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First results for the triton binding energy obtained from the relativistic spectator or Gross equ
are reported. The Dirac structure of the nucleons is taken into account. Numerical results are pre
for a family of realistic one-boson exchange models with off-shell scalar couplings. It is shown
these off-shell couplings improve both the fits to the two-body data and the predictions for the bi
energy. [S0031-9007(96)02077-7]
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The first realistic nonrelativistic calculations of the tr
ton binding energy were completed in the 1970s [
Later it was shown that different methods gave the sa
results and that the binding energy could be calcula
to an accuracy of a few keV by considering all nucleo
nucleon (NN) partial waves up toj ­ 4 [2]. Today,
if three-body forces (3BFs) are not considered, a sm
discrepancy of about 0.5–1.0 MeV remains between
experimentally observed value of28.48 MeV and val-
ues obtained from realistic nonrelativisticNN potentials.
State-of-the art calculations now include sophistica
3BFs, and when their strength is adjusted to give the c
rect triton binding energy, an excellent value is also o
tained for the4He binding energy (and to a lesser exte
other light nuclei up toA . 7) [3].

However, relativistic effects should make a contributi
to the binding energy at the level of several hundr
keV. Using a mean momentum of about 200 Me
(consistent with nonrelativistic estimates) we expect to
corrections of the order ofsyycd2 . spymd2 . 4%. If
this is 4% of the binding energy, then it amounts to abo
300 keV. However, if relativity has a greater effect o
the attractives exchange part of the force (as it does
nuclear matter calculations using the Walecka model) th
we might obtain an effect 10 times larger.

The importance of this problem has been recogniz
and relativistic effects have been estimated using a se
rable kernel in the Bethe-Salpeter equation [4], assum
minimal relativity in the Blankenbecler-Sugar equation [5
and by adding corrections of first order insyycd2 to the
Schrödinger equation [6]. All of these calculations inclu
some contributions coming from relativistic kinematic
but none treats the full Dirac structure of the nucleo
or investigates effects which might arise from a realis
relativistic treatment of theNN dynamics.

The purpose of this Letter is to present the first nume
cal calculations of the triton binding energy obtained fro
the manifestly covariant three-body spectator (or Gro
equations for three identical spin 1y2 particles, and to dis-
cuss the implications of these calculations. Some prel
inary results were reported in conference proceedings
0031-9007y96y78(1)y26(4)$10.00
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The three-body spectator equations were first int
duced and applied to scalar particles in 1982 [8], and t
extended to the case of three spin 1y2 particles in lectures
given at the University of Hannover soon afterward. R
cently, a more tractable form for the equations has b
developed, and a full derivation of the equations will
published elsewhere [9]. In this Letter we describe o
a few of their features briefly.

In the absence of 3BFs the three-body scatter
amplitude is obtained from a sum of all successive tw
body scatterings. Because the three particles are iden
each two-body scattering differs from the others only b
permutation, and they can therefore all be summed by
operator equation of the form

jG1l ­ 2M1G1P12jG
1l , (1)

wherejG1l is a vertex function describing the contributio
to the bound state from all processes in which the 23 p
was the last to interact (with particle 1 a spectator),
two-body amplitudeM1 describes the scattering of th
23 pair, G1 is the propagator for the 23 pair, andP12
is a permutation operator interchanging particles 1 an
(The factor of 2 comes from the contribution ofP13 which
equals the one ofP12.)

The three-body spectator equations have the same s
ture as (1), but incorporate the additional feature that
spectator is restricted to its positive energy mass shell in
intermediate states. With the conventions implied abo
consistency also requires that particle 2 be on shell, so
two particles are always on shell. We think of these c
straints as a reorganization of Eq. (1) which will, in som
cases, improve its convergence. The constraints are m
ifestly covariant, and lead to the following equation

jG1
2 l ­ 2M1

22G1
2P12jG

1
2 l , (2)

where the lower index labels the second on-shell parti
Hence only particle 3, the (unique) particle which has j
left one interaction and is about to enter another one, is
shell in Eq. (2).

