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Static Axially Symmetric Solutions of Einstein–Yang-Mills-Dilaton Theory
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(Received 9 December 1996)

We construct static axially symmetric solutions of SU(2) Einstein–Yang-Mills-dilaton theory. Like
their spherically symmetric counterparts, these solutions are nonsingular and asymptotically flat. Th
solutions are characterized by the winding numbern and the node numberk of the gauge field functions.
For fixedn with increasingk the solutions tend to “extremal” Einstein-Maxwell-dilaton black holes with
n units of magnetic charge. [S0031-9007(97)02792-0]
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SU(2) Einstein-Yang-Mills (EYM) theory possess
regular static spherically symmetric solutions [1]. The
solutions are aymptotically flat and have nontriv
magnetic gauge field configurations, but no glob
charge. They have a high-density interior regio
followed by a near-field region with approximate
Reissner-Nordstrøm metric and a far-field region w
approximately Schwarzschild metric [1].

To every regular solution in SU(2) EYM theory, the
exists a corresponding family of black hole solutions w
regular event horizonxH . 0 [2]. Outside their event
horizon these black hole solutions possess non-Abe
hair. Like the regular solutions, the black hole solutio
are unstable [3].

Like EYM theory, Einstein–Yang-Mills-dilaton
(EYMD) theory possesses static, spherically symmet
non-Abelian regular and black hole solutions [4]. He
the dilaton coupling constantg represents a parameter.
the limit g ! 0 the dilaton decouples and EYM theory
obtained, forg ­ 1 contact with the low energy effectiv
action of string theory is made, and in the limitg ! `

gravity decouples and Yang-Mills-dilaton (YMD) theor
is obtained.

Recently we have shown that YMD theory posses
also static axially symmetric regular solutions [5]. The
solutions are labeled by the winding numbern . 1 and
the node numberk of the gauge fields. Forn ­ 1
one obtains the static spherically symmetric solutions
YMD theory [6]. The axially symmetric solutions hav
a toruslike shape. Choosing thez axis as the symmetry
axis, the energy density has a strong peak along ther axis
and decreases monotonically along thez axis.

The existence of the regular static axially symmet
YMD solutions strongly suggests the existence of
corresponding EYMD solutions for finite values of th
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dilaton coupling constant. In this Letter we present stron
(numerical) evidence that such regular gravitating axiall
symmetric solutions indeed exist in EYMD theory and als
in EYM theory.

Axially symmetric ansatz.—We consider the SU(2)
Einstein–Yang-Mills-dilaton action

S ­
Z µ

R
16pG

1 LM

∂
p

2g d4x , (1)

with

LM ­ 2
1
2 ≠mF≠mF 2 e2kF 1

2 Tr sFmnFmnd, (2)

Fmn ­ ≠mAn 2 ≠nAm 2 iefAm, Ang, ande andk are the
Yang-Mills and dilaton coupling constants, respectively.

To obtain static axially symmetric solutions we employ
isotropic coordinates and adopt the metric

ds2 ­ 2fdt2 1
m
f

°
dr2 1 dz2

¢
1

l
f

r2df2, (3)

with f, m, and l being only functions ofr and z. The
corresponding ansatz for the purely magnetic gauge fie
(A0 ­ 0) is [5,7]

Ar ­
1
2 t

n
fw3

1 , (4)

Az ­
1
2 t

n
fw3

2 , (5)

Af ­
1
2 tn

rrw1
3 1

1
2 tzrw2

3 , (6)

with the Pauli matrices$t ­ stx , ty , tzd and tn
r ­ $t ?

scosnf, sinnf, 0d, t
n
f ­ $t ? s2 sinnf,cosnf, 0d. The

four functionswi
j and the dilaton functionF depend only

on r andz.
Denoting the stress-energy tensor of the matter fields

Tn
m, with this ansatz the energy densitye ­ 2T 0

0 ­ 2LM

becomes
2T 0
0 ­

f
2m

fs≠rFd2 1 s≠zFd2g 1 e2kF f2

2m2 s≠rw3
2 2 ≠zw3

1d2

1 e2kF f2

2ml

"√
≠rw1

3 1
snw3

1 1 w1
3 d

r
2 ew3

1w2
3

!2

1

√
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3 1
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1 ew3

1w1
3
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The system possesses a residual Abelian gauge inv
ance [5,8,9]. With respect to the transformation

U ­ eiGsr,zdtn
f , (8)

the functionssrw1
3 , rw2

3 2 nyed transform like a scalar
doublet, and the functionssw3

1, w3
2 d transform like a two-

dimensional gauge field. We fix the gauge by choosi
the gauge condition [5,8,9]

≠rw3
1 1 ≠zw3

2 ­ 0 . (9)

To make contact with the spherically symmetric ca
n ­ 1, we introduce the coordinatesr and u (r ­
r sinu, z ­ r cosu) and the gauge field functionsFisr , ud
[5,9]

w3
1 ­

1
er

s1 2 F1d cosu, w3
2 ­ 2

1
er

s1 2 F2d sinu ,

w1
3 ­ 2

n
er

s1 2 F3d cosu, w2
3 ­

n
er

s1 2 F4d sinu .

