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Turbulence Fluctuations and New Universal Realizability Conditions in Modeling
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General turbulent mean statistics are shown to be characterized by a variational principle.
The variational functionals, or “effective actions,” have experimental consequences for turbulence
fluctuations and are subject to realizability conditions of positivity and convexity. An efficient Rayleigh-
Ritz algorithm is available to calculate approximate effective actions within probability density function
(PDF) closures. Examples are given for Navier-Stokes and for a three-mode system of Lorenz. The new
realizability conditions succeed at detectiagpriori the poor predictions of PDF closures even when
the classical second-order moment realizability conditions are satisfied. [S0031-9007(97)02680-X]

PACS numbers: 47.27.Sd, 05.40.+j, 47.11.+j, 47.27.—i

It does not seem to be a well-recognized fact that genpothesis, by giving an exponentially small estimate of the
eral turbulence mean statistics—such as mean velocity grobability at a large (but finite) to observe fluctuations
pressure profiles—are characterized by a variational prinaway from the ensemble mean.
ciple. However, in nonequilibrium statistical mechanics The realizability conditions on the effective action or
it was pointed out long ago by Onsager [1,2] that meareffective potential hold even when there are no classi-
histories satisfy a “principle of least action.” The so- cal second-moment realizability conditions on the means
called Onsager-Machlup action determines the probabilitthemselves. Thus, energy spectra or Reynolds stresses
of fluctuations away from the most probable state. Closésecond moments) must be positive, but mean velocity pro-
to thermal equilibrium there is a standard fluctuation-files (first moments) or energy transfer (third moments) do
dissipation relation, so that the action has the physicahot satisfy simple realizability conditions [5]. The new

interpretation of a “dissipation function.”  Onsager’s realizability conditions thus have great potential signifi-
variational principle reduces then to a principle of leastcance in modeling if they can be efficiently calculated
dissipation. within turbulence closures. In [3,4] we have shown that

Recently it has been pointed out by one of us [3,4] thathere is a simple Rayleigh-Ritz algorithm within probabil-
a similar effective actionI'[z] exists in turbulent flow ity density function (PDF) closures—such as mapping clo-
for any random variableZ(¢). This action function (i) sures [6—8] or generalized Langevin models [9,10]—by
is nonnegative,I'[z] = 0, (ii) has the ensemble mean which the corresponding approximate values of the effec-
z(¢) as its unique minimurm’[z] = 0, and (iii) is con- tive action or effective potential may be readily calculated.
vex, Al'[zi]+ (0 — D[] =T[Az; +(1 — V)z2], 0 < As a simple example, we consider first a three-mode
A < 1. These are realizability conditions [5] which system of Lorenz [11], in which the equations of motion
arise from positivity of the underlying statistical dis- are
tributions. As a consequence, the mean vaiie is )
characterized by a “principle of least effective action.” x; = Aixjxg — vixp + fi, 2)
Just as is Onsager’'s action, this functional is related . = . ) ) )
to fluctuations. In particular, in statistically stationary with #,j,k a .cycl|c permutation .0ﬂ’2’3’ W.'th Ar +
turbulence, the time-extensive limit of the effective action,A2 + A3 =0 |mpqsed on interaction CoeffIC'Ien.tS- for'
Viz]=liMs.. %F[{z(t)=z: 0 < ¢ < T}], the so-callecf- energy conservation, with/; positive damping coeffi-

fective potentialdetermines the probability of fluctuations cients, andf; (.t) Whlte-r_10|se random forces with covarl-
. _ : = _ 1 (T ance2k;. This dynamics has been used often as a first
in the empirical time averag€r = 7 [, dt Z(r) away

from the (time-independent) ensemble-mean vaiue test of closure ideas [12—14]. We consider a simple map-

: . . ping closure proposed by Bayly for the three-mode system
g/lvcér;g;%mstﬁl)(;,c'::huer ipSr(;ti)\?:r:hlt));for any valuyeof the time [15], which models the realizations by a quadratic map
T

o X; = B:iN; + B4N;N; of independent standard Gaussian
ProbiZr = z}) ~ exp(—T V[z]). (1) variablesN,, N!, i = 1,2,3. The resulting closure equa-

This agrees with the standard ergodic hypothesis, accorgpns for the second momentd; = (x?), i = 1,2,3 and

ing to which, asl" — o, the empirical time average must the third momenf’ = (x;x,x3) are

converge to the ensemble meé, — 7, with probability )

one in every flow realization. Equation (1) refines that hy- M; = 2A;,T — 2v;M; + 2k; 3)
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fori = 1,2,3 and of realizability of the predicted/y, succeeds at detecting
T = A MoMs + AsM Ms + AsMy M, the poor prediction for the mean value, even thOl_Jgh the
classical second-moment conditiddi; = 0 is satisfied.
— (v + v+ )T, (4)  In the same plots in Figs. 2 and 3 we have graphed also

