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The Peierls Stress of Dislocations: An Analytic Formula
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A simple and rigorous analytic formula is derived for the Peierls stress of a dislocation within
Peierls-Nabarro model. This is both a generalization and a correction of the previously known fo
valid only for wide dislocations. Our formula is shown to have quantitative predictive capabilities,
to permit estimation of the Peierls stress directly from the generalized stacking fault energy surfac
both narrow and wide dislocations. [S0031-9007(96)02187-4]

PACS numbers: 61.72.Lk, 62.20.Fe, 61.72.Bb, 61.72.Nn
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Modern technological pressure for improved electro
and high-temperature materials has led to rapid exp
sion of research into the properties of synthetic structu
such as layered semiconductors, intermetallic compou
and the transition metal silicides. While these mate
als promise great potential for engineering and econo
benefits, they share common problems of mechanica
stability and/or room temperature brittleness, drawba
which severely limit their utility and impose substanti
cost handicaps. The understanding and elimination
these undesirable physical characteristics, all rooted in
nucleation and transport of dislocations, are of prime
portance.

These strategic materials, with strongly directional, h
bridizeds-por s-dbonding, and often complex structure
are not readily amenable to the atomistic methods wh
have been so successful in evaluating dislocation pro
ties in metals [1]. As a consequence, there has bee
resurgence of interest in the simple and tractable Peie
Nabarro (PN) model of dislocation structure and mobili
The purpose of this Letter is to introduce new metho
within the aperiodic PN framework which permit ea
estimation of the key dislocation characteristics of n
cleation and mobility, directly from quantities accessib
through standard quantum mechanical computations
periodic systems.

In the classical PN formalism [2–4], the dislocatio
misfit is assumed to be confined to a single plane,
glide plane, separating two semi-infinite linear elastic c
tinua. Between these half-spaces is placed a disloca
conveniently represented as a continuous distribution
infinitesimal dislocations [5] with densityrsxd, wherex
is a coordinate lying in the glide plane and normal to t
dislocation line. A discrete lattice of arbitrary structur
deformed by the dislocation displacement field, is sup
imposed on the elastic half-spaces. At a given point al
the interface, the resultant displacement, due to all the
finitesimal dislocations, is then balanced against the lat
restoring stresses across the glide plane. In the orig
formulation of the model [2,3], and in some later wor
0031-9007y97y78(2)y266(4)$10.00
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[6,7], the restoring stresses in each of the half-spaces
treated as independent functions of the lattice displa
ments. This leads to a predicted Peierls stress (PS)sp,
the minimum stress required to move a dislocation one
tice site, which is several orders of magnitude smaller th
those either observed or calculated by atomistic meth
[8]. The well known formula, on which these estimat
are based, is

sp ­ A exp

µ
2

az

b

∂
. (1)

In the original PN model [2,3]a ­ 4p, and, for an edge
dislocation,A ­ 2mys1 2 nd. z is the dislocation half-
width, m the shear modulus, andn the Poisson ratio.

Later developments recognized that a physically m
realistic description of the restoring stresses is in ter
of the relative displacements between the two half-spa
[4,9,10]; this modification, as will be shown, bring
the predicted Peierls stresses into fair agreement w
experimental measurements and atomistic calculation.
particular, for an edge dislocation,a ­ 2p and A ­
mys1 2 nd.

The above formula (1) is, however, approximate. It
valid only in the limit of wide dislocations, much wide
than commonly observed, but is nevertheless app
indiscriminately. The denominator in the exponent sho
bea0, the lattice period normal to the dislocation line.

We show in this Letter that the PS, the crucial qua
tity characterizing the mobility of a dislocation, can b
calculated rigorously and exactly within the PN mod
Simple, closed form expressions are obtained for the m
fit (or core) energy and the PS; these are shown to
in agreement with numerical calculations for both narr
and wide dislocations in model systems and Si. The
model has previously not been thought to be applicabl
narrow dislocations.

