VOLUME 78, NUMBER 13 PHYSICAL REVIEW LETTERS 31 MRrcH 1997

Static Axially Symmetric Solutions of Einstein—Yang-Mills-Dilaton Theory
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We construct static axially symmetric solutions of SU(2) Einstein—Yang-Mills-dilaton theory. Like
their spherically symmetric counterparts, these solutions are nonsingular and asymptotically flat. The
solutions are characterized by the winding numbeand the node numbérof the gauge field functions.

For fixedn with increasingk the solutions tend to “extremal” Einstein-Maxwell-dilaton black holes with
n units of magnetic charge. [S0031-9007(97)02792-0]

PACS numbers: 04.20.Jb

SU(2) Einstein-Yang-Mills (EYM) theory possessesdilaton coupling constant. In this Letter we present strong
regular static spherically symmetric solutions [1]. These(numerical) evidence that such regular gravitating axially
solutions are aymptotically flat and have nontrivial symmetric solutions indeed existin EYMD theory and also
magnetic gauge field configurations, but no globalin EYM theory.
charge. They have a high-density interior region, Axially symmetric ansatz-We consider the SU(2)
followed by a near-field region with approximately Einstein—Yang-Mills-dilaton action
Reissner-Nordstrgm metric and a far-field region with R .
approximately Schwarzschild metric [1]. S = f (1677G + LM>\/—_gd x, 1)

To every regular solution in SU(2) EYM theory, there
exists a corresponding family of black hole solutions withwith
regular event horizonxy > 0 [2]. Outside their event Ly = _% 9, DD — P % Tr (Fu, F*),  (2)
horizon these black hole solutions possess non-Abelian
hair. Like the regular solutions, the black hole solutionsfur = duAy — d,A, — ie[A,.A,], ande andk are the
are unstable [3]. Yang-Mills and dilaton coupling constants, respectively.

Like EYM theory, Einstein—Yang-Mills-dilaton To obtain static axially symmetric solutions we employ
(EYMD) theory possesses static, spherically symmetricisotropic coordinates and adopt the metric
non-Abelian regular and black hole solutions [4]. Here m l
the dilaton coupling constant represents a parameter. In ds’ = —fd* + r (dp?® + dz?) + I3 prdd’, (3)
the limit y — 0 the dilaton decouples and EYM theory is
obtained, fory = 1 contact with the low energy effective
action of string theory is made, and in the limit— «

with f, m, and! being only functions ofp andz. The
corresponding ansatz for the purely magnetic gauge field

gravity decouples and Yang-Mills-dilaton (YMD) theory (Ao = 0) is [5,7]
is obtained. A, = %Tgwif, 4)
Recently we have shown that YMD theory possesses
also §tatic axially symmetric regulgr solutions [5]. These A, = % rf,iw%, (5)
solutions are labeled by the winding number> 1 and
i = 1 n 1
the node numberk of the gauge fields. Fon = 1 Ap = 3Tipwl + 3 7.pwi, (6)

one obtains the static spherically symmetric solutions of
YMD theory [6]. The axially symmetric solutions have With the Pauli matricest = (7., 7y,7,) and 7, = 7 -

a toruslike shape. Choosing theaxis as the symmetry (Cosn¢,sinng,0), 7y = 7 - (—sinn¢,cosné,0). The
axis, the energy density has a strong peak alongtheis  four functionsw; and the dilaton functiod depend only

and decreases monotonically along thaxis. onp andz.
The existence of the regular static axially symmetric Denoting the stress-energy tensor of the matter fields by
YMD solutions strongly suggests the existence of ther'”, with this ansatz the energy denséy= —Td = —Ly

corresponding EYMD solutions for finite values of th|e becomes

f co S
~-T) = %[(apw + (9,D)] + &*® m(épwg’ — a.wi)?

