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The Peierls Stress of Dislocations: An Analytic Formula
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A simple and rigorous analytic formula is derived for the Peierls stress of a dislocation within the
Peierls-Nabarro model. This is both a generalization and a correction of the previously known formula
valid only for wide dislocations. Our formula is shown to have quantitative predictive capabilities, and
to permit estimation of the Peierls stress directly from the generalized stacking fault energy surface, for
both narrow and wide dislocations. [S0031-9007(96)02187-4]

PACS numbers: 61.72.Lk, 62.20.Fe, 61.72.Bb, 61.72.Nn

Modern technological pressure for improved electronid6,7], the restoring stresses in each of the half-spaces are
and high-temperature materials has led to rapid expartreated as independent functions of the lattice displace-
sion of research into the properties of synthetic structuresnents. This leads to a predicted Peierls stress (PS)
such as layered semiconductors, intermetallic compoundghe minimum stress required to move a dislocation one lat-
and the transition metal silicides. While these materiice site, which is several orders of magnitude smaller than
als promise great potential for engineering and economithose either observed or calculated by atomistic methods
benefits, they share common problems of mechanical if8]. The well known formula, on which these estimates
stability and/or room temperature brittleness, drawbackare based, is
which severely limit their utility and impose substantial ¢
cost handicaps. The understanding and elimination of o, =Aex;<—7> @
these undesirable physical characteristics, all rooted in the
nucleation and transport of dislocations, are of prime im4n the original PN model [2,3% = 44, and, for an edge
portance. dislocation,A = 2 /(1 — v). ¢ is the dislocation half-

These strategic materials, with strongly directional, hy-width, u the shear modulus, andthe Poisson ratio.
bridizeds-por s-dbonding, and often complex structures, Later developments recognized that a physically more
are not readily amenable to the atomistic methods whichealistic description of the restoring stresses is in terms
have been so successful in evaluating dislocation propeof the relative displacements between the two half-spaces
ties in metals [1]. As a consequence, there has been[4,9,10]; this modification, as will be shown, brings
resurgence of interest in the simple and tractable Peierlshe predicted Peierls stresses into fair agreement with
Nabarro (PN) model of dislocation structure and mobility.experimental measurements and atomistic calculation. In
The purpose of this Letter is to introduce new method9articular, for an edge dislocationy = 277 and A =
within the aperiodic PN framework which permit easy u/(1 — v).
estimation of the key dislocation characteristics of nu- The above formula (1) is, however, approximate. It is
cleation and mobility, directly from quantities accessiblevalid only in the limit of wide dislocations, much wider
through standard quantum mechanical computations fahan commonly observed, but is nevertheless applied
periodic systems. indiscriminately. The denominator in the exponent should

In the classical PN formalism [2—-4], the dislocation bea’, the lattice period normal to the dislocation line.
misfit is assumed to be confined to a single plane, the We show in this Letter that the PS, the crucial quan-
glide plane, separating two semi-infinite linear elastic condity characterizing the mobility of a dislocation, can be
tinua. Between these half-spaces is placed a dislocationalculated rigorously and exactly within the PN model.
conveniently represented as a continuous distribution o8imple, closed form expressions are obtained for the mis-
infinitesimal dislocations [5] with densitg(x), wherex  fit (or core) energy and the PS; these are shown to be
is a coordinate lying in the glide plane and normal to thein agreement with numerical calculations for both narrow
dislocation line. A discrete lattice of arbitrary structure,and wide dislocations in model systems and Si. The PN
deformed by the dislocation displacement field, is supermodel has previously not been thought to be applicable to
imposed on the elastic half-spaces. At a given point alongarrow dislocations.
the interface, the resultant displacement, due to all the in- Peierls-Nabarro model—In a Cartesian set of coor-
finitesimal dislocations, is then balanced against the latticdinatesxyz, we choose they axis as perpendicular to
restoring stresses across the glide plane. In the origindghe x0z glide plane. For the purposes of this Letter we
formulation of the model [2,3], and in some later worksassume the core to be confined within this plane. The
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Burgers vector, perpendicular to the axis, makes an Flx) = L @)
angle# with the dislocation line chosen as theaxis di- T { 2°
rection. In the absence of anharmonic effects, the direc-

tion of displacement of the atoms around the diS|0caﬁor\]<;viZI%r§ati{)r1: Kb/Am Tmax s the half-width of the

line is along the Burgers vector. Within the glide plane, at Misfit energy and the Peierls stressAlthough a

