively. The barrier associated to the for-

; : . mer transition isB = H — H' (H' = H), while the latter
respectively, the number of conformations compatible,

with enthalpyH and the total number of conformations. transition requires surmounting a barrier of entropic ori-

) ) i = I — "= H). The rate contribu-
Thus, the entropy = S(H) of a state with enthal is ain, B RT(H H)/s (H :
S(H) = RIn F(I%g. In ogde)r to determing (H), weprfake tions follow directly from Eq. (3), the computation of the

. . kinetic barriers for elementary transitions within the space
use of the fact that there must exist a denaturation teméf CP’s and the general form of the unimolecular rate con-
peraturel,. Thus, atl = T., G(H) = AG(H) is identi- 9

cally zero irrespective off. The quantityAG(H) is the Stintr for a folding transition. Thﬁ's _r?t.e is computed as
. s r = fexp(—B/RT), wheref = 10° s™! is the rate con-
free energy change associated to the transition from the . .
. stant for contact formation once the nucleating event of
RC to the folded state with enthal@y. Then, the fol- .2
lowing relations hold: I(_)op_closure has taken plqc_:e [7], aBds the kinetic bar-
) rier involved in the transition. On the other hand, the
—RT:InF(H) + H=0; (1) two sinks of probability, given by the second and fourth
. B ) terms, correspond to transitiods — H'. In this situa-
F(H) = exp(=|Hl/s): (2) tion, wheneverH’' = H (second term) the barrier is en-
AS = (R/s)AH, (3) tropic and it becomes enthalpichf’ = H (fourth term).
Equation (4) may be integrated numerically with the
appropriate initial conditionP(H,0) = §(H — 0). This
condition holds because folding is assumed to take place
when a renaturation temperatufe< T, is reestablished,
and thus the starting point of the process is the RC with
H = 0. In order to monitor the dynamics, we follow the
eexpected enthalp{H (r)) at time ¢:

wheres = RT.. SinceRT/s < 1forT < T, and given
the nature of the kinetic barriers involved in formation and
dismantling of intramolecular contacts, Eq. (3) implies
that the folding is mostly delayed due to dismantling of
“misfolded” structure, in accord with current observations
[8,9,11,12].

To determine the statistical dynamics, we define th

probability P(H,t) of enthalpy H at time:, satisfying 0

P(H,t) = N(H,t)/N, where an ensemble of copies of (H(t)) = f HP(H,t)dH . (5)
the system, assuming each one consists of an individual -

polymer molecule, anV(H,t) and N indicate, respec- The results are displayed in Fig. 1 for specific re-

tively, the number of molecules with enthalg at time:  duced temperature®’. The following notation has been
and the total number of molecules in the ensemble. Tadopted: 7 = f~ ', 7' = (T, — T)/T. (T =T.). The
determine the time evolution @, we introduce a Mas- critical temperature has been fixed7at= 318 K. The

ter equation which is valid fof’ = T, (cf. [14]) that is, logarithmic time-dependent behavior G (z)) fits into

in the temperature regime where levels wiHh<< 0 may  the physical picture of general relaxation dynamics for
be populated. This equation determines the change iglassy disordered materials [1,6], thus corroborating the
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log (t/%) fore, we may conclude that the metastable phase be-
o ! 2 3 ¢ comes dominant as a dynamic equilibrium in the range
273 K < T < T.. Actually, no analysis is required be-
low the freezing point of the solvent (273 K), since the

/4 N folding process cannot take place.
wws [ TTTONN The kinetic approach presented is consistent with the
T=1/100 coarse description of conformation space partitioned in

-s/2

quasiequilibrium CP states. In this regard, our approach
) ) differs from other more detailed kinetic treatments of fold-
FIG. 1. Time-dependent behavior of the expected enthalp

(H(1)). as obtained by numerical integration of Eq. (4). TheYng rooted in fundamental dynamical assumptions [16].