Peierls-Nabarro model.—In a Cartesian set of coor
dinatesxyz, we choose they axis as perpendicular to
the x0z glide plane. For the purposes of this Letter w
assume the core to be confined within this plane. T
© 1997 The American Physical Society
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Burgers vector, perpendicular to they axis, makes an
angleu with the dislocation line chosen as thez axis di-
rection. In the absence of anharmonic effects, the dir
tion of displacement of the atoms around the dislocat
line is along the Burgers vector. Within the glide plane,
each point a distancex0 from the dislocation line, the dis
placement$f of the upper half of the crystal (y . 0) with
respect to the lower half (y , 0) results from the continu-
ous distribution of infinitesimal dislocations with Burge
vector density $rsx0d dx0 ­ fd $fsx0 dydx0g dx0. The com-
ponent along$b of the total resultant stress at a pointx,
sbysxd, is the sum of the contributions from all these i
finitesimal dislocations.sbysxd is balanced by the corre
sponding component of the periodic restoring force str
$Fbsss $fsxdddd acting between atoms on either side of the
terface. Using the result of continuum theory, that
dislocation atx0 generates a stress field proportional
1ysx 2 x0 d at other pointsx along the interface [4], we
obtain the integro-differential equation known as the P
equation,

K
2p

Z 1`

2`

1
x 2 x0

dfsx0 d
dx0

dx0 ­ Fbsss fsxdddd , (2)

with the normalization conditionsfs2`d ­ 0, and
fs`d ­ b. The elastic constantK depends on the type
of dislocation and the crystalline direction of the Burge
vector [for a pure edge,u ­ 90±, in an isotropic crystal
K ­ mys1 2 nd] [10]. The restoring stress$Fs $fd is
given by the gradient of the so-called generalized stack
fault energy (gsf org) surface [11]. The gsf surface
is obtained by cutting the crystal along the glide plan
displacing one half with respect to the other by a vecto$f
and then rejoining them. As$f sweeps out a repeat are
on the glide plane, the energy of the displaced crys
generates the gsf surfacegs $fd (energy per unit area)
The restoring stress is then simply,$Fs $fd ­ 2≠gy≠ $f.
$Fs $fd in general will have a complex functional form. I
order to obtain a simple analytical solution, the origin
PN model assumes a sinusoidal restoring force,

Fbsss fsxdddd ­ tmax sin
2pfsxd

b
, (3)

and tmax is chosen so that, for small displacements, t
elastic limit is recovered.

This latter approximation may, however, be very crud
since dislocation cores depend more on the value of
restoring stress at large displacements than in the li
of small displacement. A more physical interpretati
of tmax is to take it as the maximum slope of the g
surface, in the appropriate direction for the dislocati
under study. Thistmax can be identified as the theoretic
shear strength of the lattice along that direction, and
a convenient parameter for the characterization of
interface restoring forces.

With the approximation in Eq. (3), the PN equation (
has the solitonlike solution,
c-
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fsxd ­
b
p

tan21 x
z

1
b
2

, (4)

where z ­ Kby4ptmax is the half-width of the
dislocation.

Misfit energy and the Peierls stress.—Although a
periodic restoring force has been incorporated into the
model, it still considers the crystal above and below t
glide plane as an elastic medium. Mass is homogeneou
distributed at the interface. Iffsxd is a solution to
the displacement field, so isfsx 2 ud where u is any
constant [fsx 2 ud corresponds to a dislocation translate
by u]. This “continuum-mass” dislocation has no PS
However, a stress can be defined by restoring discreten
to the mass distribution. This is done by noting th
the displacement functionfsx 2 ud corresponds to a rea
displacement only where an atomic plane is present.
the absence of a dislocation the spacing of atomic pla
in the directionx is defined asa0. When the dislocation is
introduced at the positionu, the planes, in the upper hal
of the crystal at a positionma0 in a direction perpendicular
to the dislocation line, will be displaced with respect to th
lower half byfsma0 2 ud along $b. The misfit energy can
be considered as the sum of misfit energies between p
of atomic planes [4,9,10] and can be written as

W sud ­
1X̀

m­2`

gsss fsma0 2 udddda0. (5)

This formula focuses on the variation of the disregistry
one moves across the dislocation core along the interf
in a direction perpendicular to the dislocation line. It h
the correct perioda0, and the right limit for very narrow
dislocations, for which the amplitude of variation ofW sud
should be the same as that ofgsuda0, i.e.,gmaxa0.