2 3 2 2 2
2w S 1 (nwi + ows 302 2, W3 3.1
+ e 2ml|:(apw3 + - ew1w3> + <8pw3 + p + ew1w3)

3 2
nw
+ <6Zw3l + 2 - ew%w%) + (0.w3 + ew§w§)2j|. (7)
p
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The system possesses a residual Abelian gauge invari- In the spherically symmetric case the following rela-

ance [5,8,9]. With respect to the transformation tions between the metric and the dilaton field hold [11]
U =el0dm, (8) o(x) = 2 yIn(—gn). (13)
the functions(pwi, pw3 — n/e) transform like a scalar 1 1 D
doublet, and the functionsv;, w3) transform like a two- w= Exzéxfloo = — X200l = —, (14)
dimensional gauge field. We fix the gauge by choosing Y Y
the gauge condition [5,8,9] whereD is the dilaton charge. These relations also hold
apw§ + a.ws =0. (9) for the regular axially symmetric solutions considered

dere. Their derivation is based on the equation of mo-
tion of the dilaton field and will be given elsewhere [12].
Solutions—Subiject to the above boundary conditions,

To make contact with the spherically symmetric cas
n =1, we introduce the coordinates and 8 (p =
rsin@, z = r cosA) and the gauge field functiods (r, 6)

[5,9] we solve the equations numerically. To map spatial
’ . . infinity to the finite valuex = 1, we employ the radial
3 _ 3 _ : coordinatex = x/(1 + x). The numerical calculations
= — (1 — F;)cos6, =——(1 — F)sing,
1 er( J w2 er( ) are based on the Newton-Raphson method [13]. The

equations are discretized on a nonequidistant gridamd
6. Typical grids used have sizéS0 X 30, covering the
(10) integration region® =x =1 and0 = 0 = 7 /2. The
numerical error for the functions is estimated to be on the
The spherically symmetric ansatz of Ref. [4] is recoverecbrder of10~3 and10~2 for k < 4 andk = 4, respectively.
for Fi(r,0) = Fa(r,0) = F3(r,0) = Fa(r,0) = w(r), In Tables | and Il we show the dimensionless mass
®(r,0) = ¢(r),andn = 1. of a subset of the regular axially symmetric solutions
The above ansatz and gauge choice yield a set of cogptained so far. The energy densigy= —T, of the
pled partial differential equations for the metric and thesolutions has a strong peak along tpeaxis, and it
matter field functions. To obtain regular asymptotically decreases monotonically along theaxis. Thus equal
flat solutions with finite energy density we impose at thedensity contours reveal a toruslike shape of the solutions.

wy = —:—r(l — F3)cosf, w3l = :—r(l — F4)sing .

origin (r = 0) the boundary conditions As a typical example we show the energy densityf the
0.f =a,m=0a,l=0ad =0, solution Wi_thn = 3, k = 3, and dilaton coupling constant
v = 1inFig. 1.
Fi=F=F=F =1, (11) With » and y fixed and increasing;, the location of
and at infinity ¢ = oo the peak of the energy density moves inward and the
v ) peak increases in height, whereas with fixedand y
f=m=1=1 & =0, and increasing: the peak of the energy density moves
Fil=F,=Fs=F, = *1: (12) %)_L;tk\)/:/:rltlj and decreases in height. This is demonstrated in

further we impose for all functions that their derivatives The gauge field function®; and the dilaton function

with respect tod vanish on thep and thez axes [5]. ¢ of the regular axially symmetric EYMD and EYM

The boundary conditions for the gauge field functions akolutions look similar to those of the corresponding YMD

infinity imply that the solutions are magnetically neutral. solutions [5]. Like the dilaton functionp, the metric

Note that a finite value of the dilaton field at infinity

can always be transformed to zero a— & — ®(x),

r— re KP®) TABLE I. The dimensionless mags of the EYMD solutions
The massV of the regular axially symmetric solutions With winding numbern =3 and up to 4 nodes for several

- - values of the dilaton coupling constamgt For comparison,
can be obtained directly from the total energy-momentung o 5qt row gives the mass of the limiting solutions, the

“tensor” 7#” of matter and gravitationM = [7%d*r  first column gives the mass of the EYM solutions, and the

[10], or from M = — f(2T(()) — Th)/—gdrdfdd. last column the scaled mass of the corresponding YMD solu-
Both expressions give the same values for the mass of tH&@ns [5].
solutions. EYM EYMD YMD

We now remove the dependence on the coupling con-
stantsG and e from the differential equations by chang-
ing to the dimensionless coordinate= (e/+/47G)r, the
dimensionless dilaton functiop = /47 G ®, and the
dimensionless coupling constagt= «//47G (y = 1
corresponds to string theory). The dimensionless mass is
then given byu = (e//47G)GM.
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TABLE Il. The dimensionless masg, the maximum of the the spherically symmetric solutions withh = 1 [4,11].
energy densityen,x and the locatiorpm,, of the maximum of  For y = 0 the limiting solutions represent the exterior of
the energy density of the EYMD solutions of the sequencegyiremal Reissner-Nordstrem black holes with charge

n = 1-4 with node numbersk = 1-4 and y = 1. For . o . .
comparison, the mass of the limiting solutions is aiso shownFOr the YMD solutions the limiting solutions are magnetic