dashed line indicates ideal logarithmic relaxation. The absissa@Ur model is justified and corroborated on the following
are dimensionless and given in logarithmic form with scalinggrounds: (1) The relaxation dynamics below criticality
constantr = 1 us. The ordinates are given in units o=  reproduces the known relaxation behavior of disordered
RT.. Two plots are g/iven correspor}ding to two choices of theglassy materials. (2) There exists a dynamically domi-
reduced temperatur@” = 1/10 and7" = 1/100. nantmetastabldolded phase which undergoes a first-order
phase transition with latent heat at the critical temperature,
in accord with calorimetric experiments and with mount-
validity of the approach presented in this work. This re-ing evidence pointing towards the need for an alternative
laxation regime is invariably followed by a sudden asymp-predictive tool radically different from free energy mini-
totic relaxation to a saturation enthalpy valde= H (x). mization algorithms.
Within this new regime{H (¢)) remains almost constant, At this point we rationalize the results within the

satisfying[(H (1)) — H(®)| = 1073 H (). context of a variational principle. Since we are dealing
The saturation enthalpy may be easily determined: Fowith ensemble-averaged relaxation, we shall consider a
a given enthalpyd we may determine the ratio(H) =  generic situation under the following constraints: (a) The

r | (H)/r 1 (H), wherer | (H) is the rate of downwards free energy landscape is rugged because of the high
transition in the enthalpy spectrum with starting patiit ~ degeneracy of enthalpy levels; (b) the expected barrier

andr 1 (H) is the rate of upwards transition: B(t) encountered at timegrows monotonically with, as
H is the case for a system of increasing complexity in which
y(H) =f exd(H' — H)/s]Q(H') dH’/ successive relaxation steps become increasingly difficult;

and (c) the progress of relaxation may be monitored by a
single-valued functiolX = X(B), which may be taken as
proportional to{H) in the folding context.

. ] ] Under these tenets, the path integral functional giving
In generaly(H) > 1 if H > H(x»), that is, starting at the overall relaxation time is

the RC (H = 0), there is on the average a tendency b
to increase the folding complexity by forming contacts /dt = Fflf exp(B/RT) (1 + X'Z)l/2 dB, (9)
until the saturation enthalpyf = H(«) is reached. The 0
saturation enthalpy is defined as satisfying the equatiowhereX’ = dX/dB, (1 + X'?)'/2dB is the arc differen-
y(H) = 1. This gives tial, F = RTf andF ' exp(B/RT) is the reciprocal of the
_ . B velocity when the activation barrier B. By solving the
H() = I[GRT = 5)/2RT1/(/RT = 1/s).  (7) Euler-Lagrange equations we find the relaxation pathway

f ' exd(H — H')/RTIQ(H')dH'.  (6)
H

Since we get that minimizes the functional. This pathway is defined by
lim H(<) — —s/2, whileH(x) =0 ifT >71,,  heequations
=T ®) B = B(t) = RT/2In[( f1)* + ¢2];

we obtain at7. a first-order phase transition with latent X = RT arg tai f1/c]. (10)
heat s/2, in qualitative agreement with experimental Since X = 0, the integration constant is less than
findings rooted in calorimetric measurements of denaturazero, and for typical choices ef appropriate to represent
tion [15]. the relaxation behavior within relevant long time scales
The time-dependent behavior of the expected enthalpfr > 100 us in the folding context [1,3,5,7,10]), we get
displayed in Fig. 1 reveals the existence of a metastablefr)?> > c¢? or B(r) = RT In( ft), which is precisely the
folded phase emerging as a dynamic equilibrium. Thidogarithmic increase in barrier size with time, the sig-
is so since the minimum free energy realizedds=  nature of glassy relaxation under the given assumptions.
H(>) — (RT/s)H(). On the other hand, sinc& =  This relaxation has been already singled out in the REM
(1 — RT/s)H, the free energy could in principle decreasemodel which holds valid for random RNA copolymers
boundlessly in the limit of long chains considered. There{1], it has been established within a correlated landscape
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in the spin-glass analogs of protein collapse [17], and itult, the slowest possible growth of the activation energy
appears to represent a generic situation in rugged landbarriers is provided by the logarithmic growth. For this

scape models of helix-coil transitions, as pointed out byreason, the variational formulation holds beyond the con-
de Gennes [18]. Furthermore, the time behavior of thdext of folding of disordered copolymers.

generic energy variabl& along the brachistochrone re-

laxation pathway defined as the extremal of the path inte-
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