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Scaling Laws for Microemulsions Governed by Spontaneous Curvature
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We introduce a model for microemulsions whose basic building blocks are cylindrical tubes conne
by spherical junctions forming a network. The model predicts analytic scaling laws which quantitativ
reproduce several prominent experimental features of the phase diagram, including the closed
of 2-phase coexistence and the 3-phase body. The interfacial nature of our model, which
into account only the curvature energy and the entropy of the interface, explains the obse
wateryoil symmetry and the collapse of the experimental data onto a single universal scaling cu
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Recent studies of nonionic microemulsions (ME) hav
provided systematic experimental knowledge concerni
their structure and phase behavior. The phase diagram
these simplest ternary systems, which contain water,
and a nonionic surfactant, are fairly universal. Among th
prominent features is the coexistence of either two or thr
phases in a temperature regime aroundT̄ , the tempera-
ture where the average curvature of the surfactant inter
cial film vanishes [1]. The progression of the multiphas
regions as a function of temperature exhibits a rema
able wateryoil symmetry: As the temperature is increase
above a critical value,T2 , T̄ a two-phase closed loop
with two critical points appears in the water-rich corner o
the phase diagram (the oil volume fractionf , 0.1). A
symmetrical loop appears in the oil-rich corner when th
temperature is decreased below the critical valueT1 . T̄
[2]. When the temperature further approachesT̄ (increas-
ing in the water side and decreasing in the oil side) t
loops start to expand. At certain temperatures the loo
(Tl . T2 on the water side,Tu , T1 on the oil side) in-
tersect the emulsification failure line (EF) associated wi
the coexistence of globules and an excess phase [3]. T
results in the creation of the three-phase body which exi
in the temperature regimeTl , T , Tu [4].

The microstructure of ME has been studied using NM
[5], neutron and x-ray scattering [6], and freeze fractu
electron microscopy (FFEM) [7]. The experiments su
gest that the ME near the closed loops and three-ph
regions is locally cylindrical. However, the global geome
try of the ME has not yet been established. There
some evidence (FFEM, x-ray scattering [8], viscosity, an
conductivity experiments) that supports the existence o
connected structure [9].

Much effort has been directed at developing a theor
ical understanding of ME which can explain in a unifie
manner both the phase equilibria patterns and microstr
ture observed in experiments [10]. The random interfa
models [10,11] which describe the sponge phase do
reproduce the typical phase behavior of the closed loo
and the critical points near the asymmetrical three-pha
0031-9007y97y78(13)y2616(4)$10.00
e
ng
s of
oil,
e
ee

fa-
e

rk-
d

f

e

he
ps

th
his
sts

R
re
g-
ase
-
is
d

f a

et-
d
uc-
ce
not
ps
se

body, where the microstructure of the ME is asymmetr
bicontinuous or globular. The important length scale
these asymmetric phases, far fromT̄ , is the radius of cur-
vature while the natural length scale in these models
the persistence length arising from the random collisio
of fluctuating sheets.

In another class of ME models which treat mor
dilute ME phases composed of compact objects such
spherical droplets [3] or cylinders [12] the basic lengt
scale is the spontaneous curvature. This approach w
used in the work of Meneset al. [13] in order to explain
the closed loops in terms of an interplay between
shape transformation and a postulated attraction betw
globules. In order to reproduce the observed clos
loops the model had to assume that these short-rang
material-specific interactions were in a particular windo
of attraction strengths. The loops obtained from th
model were not as symmetrical as those observed
experiments [9]; moreover the shape dependent attract
mechanism required the assumption that the interactio
of water globules in oil and oil globules in water be of th
same order of magnitude.

Motivated by the experimental evidence we propo
a theory based on a picture of branched tubular M
The connected topology enables a unified description
both dilute systems in the vicinity of the loops, and th
bicontinuous dense spongesf , 0.5d. By modifying the
compositions, the radius of the cylindrical tubes chang
and the system continuously transforms from a dilu
network composed of long narrow cylinders connected
remote junctions to a very dense network in which th
radius of the cylinders is comparable with their length an
the junctions are very close, which can very well represe
the asymmetric bicontinuous sponge phase [8]. We sh
that the interplay between entropy and curvature ener
which are coupled through the connected topology of t
network can produce an effective attraction between t
junctions. This, inherent, material independent entrop
interaction is balanced by the steric repulsion of th
undulating cylinders. We show that the observed pha
© 1997 The American Physical Society



VOLUME 78, NUMBER 13 P H Y S I C A L R E V I E W L E T T E R S 31 MARCH 1997

n
y a
d
he
d
ed
7].
ic
ate

t
t
e
is

lly
. A

so
low
.

of
h-
an

re-

].
ric

at-
te.
rk
is
al

h
le,

by
n-
nic
i,
des
[13]
s.
ith

ally
behavior that stems from the detailed balance of the
curvature-entropy interactions reproduces quantitativ
many experimentally observed features of the clos
loops and three-phase body. The water-oil symmetry
a generic feature of this model due to the entropic a
interfacial character of the interactions.

