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Variational Approach to Relaxation in Complex Free Energy Landscapes:
The Polymer Folding Problem
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A statistical theory of the folding dynamics of an ensemble of random heteropolymers is developed.
The predicted relaxation is consistent with the glassy behavior of quenched disorder and is singled out
by a generic least action principle: In processes of increasing difficulty, the logarithmic growth in time
of the expected activation barrier yields the fastest relaxation pathway. [S0031-9007(97)02780-4]

PACS numbers: 87.15.He, 87.10.+e, 87.15.Da
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The so-called logarithmic relaxation is found in statist
cal ensembles of equivalent entities with quenched diso
der whose dynamics is mapped on a complex free ene
landscape [1–3]. By logarithmic relaxation we mean a
averaged behavior characterized by a logarithmic grow
of the expected encountered activation barrier which
time t is of the order of lnstytd, with t being a charac-
teristic time scale. This slow growth has been found
be expedient in specific systems [1] which relax with a
increasing level of difficulty in a rugged landscape. A
illustration of this instance is provided by a collection
of the order of Avogadro’s numbers,1023d of polymer
molecules of fixed length with a random primary sequen
folding intramolecularly underin vitro solvent conditions
[1–4]. The molecules undergo folding events in an asy
chronous manner and only their statistical behavior
amenable to a physical treatment. Their relaxation towar
foldings of increasing complexity has been accounted f
by implementing a kinetic theory [5] rooted in the random
energy model (REM) [6]. Our aim in this work is to cas
this behavior in terms of a variational principle. Such
formulation has been shown to be essential to understa
the expediency of the folding process, in particular to e
plain how the process circumvents the scenario of exha
tive random search in conformation space [7].

Focusing on relaxation processes of increasing dif
culty, it becomes intuitively obvious that the fastest proce
would correspond to a logarithmic growth of activation
barriers, since such a growth is the slowest possible. Th
the following question arises: Is it possible to derive a lea
action principle such that the glassy logarithmic relaxatio
described above is singled out as a brachistochrone or le
over-all-time relaxation pathway?

In order to answer this question, we shall first develo
a formal scheme with minimal detail that effectively re
produces the statistics of the folding dynamics for an e
semble of random heteropolymers. Then, we shall pro
that the expected relaxation leading to increasing stru
tural complexity obeys a variational principle which actu
ally encompasses a broad range of phenomena involv
systems with quenched disorder.
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The search in conformation space performed by a pol
mer chain that forms intramolecular interactions unde
in vitro solvent conditions is neither a downhill process no
the result of a random exploration in conformation spac
[8–12]. To determine the statistics upon which the dy
namics are built, we pick the enthalpyH sH # 0d of a
folded state as the relevant coordinate, assigningH ­ 0
to the random coil conformation (RC). This choice is ap
propriate since enthalpy changes result from heat releas
and transferred to the statistical bath (the solvent) due
intramolecular contact formation and, consequently, th
enthalpic content of a specific state depends directly on t
contact pattern (CP) to which the state is associated. Th
our statistical theory holds valid for RNA [1], in which
each intrachain secondary contact is saturating, or f
frustration-free model biopolymers [1,2,10], in which the
enthalpic content can be lowered only by contact form
tion. Furthermore, the dynamics at the level of transition
between CP’s are understood and have been effectiv
modeled [7,10]. Thus, our theory aims at defining the st
tistical dynamics along a single coordinateH as a pro-
jection of the dynamics within the CP space for random
copolymers in the long chain limit.