These are just thguasinormal (QN) equationfor the the effective potentials’/_E2 and Vi obtaineq from DNS.
three-mode system, obtained by neglecting the fourthThey do not agree with the QN potentials as closely
order cumulants [16]. It was already noted by Kraichnar@s do the corresponding means: the accurate prediction
[12] that, unlike for Navier-Stokes, the QN closure of fluctuations is a much more stringent Qemand on the
for the three-mode system predicts all positive enerclosure. However, we note that the predictions of Bayly's

gies. In fact, forA; = 2, Ay = As= —1, k1 = 1, ko = PDF closure [15] are at least qualitatively correct ¥,

3 =0.001, ¥, =0.001, v, = v3 = 1 it gives steady-state and Vy; and give correctly the order of magnitude of the

values averaging time needed to eliminate fluctuations in those
variables. Of course, the prediction is not even

M =~ 149875, M = 4™ < 050025, P o,

qualitatively correct.

TQN) ~ _0.49925 . The Rayleigh-Ritz algorithm used in obtaining the
Gapproximate potentials from the PDF closure involves
a fixed point problem very similar to (and, in fact,
generalizing) the fixed point condition determining the
predicted steady-state moments themselves. The system

All of the second moments are positive, as require
by realizability. However, direct numerical simulation

(DNS) of the three-mode dynamics itself gives
(DNS)

M, = 4.46 = 0.03, of equations that must be solved in general is
MY = N — 0.49876 = 0.00002,  (6) 3V, av')’
’ ’ T (M, h)ay + (—) (M.h) - @ = Vo(M, h)er,

T(PNS) — —0.49776 = 0.00002 . M oM -
While the QN predictions foM,, M3, andT are within
%% of the DNS_ vaI_uesM1 is_ underpredicted t_)366%_in V(M,h) = Vo(M,h)M, (8)
the QN approximation. As is well known, satisfaction of
realizability cannot guarantee that a prediction is correct. ap+a -M=1. (9)

However, failure of realizability certainly implies that )
the predictions are in error. In Figs. 1-3 we graph the N vectoM = (M, ..., My) contains the moments of the
approximate effective potentials of the energy variable§losure, e.g., in the case above~= 4 (and My = T).

1 2 It is less easy to describe the role of the variables,

E, = 5x7,i = 1,2 and triple product] = in the s .
QZN clé);lur:e as calculateorl) bypthe Rayleigﬁl—)lgi)tc; aIgoritthUt they are closely related to infinitesimal disturbances

for the above PDF model. The numerical method isOf theé M’'s which would appear in a linear stability
outlined below and described in detail in [4,17]. It is @nalysis of the fixed-point moments. (They evolve like

apparent thatv, and Vy; satisfy realizability but that Covectors of the disturbances.) h is the vector of
vy —which is negative and concave—does not. Thus perturbation fields,” one associated with each variable
1 .

one may infera priori that the QN prediction for the Z; for which the potential is to be determined. In our
mean of E; is not converged. In this case, the failure
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FIG. 1. Effective potential for energy in mode 1 in quasinor- FIG. 2. Effective potential for energy in mode 2 in quasinor-
mal closure. mal closure (DNS with error bars).
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0.002 ‘ simplest such situation is freely decaying homogeneous
and isotropic turbulence with random initial data. We
consider a model energy spectrum

Ak™ k = kp(1),
Ek,t) = 1 ae?P0Ok™3  k(t) = k = ky(r),

0.001 } >
> 0 k = kq(t), (10)
which has been adopted before in this problem [18,19].
As long as0 < m < 4 it is commonly believed that
there is a permanence of the low-wave-number spectrum.
0.000 This motivates one to adopt the above self-preserving

-0.6 -0.5 form, in which the shape of the spectrum is unchanged
I in time except through its dependence on the parameters

FIG. 3. Effective potential for triple moment in quasinormal &(z), k. (), andk,(¢). At high Reynolds number there is

closure (DNS with error bars). only one independent such parameter, since the relation

k(1) = [§&(t)]#+ is required by continuity and, when

previous calculationh = (hg,, hg,, hy)). When h =0 ki(1) < ky(1), ka(1) = (525)3/4&'/4(1) also holds [19].
the vectorV(M, h) coincides with the dynamical vector The remaining time dependence is determineld by consid-
V(M) which appears in the closure equatidd:= V(M)  ering the evolution of the mean energyr) = 5(v*(1)).