each point a distance from the dislocation line, the dis- S . X :
| 7 of th half of th tab(> 0) with periodic restoring force has been incorporated into the PN
placemenyy of the upper half of the crystal(> 0) wi model, it still considers the crystal above and below the

respg_cttt%tr:_e IOer.r ?_a!{y( = O)I rde.SlljltS ftr_om thgtr(]:o;tlnu- glide plane as an elastic medium. Mass is homogeneously
ous distribution ot infinitesimal disiocations wi Urgers gistributed at the interface. If(x) is a solution to

vector densityp(x') dx’ = [df(x")/dx']dx". The com- yne gisplacement field, so i&(x — u) where u is any
ponent alongy of the total resultant stress at a poit  constant f(x — u) corresponds to a dislocation translated
(_r;,_y(x)_, is th_e sum_of the contr_lbutlons from all these in- by u]. This “continuum-mass” dislocation has no PS.
finitesimal dislocations.o (x) is balanced by the corre- However, a stress can be defined by restoring discreteness
sponding component of the periodic restoring force stresg, the mass distribution. This is done by noting that
F;(f(x)) acting between atoms on either side of the in-the displacement functiofi(x — u) corresponds to a real
terface. Using the result of continuum theory, that adisplacement only where an atomic plane is present. In
dislocation atx’ generates a stress field proportional tothe absence of a dislocation the spacing of atomic planes
1/(x — x") at other pointst along the interface [4], we in the directionx is defined as’. When the dislocation is
obtain the integro-differential equation known as the PNintroduced at the position, the planes, in the upper half
equation, of the crystal at a positioma’ in a direction perpendicular

K (™ 1 dfx’) to the dislocation line, will be displaced with respect to the

) T g = Fo(f)s @) ower half byf(ma' — u) alongh. The misfit energy can
with the normalization conditionsf(—=) = 0, and be consjdered as the sum of misfit ener.gies between pairs
f(e) = b. The elastic constank depends on the type of atomic planes [4,9,10] and can be written as

of dislocation and the crystalline direction of the Burgers = . ,
vector [for a pure edge = 90°, in an isotropic crystal Ww) = D> y(f(ma' — w)d'. ©)
K = u/(1 — v)] [10]. The restoring stress (f) is m=

given by the gradient of the so-called generalized stackinghis formula focuses on the variation of the disregistry as
fault energy (gsf ory) surface [11]. The gsf surface one moves across the dislocation core along the interface
is obtained by cutting the crystal along the glide planejn a direction perpendicular to the dislocation line. It has
displacing one half with respect to the other by a Veﬁtor the correct period:’, and the right limit for very narrow
and then rejoining them. A£ sweeps out a repeat area dislocations, for which the amplitude of variation Wf(u)

on the glide plane, the energy of the displaced crystaghould be the same as thatpfu)a’, i.e., ymaxa'.

generates the gsf surface( f) (energy per unit area).  1he Peach-Koehler formula [see Eqg. (3.90) in Ref. [4]]
The restoring stress is then simplf/‘,(}) - _ay/a}. relates the applied stress fleli:l tq the force per unit
F(F) in general will have a complex functional form. In '€ngthF generated on the dislocation

order to obtain a simple analytical solution, the original F=(b-5)X3. (6)

PN model assumes a sinusoidal restoring force, . _ _
27 f(x) From this follows the Peierls stress,, the maximum

PR (3)  stress required to overcome the periodic barrieWigu),

and 7, is chosen so that, for small displacements, the o, = max{o} = maxll d_W] @

Fh(f(x)) = Tmax sin

elastic limit is recovered. b du
This latter approximation may, however, be very crudeyyhen the restoring force is sinusoidal, an exact solution is

since _dislocation cores depend more on the yalue Of,thﬁossible. Integrating the restoring force in Eq. (3) to get
restoring stress at large displacements than in the limi{, energy, and using Eq. (4), we have

of small displacement. A more physical interpretation - " /
of Thax IS to take it as the maximum slope of the gsf . Tmax @ _[ma —u
surface, in the appropriate direction for the dislocationW(u) B Z 27 {co{ztan ( I )} * 1]'
under study. This ., can be identified as the theoretical (8)
shear strength of the lattice along that direction, and is
a convenient parameter for the characterization of th&Jsing the identities,
interface restoring forces. 272

With the approximation in Eq. (3), the PN equation (2) 1+ cos{Ztanl i:| == £ 5> C)]
has the solitonlike solution, ¢ X2+
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and { 7max = Kb /4, and introducing the dimensionless 33 a’ 19
quantitiesI’ = {/a’ andy = u/a’, we have Tp = T Tmax (19)
W(y) = i Kb? r (10) A more general form can be obtained in this limit,
Y 4w T2 + (m — y)* which is applicable to nonsinusoidal restoring forces.