To reduce Eq. (2) to a practical form, we take mat
elements of the operators using three-particle helicity st
© 1996 The American Physical Society
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similar to those defined by Wick [10]. Bothr-spin states
(wherer ­ 1 is the u spinor positive energy state an
r ­ 2 is the y spinor negative energy state) of the o
shell particle must be treated. The three-body states
be written in the abbreviated formjJ1s23drl, where J
is the total angular momentum of the state,r the r

spin of the off-shell particle,1 ­ hq, l1j (where q and
l1 are the magnitude of the three-momentum and
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helicity of the spectator in the three-body c.m.), ands23d ­
hp̃, j, mj , l2, l3j (wherep̃ is the magnitude of the relative
three-momentum of the 23 system,j andmj are the angular
momentum of the pair and its projection in the direction
q, andl2 andl3 are the helicities of particles 2 and 3,all
defined in the rest frame of the 23 pair). We will suppress
all isospin indices. Using this notation, the final form o
the three-body spectator equation forG1 is
kJ1s23drjG1l ­
X
j0m0

X
l

00
2 l

00
3 r00

l
0
1l

0
2l

0
3 r0

Z qcrit

0
q02 dq0 m

Eq0

Z p

0
dx sinxk js23drjM1jjs200300dr00l

m
Ep̃00

gr00

sq, p̃00d

3 P
r00r0

12 f1s200300d, 10s2030dg
m

Ep̃0

kJ 010s2030dr0jG1l , (3)
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where P
r00r0

12 f1s200300d, 10s2030dg is the matrix element o
the permutation operator, given below, andgrsq, p̃d the
propagator of the off-shell particle in differentr-spin states

g1sq, p̃d ­
1

2Ep̃ 2 Wq
,

g2sq, p̃d ­ 2
1

Wq
. (4)

Because four-momentum is conserved in the relativi
formalism, the massWq of the 23 pair depends onq,

W2
q ­ M2

t 1 m2 2 2MtEq , (5)

with Eq ­
p

m2 1 q2. Note that Eq. (3) includes a su
over intermediate helicities and angular momentum qu
tum numbers, and an integration over the internal spe
tor momentumq0 and the anglex between the direction
of q0 andq. The integration overq0 has been limited to
the finite intervalf0, qcrit g, whereqcrit is the root of the
equationWq ­ 0. At this critical spectator momen
ic

n-
ta-

tum (equal to.4my3 . 1200 MeV), the two-body sub-
system is recoiling at the speed of light and the relativis
effects are enormous. Contributions forq0 . qcrit are
very small, and come from two-body states withspacelike
four-momenta. It seems sensible to simply neglect the
gion q0 $ qcrit and set the three-body amplitudes to ze
there. As it turns out, the solutions go smoothly to zero
q ! qcrit anyway, so we may impose the condition th
they are zero beyond this point without making the amp
tudes discontinuous inq.

Exchanging particles 1 and 2 implies that particle
becomes the spectator, and now its momentum a
helicity must be expressed in the c.m. frame of the thre
body system, while the variables of particles 1 and 3 mu
be expressed in the rest frame of the 13 pair. Boost
from one frame to another introduces Wigner rotations
both the single particle and two-body helicities. The fin
result for the permutation operator is
P
r00r0

12 f1s200300d, 10s2030dg ­ s21dm2l11l0
3
p

2j 1 1
p

2j0 1 1 d
sJd
m2l1,m02l

0
2
sxddsjd

m,l00
22l

00
3
sũ00d d

sj0d
m0,l0

12l
0
3
sũ0d

3 d
s1y2d
l1l

0
1
sb1d d

s1y2d
l

00
2l

0
2
s2b2d N

r00r0

l
00
3 l

0
3

sq, q0, xd , (6)
g
l to
In

ith
where the functionsd
s1y2d
m1,m2sbd are the Wigner rotation ma

trices, andN
r00r0

l
00
3 l

0
3

sq, q0, xd describesexactly the Wigner
rotations of the off-shell particle 3, as well as the nontr
ial matrix elements between the differentr spinorsu and
y of particle 3 as they appear in the rest frames of
23 pair and the 13 pair.

We have solved Eq. (3) numerically for a variety
realisticNN models. The two-body amplitudes obtaine
for all of these models result from an exact solution of t
two-body spectator equation, as described in Ref. [1
and are therefore fully consistent with the three-bo
equations.

These models will be described in detail elsewhe
Briefly, they are all one-boson exchange (OBE) mod
with a kernel composed of the exchange of 6 commo
used bosons: thep, h, s, d, v, andr. The parameters o
-
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each model were determined by fitting to theNN phase
shifts below 350 MeV and to deuteron properties.