The choice ofH as the natural coordinate hinges upo
the validity of an adiabatic scenario in which each CP
regarded as a quasiequilibrium state [1–5,7–12]. Th
means that, in dealing with folding events, the fast dihe
dral torsions are integrated out as conformational entro
of the chain (cf. [13]). This tenet is in full agreemen
with most treatments of the folding problem known to th
authors [1–5,7–12]. The theory is built upon anH-level
distribution compatible with the coarse CP description o
conformation space. Within the CP space, the dynam
ics are determined following a general scheme [7,10
The kinetic barrierB associated to a contact formation
B ­ Bsloopd is entropic in nature since the transition stat
in the rate-limiting step entails a loop closure with th
concurrent loss in conformational freedom [7]. Once th
contact regions have been brought to proximity, bond fo
mation becomes a downhill event since the entire cost h
been borne up by the entropy:Bsloopd ø 2TDSsloopd,
© 1997 The American Physical Society
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where DSsloopd is the entropy loss associated to loo
closure [7]. The computation of this quantity incorporate
an estimate of the conformational constraints determin
by polar group orientation towards bulk solvent, as well
excluded volume effects reflecting the self-avoiding natu
of the chain [4,7]. On the other hand, the kinetic barri
associated to contact dismantling,B ­ Bsdeld, is of en-
thalpic origin, since deletion of an intramolecular conta
requires heat absorption in the rate-limiting step in th
same amount as that released,DH, upon formation of the
contact. Once the intramolecular bonds are broke
the resulting gain in conformational freedom enable
further loop-opening steps to occur at no additional co
[10]. Thus, we getBsdeld ø 2DH.

This kinetic treatment of CP transitions involving
Arrhenius-like barriers is consistent with the approx
mation introduced in that we regard each CP as
quasiequilibrium state, thus validating the thermodynam
estimation of the kinetic barriers. This Arrhenius kinetic
ansatz overlooks conformational detail, such as spec
geometry, beyond that necessary to specify the thermo
namic quantities indicated above.

We introduce the density of conformations with en
thalpy H: VsHdyV ­ FsHd, where VsHd and V are,
respectively, the number of conformations compatib
with enthalpyH and the total number of conformations
Thus, the entropyS ­ SsHd of a state with enthalpyH is
SsHd ­ R ln FsHd. In order to determineFsHd, we make
use of the fact that there must exist a denaturation te
peratureTc. Thus, atT ­ Tc, GsHd ­ DGsHd is identi-
cally zero irrespective ofH. The quantityDGsHd is the
free energy change associated to the transition from
RC to the folded state with enthalpyH. Then, the fol-
lowing relations hold:

2RTc ln FsHd 1 H ­ 0 ; (1)

FsHd ­ exps2jHjysd ; (2)

DS ­ sRysdDH , (3)

wheres ­ RTc. SinceRTys , 1 for T , Tc and given
the nature of the kinetic barriers involved in formation an
dismantling of intramolecular contacts, Eq. (3) implie
that the folding is mostly delayed due to dismantling o
“misfolded” structure, in accord with current observation
[8,9,11,12].

To determine the statistical dynamics, we define th
probability PsH, td of enthalpy H at time t, satisfying
PsH, td ­ NsH, tdyN , where an ensemble of copies o
the system, assuming each one consists of an individ
polymer molecule, andNsH, td and N indicate, respec-
tively, the number of molecules with enthalpyH at time t
and the total number of molecules in the ensemble.
determine the time evolution ofP, we introduce a Mas-
ter equation which is valid forT # Tc (cf. [14]) that is,
in the temperature regime where levels withH , 0 may
be populated. This equation determines the change
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PsH, td, ≠PsH, tdy≠t, as the cumulative result of elemen
tary transitions to and from levels with enthalpyH. The
integrals in which transitional contributions are added
have the valueH as the upper or lower integration limi
depending on whether the transitions involve states bel
or aboveH, respectively. Thus, the equation reads

≠PsH, tdyf≠t

­ VsHd
Z H

2`
expfsH 0 2 HdyRT gPsH 0, td dH 0

2 PsH, td
Z H

2`
expfsH 0 2 HdysgVsH 0d dH 0

1 VsHd
Z 0

H
expfsH 2 H 0dysgPsH 0, td dH 0

2 PsH, td
Z 0

H
expfsH 2 H 0dyRT gVsH 0d dH 0. (4)