Note, thatu/n decreases with for fixed finite k. monopoles with: units of charge [5].
The limiting values for the massy = n/4/1 + y2
M [14], represent upper bounds for the sequences, as ob-
k/n 1 2 3 4 served from Tables | and Il. The larger the slower is
1 0.577 0.961 1.297 1.607 the convergence to the limiting solution. Further details
2 0.685 1.262 1.770 2.239 on the convergence properties of the sequences of solu-
3 0.703 1.365 1.976 2.549 tions will be given elsewhere [12].
4 0.707 1.399 2.063 2.698 In addition to the known static spherically symmet-
- 0.707 1.414 2.121 2.828 ric solutions, both EYMD and EYM theory possess se-
€max ( Pmax) guences of regular static axially symmetric solutions.
k/n 1 2 3 4 These sequences are characterized by the winding num-
1 1.075(0.) 0.177(0.90) 0.098 (1.59) 0.072 (2.37) bern > 1, and the solutions within each sequence by the
2 11.63(0.) 0.910(0.30) 0.380 (0.66) 0.235 (1.10) node numbek. (Forn = 1 the spherically symmetric so-
3 79.70 (0.) 3.443(0.09) 1.124(0.28) 0.601 (0.51) |ytions are recovered.) For fixedandy, with increasing
4 4982(0) 12.01(0.03) 3.064(0.11) 1.435(0.24) the solutions tend to the “extremal” Einstein-Maxwell-

Dilaton solution [14] withn units of magnetic charge and

_ o the samey.
functions do not exhibit a strong angular dependence. The multisphalerons have a toruslike shape. Apart
These functions will be exhibited elsewhere [12] from that’ many properties of the axia”y Symmetric

For fixedn andy, with increasingk the sequence of solutions are similar to those of their spherically sym-
axially symmetric solutions tends to a limiting solution. metric counterparts. In particular, there is all reason to
The gauge field functionsF;), tend to the limiting pelieve that these regular static axially symmetric EYMD
function F.. = 0. (Because of the boundary conditions and EYM solutions are unstable. Since we can also asso-
at the origin and at infinity, they approach the limiting cjate the Chern-Simons numb&es = n/2 [9] (for odd
function nonuniformly.) The dilaton functiong, tend  x [15]) with these solutions, we interpret them gvi-
to the limiting functione.., which represents the dilaton tating multisphalerons.
function of the “extremal” EMD solution [14] with units Having constructed the axially symmetric solutions in
of magnetic charge and the same valueyof This is  EYMD and EYM theory, it appears straightforward to
demonstrated in Fig. 2 for = 3 andy = 1. We observe construct analogous solutions in theories with a Higgs
that ¢, deviates fromg.. only in an inner region, which field. We therefore expect to find gravitating axially
decreases exponentially with symmetric multimonopoles (for the case of a Higgs

For finite values ofy and fixedn, the sequences of triplet) or gravitating axially symmetric multisphalerons
solutions thus approach as limiting solutions the extremal

EMD solutions [14] with magnetic chargeand the same

Dilaton Function ¢,(x,0)

v. This generalizes the corresponding observation for  o.0[ s :
~0.5] n=3 -
€(p,z) n=3 k=3 y=1 : y=1
-1.0 ]
~15F =0 ]
- o=m/4
_2()? ................. N
C o=m/2
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FIG. 2. The dilaton functionsp,(x, #) for the EYMD solu-
tions with winding number: = 3, node numbersk = 1-4,

FIG. 1. The energy density = —7; is shown as a function andy = 1 are shown as a function of the dimensionless co-
of the dimensionless coordinatgs and z for the EYMD  ordinatex. The dashed, the dotted, and the dash-dotted lines
solution with winding number = 3, node numbek = 3, and represent the angle® = 0, § = 7 /4, and 0§ = 7 /2, respec-

v =1 tively. Also shown is the limiting functiorp..(x) (solid line).
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