One starts again with the observation that, for narrow
dislocations, only one atomic plane will be significantly
displaced as the dislocation is moved, or the first part of

W(y) is an even periodic function of periotl and its
Fourier series has the form

W(y) = ao i a, COS27ny | (11) Eq. (17), which when differentiated gives
2 A oy = LW _d G df o
where b du b df du’
P& kb? r Assuming a tan' profile for the dislocation, as in Eq. (4),
a, = 2] > ™ 5 co2mny) dy .
0 e 42 T2+ (m — y) o) = L DU ¢ 1)
(12) T df w2+ 2

With the change of variable = y — m, this becomes a Inverting Eq. (4), Eqg. (21) can be rewritten in terms of the
well known integral ovef—o, +%), such that the Fourier displacemeny only, leading to
series has the form, d dy(f) Tf
Kb > kb2 o, = —max[—sinz—}. (22)
W(y) = LG + — ¢ ™ cos2mny.  (13) 7 df b
41 — 27

n

The quantity to be maximized is essentially proportional
Using the fact that the cosine is a sum of exponentialsto 7,.x. The appropriate coefficient in front will depend

this series can be summed easily to yield on the functional form offy/df. With a sinusoidal form,
. for instance, we recover Eq. (19).
2 )
W(y) = Kb sinh2z I : (14) (i) The limit for wide dislocationgan be most easily
4m costew I’ — cos2ary derived from Eq. (13), where only the first exponential
The maximum of this function is at = 0 wherew (0) =  term in the series is kept [2—-4,6], yielding a sinusoidal
Kb? /47T showing the expected divergenceWfas the  variation in the misfit energy
dislocation gets narrower. To get the PS we first have 2 ot YU
to compute the stress associated with the misfit energy W(u) = ﬁ(l + 2¢ 2l 0087>, (23)
variation. _
()= LdW _ Kb __sihaz[sindmy from which follows
g = = — .
Y b du 2a’ (cos2@w T’ — cos2wry)? o, = K_ll’ o 2mila (24)
(15) a

[This last term can be obtained directly from Eq. (16)
by taking the limit I' > 1.] The exponential factor

ap = 0(Ym)s where is in agreement with the result found numerically for

200827y, = — coshea T + Vo + sinf2#T. (16) the Fre_nkeI-antorowa mod'el, the simplest model for

dislocation motion [12], but differs, by a factor of 2, from

This is a relatively easy formula to use. Simpler formulaswhat is given in the original derivations [2,3] and in some
can be deduced in two limits, (i) narrow dislocationsrecent work [7]. In these papers, the displacements of the
(I' < 1), and (ii) wide dislocationsI{ > 1). top and bottom of the crystal are added up as separate

(i) The limit for narrow dislocationss achieved when entities. This is fine for the calculation of the total stress,

the dis_location core is narrower 'Fhan orye.lattice siteput it yields an unphysical result for the misfit energy,
Returning to Eq. (5), we note that, in that limit, only one which does not combine linearly.

Maximizing this quantity yields the PS

term in the sum contributes, and Verification of the model is possible in several ways.
Kb2d' i Atomistic calculations sometimes provide both PS and
/ . . . . .
W) = y(f(-u)a' = —— Rk (17)  dislocation core width information. The latter can be
used to predict the PS from Egs. (19) or (24). Zhou,
and hence, Carlsson, and Thomson [8] calculated the PS in a model
1 dw Kbd' Lu close-packed hexagonal lattice (wide dislocations) using
o(u) = b de 2 (Tt e (18)  pair potentials and found, = 10~*u for a dislocation
u m (82 + u?) width of ¢ = 1.6b. Using the same width, witah = 1/4
leading to the maximum value in Eqg. (24), which is the appropriate formula to use in
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systems with wide dislocations, yields a predictegl = This work has been funded by the Natural Sciences and
0.57 X 10~*u, within a factor of 2 of the atomistic value. Engineering Research Council (Canada) and by the Office
This agreement demonstrates that the dislocation widthef Naval Research under SBIR Contract No. NO0014-95-
PS relationship of Eq. (24) is consistent with atomisticC-0404.

theory. Use of the classical expression [2,3] in this case

leads to an underestimate of the atomistic PS by a factor

of 10%.
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