We treat the branched ME as a network of se
assembling, semiflexible polymers [12,13] interconnect
by z-fold junctions [14]. The curvature energy associate
with the creation of each junction,esrd, to be calculated
below, is a function of the cylinder radius,r , dfyfs,
wheref and fs are the volume fractions of the interna
phase and surfactant, respectively, andd the surfactant
chain length. The junctions connect an ensemble of cyl
drical branches whose length distribution is proportion
to Xsmd, the number density of branches of lengthm. The
free energy per unit volume of the self-assembling n
work, FN (in units ofkBT ), includes three contributions,

FN ­
Z

Xsmd ln Xsmd dm 2 sz 2 1dr ln r 1 re ,

(1)

where r ­
2
z

R
Xsmd dm is the number density of the

junctions. The first term is the Flory-type translation
entropy of the free cylinders, the second term accounts
the entropy loss of the cylinders’ free ends when they a
constrained to meet at a junction, and the third term is t
curvature energy of the junctions, that also includes t
curvature energy of the cylinders which is independent
Xsmd [15].

The end-cap energy of a free cylinder is generally lar
compared to that of a junction, hence the system pref
to pay the entropy penalty of a junction in order to avo
free ends [16]. The optimal geometry of the netwo
is found by minimizingFN with respect toXsmd. This
procedure yields an exponential length distribution of t
cylinders with an average cylinder length,m̄, which scales
like m̄ , f12zy2ee. Substituting the optimal distribution
Xsmd results in

FN ­ 2r ­
2
z

f

m̄
, 2fzy2e2e. (2)

This is just the free energy of an ideal gas of junction
whose density,r, is determined by the network volume
fraction and the Boltzmann factor of the junction energ
e2e . The fzy2 dependence ofFN indicates that high-z
junctions are less probable [14]. We therefore consid
only the casez ­ 3. The nonlinearf3y2 dependence
of FN represents an effective attraction between t
junctions.

As we show below, we find that the curvature energ
of a junction,esc0rd is a nonmonotonic function of the
tube radius,r and the spontaneous radius of curvatur
c21

0 . This nonmonotonic behavior is responsible for th
trend of phase separation followed by remixing whic
produces the closed loops and three-phase body in
phase diagram.
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We use a variational model to simplify the calculatio
of the curvature energy of the junction characterized b
bending modulusksT d. We consider a junction compose
of three “horns” connected to a spherical core. T
radius,r, of the cylindrical part of the horns is determine
by the composition, and the parameter to be minimiz
is the curvature of the horn near the spherical core [1
The minimized junction energy exhibits a nonmonoton
dependence on the tube radius, which has the approxim
form [18],

esr, T d .
ksT d

T
e0

∑
1 1 e2

µ
c0r 2

1
2

∂2∏
, (3)

wheree0 . 2; e2 . 10, thus there is a deep minimum a
c0r ­ 1y2 (r is measured in units in which the EF is a
c0r ­ 1). As a result, Eq. (2) indicates that the effectiv
attraction between the junctions, whose magnitude
proportional toe2e , exhibits a steep maximum atc0r ­
1y2. Hence, increasingr from the lower side of this
maximum increases the effective attraction eventua
driving the system to phase separate into two phases
further increase in the radius decreases the attraction
that entropy tends to remix the phases. As shown be
this phenomenon results in the creation of closed loops

The effective attraction,FN ­ 2r, competes with two
repulsive terms: One term arises from the restriction
the thermal fluctuations of the flexible tubes by neig
boring cylinders resulting in an entropy decrease and
effective repulsion. Scaling arguments show that this
pulsion behaves likeFH ­

27
16 f4y3, where the geometri-

cal prefactor is found by a more detailed calculation [19
The second term is a quadratic excluded-volume ste
repulsion,s1 2 fd lns1 2 fd , f2y2. The dependence
on the tube radius,r , dfyfs, enters only in the attrac-
tion term, through the Boltzmann factor,e2esr ,Td. The
total free energy possesses a critical point where the
tractionFN is large enough for the ME to phase separa
The phase of lower volume fraction is a dilute netwo
with fewer junctions and the higher volume fraction
a dense network with many junctions [20]. The critic
composition and junction energy arefc . 1y8; e2ec .
0.2, respectively. The location of the critical point, whic
is far from the binary-mixture sides of the phase triang
indicates that the system phase behavior is governed
the swollen network interactions and is not directly co
nected to the micellar binary systems. The nonmonoto
behavior ofesrd indicates that there are two critical radi
rc, at which the system phase separates. This provi
an inherent mechanism for reentrant phase separation
which does not involve any material-specific interaction
The corresponding phase diagram is the closed loop w
two critical points (Fig. 1).