The Peach-Koehler formula [see Eq. (3.90) in Ref. [4
relates the applied stress field$s to the force per unit
length $F generated on the dislocation

$F ­ s $b ? $sd 3 ẑ . (6)

From this follows the Peierls stresssp, the maximum
stress required to overcome the periodic barrier inW sud,

sp ­ maxhsj ­ max

(
1
b

dW
du

)
. (7)

When the restoring force is sinusoidal, an exact solution
possible. Integrating the restoring force in Eq. (3) to g
an energy, and using Eq. (4), we have

W sud ­
1X̀

m­2`

tmaxa0b
2p

(
cos

"
2 tan21

√
ma0 2 u

z

!#
1 1

)
.

(8)

Using the identities,

1 1 cos

"
2 tan21 x

z

#
­

2z 2

x2 1 z 2
, (9)
267
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and ztmax ­ Kby4p, and introducing the dimensionles
quantitiesG ­ z ya0 andy ­ uya0, we have

W syd ­
1X̀

m­2`

Kb2

4p2

G

G2 1 sm 2 yd2 . (10)

W syd is an even periodic function of period1, and its
Fourier series has the form

W syd ­
a0

2
1

X̀
n­1

an cos2pny , (11)

where

an ­ 2
Z 1

0

1X̀
m­2`

Kb2

4p2

G

G2 1 sm 2 yd2 coss2pnyd dy .

(12)

With the change of variablet ­ y 2 m, this becomes a
well known integral overs2`, 1`d, such that the Fourier
series has the form,

W syd ­
Kb2

4p
1

X̀
n­1

Kb2

2p
e22pnG cos2pny . (13)

Using the fact that the cosine is a sum of exponentia
this series can be summed easily to yield

W syd ­
Kb2

4p

sinh2pG

cosh2pG 2 cos2py
. (14)

The maximum of this function is aty ­ 0 whereW s0d ­
Kb2y4p2G showing the expected divergence ofW as the
dislocation gets narrower. To get the PS we first ha
to compute the stress associated with the misfit ene
variation.

ssyd ­
1
b

dW
du

­ 2
Kb
2a0

sinh2pG sin2py
scosh2pG 2 cos2pyd2

.

(15)

Maximizing this quantity yields the PS

sp ­ ssymd, where

2 cos2pym ­ 2 cosh2pG 1
p

9 1 sinh2 2pG . (16)

This is a relatively easy formula to use. Simpler formul
can be deduced in two limits, (i) narrow dislocation
(G ø 1), and (ii) wide dislocations (G ¿ 1).

(i) The limit for narrow dislocationsis achieved when
the dislocation core is narrower than one lattice s
Returning to Eq. (5), we note that, in that limit, only on
term in the sum contributes, and

W sud ­ gsss fs2udddda0 ­
Kb2a0

4p2

z

z 2 1 u2
; (17)

and hence,

ssud ­
1
b

dW
du

­ 2
Kba0

2p2

zu
sz 2 1 u2d2

, (18)

leading to the maximum value
268
,

y

.

sp ­
3
p

3
8

tmax
a0

pz
. (19)

A more general form can be obtained in this limi
which is applicable to nonsinusoidal restoring force
One starts again with the observation that, for narro
dislocations, only one atomic plane will be significantl
displaced as the dislocation is moved, or the first part
Eq. (17), which when differentiated gives

ssud ­
1
b

dW
du

­
a0

b
dgsss fs2udddd

df
df
du

. (20)

Assuming a tan21 profile for the dislocation, as in Eq. (4),

ssud ­ 2
a0

p

dgsss fs2udddd
df

z

u2 1 z 2
. (21)

Inverting Eq. (4), Eq. (21) can be rewritten in terms of th
displacementf only, leading to

sp ­
a0

pz
max

(
dgs fd

df
sin2 pf

b

)
. (22)

The quantity to be maximized is essentially proportion
to tmax. The appropriate coefficient in front will depend
on the functional form ofdgydf. With a sinusoidal form,
for instance, we recover Eq. (19).