(10)

The spherically symmetric ansatz of Ref. [4] is recover
for F1sr, ud ­ F2sr , ud ­ F3sr , ud ­ F4sr , ud ­ wsrd,
Fsr , ud ­ fsrd, andn ­ 1.

The above ansatz and gauge choice yield a set of c
pled partial differential equations for the metric and th
matter field functions. To obtain regular asymptotical
flat solutions with finite energy density we impose at th
origin (r ­ 0) the boundary conditions

≠rf ­ ≠rm ­ ≠r l ­ ≠rF ­ 0,

F1 ­ F2 ­ F3 ­ F4 ­ 1 , (11)

and at infinity (r ­ `)

f ­ m ­ l ­ 1, F ­ 0,

F1 ­ F2 ­ F3 ­ F4 ­ 61 ; (12)

further we impose for all functions that their derivative
with respect tou vanish on ther and thez axes [5].
The boundary conditions for the gauge field functions
infinity imply that the solutions are magnetically neutra
Note that a finite value of the dilaton field at infinity
can always be transformed to zero viaF ! F 2 Fs`d,
r ! re2kFs`d.

The massM of the regular axially symmetric solutions
can be obtained directly from the total energy-momentu
“tensor” tmn of matter and gravitation,M ­

R
t00d3r

[10], or from M ­ 2
R

s2T0
0 2 T

m
m dp2g dr du df.

Both expressions give the same values for the mass of
solutions.

We now remove the dependence on the coupling co
stantsG and e from the differential equations by chang
ing to the dimensionless coordinatex ­ sey

p
4pGdr, the

dimensionless dilaton functionw ­
p

4pG F, and the
dimensionless coupling constantg ­ ky

p
4pG (g ­ 1

corresponds to string theory). The dimensionless mas
then given bym ­ sey

p
4pGdGM.
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In the spherically symmetric case the following rela-
tions between the metric and the dilaton field hold [11]

wsxd ­
1
2 g lns2gttd, (13)

m ­
1
2

x2≠xfj` ­
1
g

x2≠xwj` ­
D
g

, (14)

whereD is the dilaton charge. These relations also hol
for the regular axially symmetric solutions considered
here. Their derivation is based on the equation of mo
tion of the dilaton field and will be given elsewhere [12].

Solutions.—Subject to the above boundary conditions
we solve the equations numerically. To map spatia
infinity to the finite valuex ­ 1, we employ the radial
coordinatex ­ xys1 1 xd. The numerical calculations
are based on the Newton-Raphson method [13]. Th
equations are discretized on a nonequidistant grid inx and
u. Typical grids used have sizes150 3 30, covering the
integration regions0 # x # 1 and 0 # u # py2. The
numerical error for the functions is estimated to be on th
order of1023 and1022 for k , 4 andk ­ 4, respectively.

In Tables I and II we show the dimensionless mas
of a subset of the regular axially symmetric solutions
obtained so far. The energy densitye ­ 2T0

0 of the
solutions has a strong peak along ther axis, and it
decreases monotonically along thez axis. Thus equal
density contours reveal a toruslike shape of the solution
As a typical example we show the energy densitye of the
solution withn ­ 3, k ­ 3, and dilaton coupling constant
g ­ 1 in Fig. 1.

With n and g fixed and increasingk, the location of
the peak of the energy density moves inward and th
peak increases in height, whereas with fixedk and g

and increasingn the peak of the energy density moves
outward and decreases in height. This is demonstrated
Table II.

The gauge field functionsFi and the dilaton function
w of the regular axially symmetric EYMD and EYM
solutions look similar to those of the corresponding YMD
solutions [5]. Like the dilaton functionw, the metric

TABLE I. The dimensionless massm of the EYMD solutions
with winding numbern ­ 3 and up to 4 nodes for several
values of the dilaton coupling constantg. For comparison,
the last row gives the mass of the limiting solutions, the
first column gives the mass of the EYM solutions, and the
last column the scaled mass of the corresponding YMD solu
tions [5].

EYM EYMD YMD

kyg 0 0.5 1.0 2.0 `

1 1.870 1.659 1.297 0.811 1.800
2 2.524 2.250 1.770 1.114 2.482
3 2.805 2.505 1.976 1.247 2.785
4 2.922 2.611 2.063 1.304 2.913

· · · 3 2.683 2.121 1.342 3
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TABLE II. The dimensionless massm, the maximum of the
energy densityemax and the locationrmax of the maximum of
the energy density of the EYMD solutions of the sequenc
n ­ 1 4 with node numbersk ­ 1 4 and g ­ 1. For
comparison, the mass of the limiting solutions is also show
Note, thatmyn decreases withn for fixed finite k.

m

kyn 1 2 3 4

1 0.577 0.961 1.297 1.607
2 0.685 1.262 1.770 2.239
3 0.703 1.365 1.976 2.549
4 0.707 1.399 2.063 2.698
2 0.707 1.414 2.121 2.828

emaxsrmaxd
kyn 1 2 3 4

1 1.075 (0.) 0.177 (0.90) 0.098 (1.59) 0.072 (2.3
2 11.63 (0.) 0.910 (0.30) 0.380 (0.66) 0.235 (1.1
3 79.70 (0.) 3.443 (0.09) 1.124 (0.28) 0.601 (0.5
4 498.2 (0.) 12.01 (0.03) 3.064 (0.11) 1.435 (0.2

functions do not exhibit a strong angular dependen
These functions will be exhibited elsewhere [12].