The two sources of probability represented by the fi
and third terms in the right-hand side of Eq. (4) give th
positive rate of probability change due to elementary tra
sitionsH 0 ! H, from levels with enthalpyH 0 below and
aboveH, respectively. The barrier associated to the fo
mer transition isB ­ H 2 H 0 sH 0 # Hd, while the latter
transition requires surmounting a barrier of entropic o
gin, B ­ RT sH 0 2 Hdys sH 0 $ Hd. The rate contribu-
tions follow directly from Eq. (3), the computation of the
kinetic barriers for elementary transitions within the spa
of CP’s and the general form of the unimolecular rate co
stantr for a folding transition. This rate is computed a
r ­ f exps2ByRT d, wheref ø 106 s21 is the rate con-
stant for contact formation once the nucleating event
loop closure has taken place [7], andB is the kinetic bar-
rier involved in the transition. On the other hand, th
two sinks of probability, given by the second and four
terms, correspond to transitionsH ! H 0. In this situa-
tion, wheneverH 0 # H (second term) the barrier is en
tropic and it becomes enthalpic ifH 0 $ H (fourth term).

Equation (4) may be integrated numerically with th
appropriate initial condition:PsH, 0d ­ dsH 2 0d. This
condition holds because folding is assumed to take pla
when a renaturation temperatureT , Tc is reestablished,
and thus the starting point of the process is the RC w
H ­ 0. In order to monitor the dynamics, we follow the
expected enthalpykHstdl at time t:

kHstdl ­
Z 0

2`

HPsH, td dH . (5)

The results are displayed in Fig. 1 for specific re
duced temperaturesT 0. The following notation has been
adopted: t ­ f21; T 0 ­ sTc 2 TdyTc sT # Tcd. The
critical temperature has been fixed atTc ­ 318 K. The
logarithmic time-dependent behavior ofkHstdl fits into
the physical picture of general relaxation dynamics f
glassy disordered materials [1,6], thus corroborating t
2669
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FIG. 1. Time-dependent behavior of the expected entha
kHstdl, as obtained by numerical integration of Eq. (4). Th
dashed line indicates ideal logarithmic relaxation. The absis
are dimensionless and given in logarithmic form with scalin
constantt ­ 1 ms. The ordinates are given in units ofs ­
RTc. Two plots are given corresponding to two choices of th
reduced temperature:T 0 ­ 1y10 andT 0 ­ 1y100.

validity of the approach presented in this work. This re
laxation regime is invariably followed by a sudden asym
totic relaxation to a saturation enthalpy valueH ­ Hs`d.
Within this new regime,kHstdl remains almost constant,
satisfyingjkHstdl 2 Hs`dj # 1025Hs`d.

The saturation enthalpy may be easily determined: F
a given enthalpyH we may determine the ratioysHd ­
r # sHdyr " sHd, wherer # sHd is the rate of downwards
transition in the enthalpy spectrum with starting pointH,
andr " sHd is the rate of upwards transition:

ysHd ­
Z H

2`
expfsH 0 2 HdysgVsH 0d dH 0

¡
Z 0

H
expfsH 2 H 0dyRT gVsH 0d dH 0. (6)

In generalysHd . 1 if H . Hs`d, that is, starting at
the RC sH ­ 0d, there is on the average a tendenc
to increase the folding complexity by forming contact
until the saturation enthalpyH ­ Hs`d is reached. The
saturation enthalpy is defined as satisfying the equat
ysHd ­ 1. This gives

Hs`d ­ lnfs3RT 2 sdy2RT gys1yRT 2 1ysd . (7)

Since we get

lim
T!T2

c

Hs`d ­ 2sy2, while Hs`d ­ 0 if T . Tc ,

(8)

we obtain atTc a first-order phase transition with laten
heat sy2, in qualitative agreement with experimenta
findings rooted in calorimetric measurements of denatu
tion [15].

The time-dependent behavior of the expected entha
displayed in Fig. 1 reveals the existence of a metasta
folded phase emerging as a dynamic equilibrium. Th
is so since the minimum free energy realized isG ­
Hs`d 2 sRTysdHs`d. On the other hand, sinceG ­
s1 2 RTysdH, the free energy could in principle decreas
boundlessly in the limit of long chains considered. Ther
2670
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fore, we may conclude that the metastable phase
comes dominant as a dynamic equilibrium in the ran
273 K , T , Tc. Actually, no analysis is required be-
low the freezing point of the solvent (273 K), since th
folding process cannot take place.