(ii) The limit for wide dislocationscan be most easily
derived from Eq. (13), where only the first exponentia
term in the series is kept [2–4,6], yielding a sinusoid
variation in the misfit energy

W sud ­
Kb2

4p

µ
1 1 2e22pzya0

cos
2pu

a0

∂
, (23)

from which follows

sp ­
Kb
a0

e22pzya0

. (24)

[This last term can be obtained directly from Eq. (16
by taking the limit G ¿ 1.] The exponential factor
is in agreement with the result found numerically fo
the Frenkel-Kontorowa model, the simplest model fo
dislocation motion [12], but differs, by a factor of 2, from
what is given in the original derivations [2,3] and in som
recent work [7]. In these papers, the displacements of
top and bottom of the crystal are added up as separ
entities. This is fine for the calculation of the total stres
but it yields an unphysical result for the misfit energy
which does not combine linearly.

Verification of the model is possible in several way
Atomistic calculations sometimes provide both PS an
dislocation core width information. The latter can b
used to predict the PS from Eqs. (19) or (24). Zho
Carlsson, and Thomson [8] calculated the PS in a mo
close-packed hexagonal lattice (wide dislocations) usi
pair potentials and foundsp ­ 1024m for a dislocation
width of z ­ 1.6b. Using the same width, withn ­ 1y4
in Eq. (24), which is the appropriate formula to use i
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systems with wide dislocations, yields a predictedsp ­
0.57 3 1024m, within a factor of 2 of the atomistic value
This agreement demonstrates that the dislocation wid
PS relationship of Eq. (24) is consistent with atomis
theory. Use of the classical expression [2,3] in this ca
leads to an underestimate of the atomistic PS by a fa
of 104.

The typical experimental value for the PS in a clos
packed metal (Cu) is about5 3 1026m [13]. Our PN
model can be compared with this value by using the va
of tmax ­ 0.04m calculated by Kelly [14] (comparable
with the value of0.031m measured in Ag whiskers by
Brunner [15]). Inserting this value fortmax, with n ­
0.324 [4] and bya0 ­ 2y3 into Eq. (24) predictssp ­
1.99 3 1026m, within a factor of 2.5 of the experimenta
measurement. The classical PN model gives a value
sp ø 10211m.

The expression for narrow dislocations Eq. (22),
more simply Eq. (19), applicable to covalent materia
can be tested on Si, using a recent numerical solution
the PN model [10] based on realistic restoring forces o
tained from a first principles calculation of the gsf su
face [16]. The results of this work have been confirm
by simulations using an empirical potential [17], and
an effective-medium tight-binding calculation [18]. Com
paring the values reported in Ref. [10] with predictions
Eq. (19) yields an agreement within less than a percent
the glide partials for whichzya0 ø 0.3 [Ref. [10] gives
0.450m and 0.561m for the 90± and 30± glide partials,
respectively, while Eq. (19) yields0.446m and 0.561m].
Even for the shuffle set wherez ya0 is close to1 the agree-
ment is within 10% [sp ­ 0.076m and 0.103m for the
60± and screw dislocations from Ref. [10], and0.072m

and0.090m from Eq. (19)]. Experimental information is
also available for Si [19,20]. Extrapolation to 0 K gives
value of sp between 0.1 to0.5m [21,22], covering the
range of values predicted by Eq. (19) for the releva
glide partials.

These verifications of our expressions for the P
demonstrate that they provide a rapid and inexpensive
ternative to atomistic calculations. They restore credib
ity to the PN model as a simple model for dislocatio
with the capability of quantitative predictions. The on
required inputs are the maximum of the restoring str
tmax, for the glide plane under study, and the correspo
ing elastic constantK. tmax should become increasingl
available as first principles calculations of materials pro
erties become more routinely performed.
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