For fixed n and g, with increasingk the sequence of
axially symmetric solutions tends to a limiting solutio
The gauge field functionssFidk tend to the limiting
function F` ­ 0. (Because of the boundary condition
at the origin and at infinity, they approach the limitin
function nonuniformly.) The dilaton functionswk tend
to the limiting functionw`, which represents the dilato
function of the “extremal” EMD solution [14] withn units
of magnetic charge and the same value ofg. This is
demonstrated in Fig. 2 forn ­ 3 andg ­ 1. We observe
that wk deviates fromw` only in an inner region, which
decreases exponentially withk.

For finite values ofg and fixedn, the sequences o
solutions thus approach as limiting solutions the extrem
EMD solutions [14] with magnetic chargen and the same
g. This generalizes the corresponding observation

FIG. 1. The energy densitye ­ 2T 0
0 is shown as a function

of the dimensionless coordinatesr and z for the EYMD
solution with winding numbern ­ 3, node numberk ­ 3, and
g ­ 1.
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the spherically symmetric solutions withn ­ 1 [4,11].
For g ­ 0 the limiting solutions represent the exterior o
extremal Reissner-Nordstrøm black holes with chargen.
For the YMD solutions the limiting solutions are magnet
monopoles withn units of charge [5].

The limiting values for the mass,m ­ ny
p

1 1 g2

[14], represent upper bounds for the sequences, as
served from Tables I and II. The largern, the slower is
the convergence to the limiting solution. Further deta
on the convergence properties of the sequences of s
tions will be given elsewhere [12].

In addition to the known static spherically symme
ric solutions, both EYMD and EYM theory possess s
quences of regular static axially symmetric solution
These sequences are characterized by the winding n
ber n . 1, and the solutions within each sequence by t
node numberk. (Forn ­ 1 the spherically symmetric so-
lutions are recovered.) For fixedn andg, with increasing
k the solutions tend to the “extremal” Einstein-Maxwel
Dilaton solution [14] withn units of magnetic charge and
the sameg.

The multisphalerons have a toruslike shape. Ap
from that, many properties of the axially symmetri
solutions are similar to those of their spherically sym
metric counterparts. In particular, there is all reason
believe that these regular static axially symmetric EYM
and EYM solutions are unstable. Since we can also as
ciate the Chern-Simons numberNCS ­ ny2 [9] (for odd
k [15]) with these solutions, we interpret them asgravi-
tating multisphalerons.

Having constructed the axially symmetric solutions
EYMD and EYM theory, it appears straightforward t
construct analogous solutions in theories with a Hig
field. We therefore expect to find gravitating axiall
symmetric multimonopoles (for the case of a Higg
triplet) or gravitating axially symmetric multisphaleron

FIG. 2. The dilaton functionswksx, ud for the EYMD solu-
tions with winding numbern ­ 3, node numbersk ­ 1 4,
and g ­ 1 are shown as a function of the dimensionless c
ordinatex. The dashed, the dotted, and the dash-dotted lin
represent the anglesu ­ 0, u ­ py4, and u ­ py2, respec-
tively. Also shown is the limiting functionw`sxd (solid line).
2529
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(for the case of a Higgs doublet). Similarly there shoul
be gravitating axially symmetric multi-Skyrmions. Work
along these lines is in progress.

We consider the above set of solutions to be th
simplest type of gravitating nonspherical regular solution
of EYMD and EYM theory. We conjecture that there
are gravitating regular solutions with much more comple
shapes and only discrete symmetries left. This conjectu
is based on the observation that for some types of solito
in flat space the symmetry structure of the (energetica
lowest) solutions becomes increasingly complex wit
increasing winding number or chargen. For instance,
for Skyrmions, the lowestn ­ 1 solution is spherically
symmetric, the lowestn ­ 2 solution has axial symmetry,
and the lowestn $ 3 solutions respect only discrete
crystal-like symmetries [16].

But EYMD and EYM theory also possess black hol
solutions. The non-Abelian spherically symmetric blac
hole solutions may be regarded as black holes insi
sphalerons [15]. We conjecture that also the gravitatin
axially symmetric solutions can accommodate black hol
in their interior. And this conjecture naturally extends to
gravitating solutions with more complex shapes and le
symmetry. The existence of such black hole solution
without rotational symmetry inside multimonopoles ha
also been conjectured from a stability argument [17].

We would like to thank the RRZN in Hannover for over
20 CPU hours.
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