The kinetic approach presented is consistent with t
coarse description of conformation space partitioned
quasiequilibrium CP states. In this regard, our approa
differs from other more detailed kinetic treatments of fold
ing rooted in fundamental dynamical assumptions [16
Our model is justified and corroborated on the followin
grounds: (1) The relaxation dynamics below criticalit
reproduces the known relaxation behavior of disorder
glassy materials. (2) There exists a dynamically dom
nantmetastablefolded phase which undergoes a first-orde
phase transition with latent heat at the critical temperatu
in accord with calorimetric experiments and with moun
ing evidence pointing towards the need for an alternati
predictive tool radically different from free energy mini
mization algorithms.

At this point we rationalize the results within the
context of a variational principle. Since we are dealin
with ensemble-averaged relaxation, we shall conside
generic situation under the following constraints: (a) Th
free energy landscape is rugged because of the h
degeneracy of enthalpy levels; (b) the expected barr
Bstd encountered at timet grows monotonically witht, as
is the case for a system of increasing complexity in whic
successive relaxation steps become increasingly difficu
and (c) the progress of relaxation may be monitored by
single-valued functionX ­ XsBd, which may be taken as
proportional tokHl in the folding context.

Under these tenets, the path integral functional givin
the overall relaxation time isZ

dt ­ F21
Z b

0
expsByRTd s1 1 X 02d1y2 dB , (9)

whereX 0 ­ dXydB, s1 1 X 02d1y2 dB is the arc differen-
tial, F ­ RTf andF21 expsByRTd is the reciprocal of the
velocity when the activation barrier isB. By solving the
Euler-Lagrange equations we find the relaxation pathw
that minimizes the functional. This pathway is defined b
the equations

B ­ Bstd ­ RTy2 lnfs ftd2 1 c2g ;

X ­ RT arg tanf ftycg . (10)

Since X # 0, the integration constantc is less than
zero, and for typical choices ofc appropriate to represent
the relaxation behavior within relevant long time scale
(t . 100 ms in the folding context [1,3,5,7,10]), we ge
s ftd2 ¿ c2 or Bstd ø RT lns ftd, which is precisely the
logarithmic increase in barrier size with time, the sig
nature of glassy relaxation under the given assumptio
This relaxation has been already singled out in the RE
model which holds valid for random RNA copolymer
[1], it has been established within a correlated landsca
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in the spin-glass analogs of protein collapse [17], and
appears to represent a generic situation in rugged la
scape models of helix-coil transitions, as pointed out
de Gennes [18]. Furthermore, the time behavior of
generic energy variableX along the brachistochrone re
laxation pathway defined as the extremal of the path in
gral given in Eq. (10) is in excellent agreement with th
of kHstdl, the relevant coordinate monitoring the progre
of the folding process. This fact results from direct com
parison of Figs. 1 and 2.

Thus, the variational formulation described by Eq. (1
not only validates the statistical theory of folding pr
sented in this work, but also reveals that the logarithm
law which governs the glassy relaxation of several mate
als with quenched disorder actually represents the fas
mode of relaxation among pathways which entail a mon
tonic increase with time in the size of the expected a
tivation barrier. The result has intuitive appeal: In a
process where relaxation steps become increasingly d

FIG. 2. Time-dependent behavior atT 0 ­ 1y100 of the
generic coordinateX along the brachistochrone relaxatio
pathway for processes with increasing size of the expec
activation barrier. The choice of the integration constantc for
the extremal of the functional given by Eq. (10) isc ­ 210.
Since X ­ Xstd is an energy coordinate, it is proportional t
kHstdl if the variational results are specialized to the conte
of the folding problem. Thus, the agreement in the relaxat
behavior as revealed by comparison of Figs. 1 and 2 valida
the variational formulation.
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cult, the slowest possible growth of the activation ener
barriers is provided by the logarithmic growth. For th
reason, the variational formulation holds beyond the co
text of folding of disordered copolymers.
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