In all cases the following pion coupling was used:

gpLp ­ gp

"
g5 2

np

2m
fsm 2 py0d g5 1 g5 sm 2 pydg

#

­ gp

"
s1 2 npdg5 1

np

2m
g5qy

#
, (7)

where p and p0 are the four-momenta of the incomin
and outgoing nucleons, and the couplings proportiona
np do not contribute if the nucleons are on shell.
this family, we fixedg2

py4p ­ 13.34 and chosenp ­ 1,
giving the conventional pseudovector pion coupling w
large off-shell effects.
27
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A particular feature of these models, and a central p
of this Letter, is that theyalso include phenomenologica
scalars (with I ­ 0) andd (I ­ 1) exchanges with off-
shell scalar-nucleon-nucleon (sNN) couplings of the form

gsLssp 0, pd ­ gs

"
1 2

ns

2m
sm 2 py0 1 m 2 pyd

1
ks

4m2 sm 2 py0d sm 2 pyd

#
. (8)

This is themost general formof thesNN vertex, but as far
as we know the off-shell scalar couplings which depe
on ns and ks have never been studied previously. T
family of models discussed here hasks ­ 0 and values
of n varying from 0 ! 2.6, wherens ­ 20.75 n. (We
used an early fit to fix the rationdyns at 210.4y3, but ns

and nd will be varied independently in future studies
It turns out that these couplings proportional ton are
extremely important.

The results of our calculations are summarized in Fig
The lower panel of Fig. 1 shows howx2 for the fits
to the two-body data (calculated using theSAID program
[12] and the 1994 database) varies withn for this family
of OBE models. Fits were done for values ofn ­ 0,
0.5, 1.0, 1.6, 1.8, 1.9, 2.0, 2.2, and 2.6, and the das
curve smoothly interpolates these individual cases.
emphasize thateach of these models with different valu
of n are realistic in the sense that for each case OB
parameters (13 in all) were adjusted to give the b
possible fit to theNN data below 350 MeV. Although
the 13 parameters differ only slightly from case to ca
the models are not quite equivalent. The figure shows
there is a significant variation in the quality of the fit; t

FIG. 1. Triton binding energyEt for specific values ofjmax
(upper panel) andx2 for the fits to the two-body data (lowe
panel) versus the scalar meson off-shell parametern defined in
the text. The curves in both panels are smooth interpolat
through the actual calculations. The lower panel also inclu
the linex2 ­ 2.45 for reference.
28
int

nd
e

)

1.

hed
e

s
E
st

e,
hat
e

ns
es

best models lie in the region1.5 # n # 2.0 (all with x2 #

2.45 as shown in the figure). Thesex2 are excellent for
a theoretically constrained model with only 13 paramete
(even though values close to unity can now be obtain
using phenomenologial models with more parameters) a
the significant variation probably rules out the mod
with n ­ 0 (for example). The introduction of thesen-
dependent couplings improves the energy dependenc
the interaction and significantly improves the fit to the tw
body data. We conclude that the implicit choice ofn ­ 0
made in previous work is not optimal.

The upper panel of Fig. 1 shows the rapid variation
the three-body binding energy withn. An increase in
n from 0 to 1.6 changes our prediction from26.24 to
28.76 MeV, and a value in good agreement with exper
ment would be obtained forn . 1.5, still in the range of
n’s which give the best fit to the two-body data.

Table I (and the curves in the upper panel of Fig.
shows how the binding energy converges as the num
of three-body partial waves, characterized by the hig
est included pair angular momentumjmax, increases. Be-
cause of the large increase in the predicted values as
number of channels increases from 28 (jmax ­ 1) to 52
( jmax ­ 2), we were concerned about the convergen
of the three-body calculations and studied it in deta
We carried the calculations all the way tojmax ­ 6 with
148 channels. We find that the individual contribution
from channels with oddj tend to cancel while those from
channels with evenj are all attractive. Thus, the step
from even to oddjmax are small compared to those from
odd to evenjmax. From a detailed study of the individua
contributions we estimate that the results are converged
about 1 keV forn ­ 0 and to about 5 keV forn ­ 1.6.

We conclude that the best of the two-body mode
examined so far yield a three-body binding energy fro
about28.5 to 29.5 MeV. In subsequent work we will
display the dependence of these results on the boosts
negativer-spin states, and other relativistic effects, an
we will study additional two-body models. Here we wil
discuss the origin and implications of then dependence
which we have observed.