The temperature dependence enters exponenti
through the prefactorksT dyT of the Boltzmann factor
argument of the attraction.ksT d is the renormalized
bending modulus [21]: ksT d . k0f1 2 s3y4pd sTy
k0d lnsryadg. When we approach̄T , the temperature at
2617
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FIG. 1. Spinodal curves: each expanding loop has two critica
points at f ­ fc . 1y8. The small loops are symmetrical,
and as they grow the lowerf side of the loop sharpens. The
axis of the loops is atc0r ­ 1y2 in accord with experiment
[1,9].

which c0 vanishes, both from above and below the length
scale, c21

0 , increases asc21
0 , jT 2 T̄ j21. Thus, the

junctions become larger and, due to the renormalizatio
of the bending modulus, softer, so that the entrop
induced attraction between the junctions overcomes th
curvature energy cost of their creation. Consequently
there are two double-critical temperatures,Td ­ T2, T1,
where the attraction reaches a critical value and th
closed loops appear. The water side loop appears
T2. As the temperature is increased the double-critica
point splits into two separate critical points with radii
below and abovec21

0 y2, both at the same volume fraction
f ­ fc . 1y8. The oil side loop exhibits an analogous
behavior with an opposite temperature dependence: th
shrink with increasing temperature and disappear atT1.
The difference between the critical radii,rc, and the axis
of the loop,c0r ­ 1y2, which is proportional to the width
of the closed loops in the isothermal cuts, scales like [23

c0jrc 2 r0j .
∑

e2
k0

T̄

µ
T1 2 T2

T̄

∂∏1y2 Ç
T 2 Td

T̄

Ç1y2

,

(4)

whereTd ­ T2 on the water-rich side andTd ­ T1 on
the oil-rich side. This temperature dependence is plotte
in Fig. 2 along with the experimental data. The oil-rich
side data is for a ternary system whose surfactant isC12E5

and the water-rich side of a system withC8E4. These
ternary systems have almost equal values ofk0sT1 2 T2d
[9]. As predicted from Eq. (4), both curves exhibit the
square root temperature dependence withalmost equal
prefactors demonstrating the water-oil symmetry. Thi
indicates that the phase-separation mechanism is identic
for both the water and oil systems and is very unlikely to
be related to specific attractive interactions.

This branched ME picture also explains the creation o
the three-phase triangle as a result of the intersection
2618
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FIG. 2. Expansion of the closed loop: the experimental dat
from Ref. [7] for the water-rich side ofC8E4 system and
the oil-rich side ofC12E5 is plotted along the scaling result
Dr , jT 2 Td j1y2. The prefactors for the oil-rich and the
water-rich sides are almost the same indicating the water-o
symmetry.

the EF, c0r ­ 1, with the closed loop, as seen experi-
mentally [1]. As shown above, when the temperature ap
proachesT̄ the closed loop expands. The ratio between
the angles of the axis of the loopc0r ­ 1y2 and the
EF c0r ­ 1 remains constant. Eventually, the expand
ing loop intersects the EF and forms a three-phase tr
angle. There are two intersection temperatures at whic
the three-phase body appears,Tl , T̄ for the water side
and Tu . T̄ for the oil side. When the loop further ex-
pands its contact point with the EF splits into two phase
with volume fractions above and belowfc which co-
exist with the excess phase rejected by the globules th
have already reached their optimal size. As the temper
ture approaches̄T , the volume fraction of the dense net-
work, usually termed “the middle phase,” increases and
becomes an asymmetric sponge phase. At temperatu
lower thanT̄ the asymmetric sponge is composed of con
nected oil tubes. As the temperature increases the midd
phase becomes a symmetric sponge exactly atT̄ , and af-
ter a further temperature increase the asymmetric spon
becomes a net of water tubes.

The interfacial, material-independent nature of ou
model providesuniversalscaling laws which are in agree-
ment with a data collapse of several ternary systems on
a single curve when they are described by appropria
reduced variables [22]. Employing the scaling laws
which approximate the expansion of the loop (4) and
the curvature energy of the junction (3) one derives
universal scaling for the composition of the middle phase
fm, which shows a sigmoidal temperature dependenc
[23],

f̄ ­ sgnstd hf
q

sq 1 1d2y4 2 qjtj

2 sq 2 1dy2g1y2 2 1j, (5)
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FIG. 3. The middle phase trajectory: the experimental da
of severalCiEj systems from Ref. [22] collapse onto the the
oretical scaling result when plotted in the normalized var
ables t ­ sT 2 T̄ dysT̄ 2 Tld ­ sT 2 T̄ dysTu 2 T̄ d and f̄ ­
sfm 2 1y2dys1y2 2 fcd.

whereq . 5 is a universal constant and the reduced va
ables aret ­ sT 2 T̄ dysT̄ 2 Tld ­ sT 2 T̄ dysTu 2 T̄ d
and f̄ ­ sfm 2 1y2dys1y2 2 fcd. The middle-phase
trajectory (5) exhibits the same water-oil symmetry ob
served in the closed loops (4). As can be seen from Fig
the theoretical universal curve (5) is in good agreeme
with the data collapse obtained for four differentCiEj sur-
factants taken from [22]. It is important to note that a
though the network picture is not valid very close toT̄ the
scaling for the middle-phase composition passes smoot
through the symmetric sponge phase; thus, indicating t
branched ME model is applicable for most of the pha
space.
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