[cf. Egs. (3) and (4) above]. The perturbationslior= 0 For the above form of the spectrum it is not hard to show
are determined by the method discussed in [4]. Thd19] that the dissipatior(r) = 7 > ,;((0;,v; + 9;v,)?) is

0 componentVy(M,h) is associated with the zeroth given as

moment M, = } and it mlay be written explic'itly here e(t) = A, EP(1), (11)

as Vo(M,h) = shg M, + 5hg,M> + hiMy. It is easy s

to check that, wherh = 0, the stationary momentsl, ~ with A,! = a¥2(:15 + 3)»mAm1 and p = 32,
along with a.o = 1, . = 0 solve the system Eqgs. (7)— Thus, employing the Navier-Stokes equation via its
(9). Once the solutiona.g(h), a.(h), M.(h) are known energy balance, one obtains the closed equation

for h # 0, the effective potential, is constructed as a B p

function of h; via Vz[h;] = —a«(h;) - V[M.(h;)]. To E@® Am EP(2). (12)
obtain the potential as a function gf, the expected value Its solution gives a prediction for the energy-decay law,
Z.(h) = z must be inverted to give; as a function of;.  asEx(t) = Eo[(t — t5)/At]™", n = 2m + 2)/(m + 3);

For full details of the algorithm, see [4,17]. see [19].

Our results point toward significant new directions in It is interesting to make a check on the various
turbulence modeling. The new realizability conditions ap-hypotheses involved in these predictions by means of
ply individually to all predicted means. We see abovethe effective action['[E] for the energy historyE(r).
that they can successfully discriminate between poor preAs a simple PDF model for the above closure, one
dictions for one set of variables and good predictions fomay adopt a Gaussian random velocity field with the
another. Calculating each point on the graph of an effecassumed self-similar spectrum Eq. (10). The Rayleigh-
tive potential curve within a closure requires just the samdritz approximation of the effective action within the
amount of computation as that to calculate the predicteaussianAnsatzcan be analytically evaluated [20], with
mean. It is therefore very easy to apply the above realizahe result
bility conditions as a check to detect poor predictions in 3 o
advance, without expensive testing by experiment or simu-T'C*")[E] = —f dt
lation. This gives a strong incentive to the development 2(p = DA Jo

of PDF closures, such as those in Refs. [6—10]. In con- % [E() + AuK?(O1[K (1) + AuK? (1)]
junction with our variational method they can give some KP*1(¢) ’
a priori information in turbulence modeling. This is a (13)

unique advantage, almost never obtained in other stati

tical closure methods. ]
It remains to be seen how well the Rayleigh-Ritz A,K”(t) + E(t) = (p — 2)

algorithm works to calculate effective potentials and _ p—1

effective actions for Navier-Stokes turbulence when used X AnlE(@) = K@IKP (1) (14)

in conjunction with physically motivated PDF closures. It is easy to check that, if the predicted closure mean

It is thus worthwhile to give one example of the methodenergyE.(r) satisfyingE.(r) = —A,, EZ (1) is substituted,

for a statistically time-dependent Navier-Stokes flow. Thethen I'C2")[E,] = 0. Further insight is obtained by

Wherek (r) is a variational parameter satisfying
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considering small perturbation&(r) = E.(tr) + §E(r) obtained by linearization of the energy-decay equation
from the predicted mean. By a straightforward calculationaround its solutiorE.(z) and by addition of a white-noise

it follows that random forcen (¢), with its coefficient given by
3 o]
(Gauss) - 2 2 -1
el = s =on, J, @ R(1) = %s*mm(z). (17)
[SE(t) + AwpE! ' (NSE(M)P .
X Thus, the smaller fluctuations from the ensemble-mean

ptl
+ 0(SEY). = (1) (15 value are predicted to decay according to a linearized law,
similar to the Onsager regression hypothesis for equilib-
This is the same law of fluctuations as would be realizedium fluctuations. Likewise, the expression Eq. (17) is a
with the Langevin equation fluctuation-dissipation relatiomnalogous to that in equi-
. . librium. A concrete consequence, testable by experiment,
SE(t) + AnpEY ()8E(t) = 42R.(t) n(t)  (16) isthe following prediction for the two-time correlation:

_ ANt s N —(n+]) w2
(SE()SE(H')) = <’ A[’(’) (%) {(SEO)Z—I—% g[(%) - 1“ With f = min{z, '}
|

Note that the coefficientp — 1) in front of the action is at Boston University and the Department of Mathematics
>0 as long asn > —3. Infact,m > —1 is required to at the University of Arizona.

give a finite energy. Thus, for all permissable values of
m, the approximate actiob(G2'S[E] satisfies realizabil-
ity. One should be cautioned again that satisfaction of
realizability is only a consistency check and cannot guar-
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