TABLE I. Absolute values of the triton binding energies i
MeV. The first row is the result when only1S0 and 3S1-3D1
positive energy channels are included. The other rows sh
results obtained when all channels with two-body angular m
mentumj # jmax are included. The total number of three-bod
channels in each case isN.

jmax N Coupling parametern
0.0 0.5 1.0 1.6

11 5 6.003 6.345 6.850 7.769
1 28 5.963 6.318 6.812 7.652
2 52 6.180 6.639 7.299 8.441
3 76 6.214 6.695 7.393 8.615
4 100 6.232 6.726 7.452 8.740
5 124 6.233 6.726 7.452 8.736
6 148 6.235 6.731 7.461 8.757



VOLUME 78, NUMBER 1 P H Y S I C A L R E V I E W L E T T E R S 6 JANUARY 1997

iv
r

m

re
n

h

f

t
is

t.
h

a
8

e
o
o
in
n

e

e
t
l
u
o

r
i
i
v
m

r

y,
the

g

ry
re

y
e
s
er

,

er
al
up

s
r
e

E-
In
-

at

v.

B.

C

s.
e,

ys.

n

n

C

d

To understand why the binding energy is so sensit
to n, we may look at the half off-shell Born amplitude fo
scalar exchange (i.e., the amplitude withonenucleon off
shell). For the positiver-spin sector, we have

Vs ­
g2

s husp0d f1 2 snsy2md sm 2 pydguspdj hus2p0dus2pdj
m2

s 2 sp0 2 pd2

.

"
1 2 ns

2Ep 2 W

2m

#
Vs ­ CsVs , (9)

where Vs is the usual scalar potential obtained fro
such a reduction whenns ­ 0, p ­ sW 2 Ep , pd is the
momentum of the off-shell particle,W is the energy of the
two-body system in its rest frame, and we have igno
the lower components of the Dirac spinors in carryi
out the reduction. The effect of thens dependence is
to multiply the scalar potential by the factorCs. In
applications to two-body scattering, then-dependent term
is a small correction with a sign depending on t
energy, but in the three-body bound state it is alwa
positive. Assuming an average nucleon momentum
about 200 MeV gives roughly a 10% variation over th
range of n from 0 to 2. The observed variation o
about 4 MeV over this range is explained therefore
the average strength of thes-exchange potential is abou
40 MeV, which is the right order of magnitude. Th
shows how the large variation in binding energy which w
observe can be explained by a “small” relativistic effec

An OBE model with off-shell couplings has a muc
richer structure than one without such couplings. F
example, consider two successive interactions of a sc
meson with a single nucleon. The vertex function (
contains the operatorm 2 py which is just the inverse of
the nucleon propagator, so that it can remove the nucl
propagator and contract the two interaction vertices t
single vertex describing the emission of two mesons fr
a single point. If the two mesons emerging from this po
are coupled to a second nucleon they generate a tria
diagram. These diagrams are two-boson exchange te
similar to those (involving pions) which would emerg
from a nonlinear sigma model. Alternatively, if these tw
mesons couple to twodifferent nucleons, they generat
diagrams usually associated with three-body forces. I
easy to generalize this result:an OBE model with off-shel
couplings is equivalent to another OBE model witho
these couplings, but with an additional specific family
N-boson exchange diagrams andN-body forces.

We conclude with two observations. The discove
that off-shell scalar couplings play an important role
both improving the description of two-body data and
predicting three-body binding energies would only ha
been possible in the context of a relativistic formalis
closely connected to an effective field theory. The fa
that these couplings are equivalent to a strong ene
dependence in the context of nonrelativistic theory
precisely the reason they could not have been discove
there; nonrelativistic potentials are supposed to be ene
e
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independent. In the context of an effective field theor
however, these are a natural and legitimate extension of
simplest assumption about the spin structure of thesNN
vertex. The most generalsNN vertex can have only three
different spin couplings. Once the third term dependin
on ks in Eq. (8) is studied, all of the possibilities will
have been exhausted. In this way an effective field theo
is tightly constrained, even if some of its interactions a
strongly energy dependent in a nonrelativistic context.

We believe that this way of looking at dynamics ma
very well be the most significant contribution to com
from relativistic methods. The traditional argument
suggesting that relativistic effects are very small ref
to relativistic kinematics only. As Eq. (8) illustrates,
relativistic dynamicsprovides a new way to study nuclei
even at low energies.
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