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Quantum Fluctuations and Dynamical Chaos
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We discuss the intimate connection between the chaotic dynamics of a classical field theory and the
instability of the one-loop effective action of the associated quantum field theory. Using massless scalar
electrodynamics as an example, we show how the radiatively induced spontaneous symmetry breaking
stabilizes the vacuum state against chaos. [S0031-9007(97)02869-X]
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It is generally believed that quantum fluctuations lead tcostate of the system. The chaoticity of the classical field,
the suppression of the most characteristic manifestatioria turn, is reflected in the presence of an imaginary part of
of dynamical chaos [1]. For the mechanical systems ithe effective potential in the loop expansion.
is obvious: the discreteness of the phase space imposedNow, we briefly describe the chaotic properties of
by quantum mechanics suppresses or even eliminatetassical scalar electrodynamics defined by the Lagrangian
the long-time behavior of the classically chaotic systemslensity for the system with bare scalar mags
that is characterized by the positivity of the Lyapunov 1 . -
exponents. Indeed, the nonstationary evolution of a L = — ZF’”FW + (D,¢) (D* @) — myd™ ¢, (1)
classically ch_aot|<_: guantum _mechanlcal_ system (scalavrvhere Fo o —a.A, —a,A, and D, — a, + icA,.
electrodynamics) is characterized by vanishing LyapunoYN s ® B K “ me

e consider the case of spatially homogeneous classical
exponents [2]. . : :
i . . L fields A,(r) and ¢(¢) for which the study of chaos is

For field theories with their infinite number of degrees mAs a ;

oo ! -~ extremely simplified. In the gaug&, = 0, Gauss’ law
of freedom the situation is not so straightforward. It is. lies that the ph f th lar fiebde L pei@ i
well established that not only the spatially uniform limits Imp |(_asd a de P asek_o elsca ar '?‘d_ 2Pe 'Sf
of Yang-Mills theory and scalar electrodynamics but alsg!me In _erp])_en ent. T"’.‘ Ing onhy ? s”mg.e cor_‘npolnenAp
various field theories, among which are the sphericallw]?nvan's Ing, we a.rrlve at the following simple system
symmetric Yang-Mills equations [3], the Yang-Mills- of equations [11,12]: )
Higgs equations in the interior of a 't Hooft-Polyakov p + (m3 + ¢*A*)p =0, A + €2p*Ai =0, (2)

monopole [4], and the equations of general relativityyhere dots indicate time derivatives. This system is clas-

[5,6], exhibit dynamical chaos in the classical limit (seeg;cajly equivalent to the well-known two-dimensional dy-

[7] for details and references). Here, as in the case of thgamijcal system with the quartic potentidly? exhibiting

mechanical systems, the basic question of the competitiog strongly chaotic behavior. This system appears in vari-

and interference between the highly unstable classicgjys contexts in science including chemistry, astronomy,

fluctuations responsible for chaos and the quantum ﬂucastrophysics, cosmology, and most interesting for us, in

tuations of the interacting fields arises. Do the quantumpe free Yang-Mills equations [7,13].

fluctuations suppress the chaoticity of the classical field The stability of the motion of the system (2) with the

theory? Although practically all methods of the quantiza—quamC potential

tion of fields about chaotic classical solutions encounter | |

this problem of instability there does not exist a proven Upp = —mip* + —e*p?A?, (3)

way to avoid or circumvent this delicate problem [8,9]. 2 o _2 ) i
In this Letter, we do not propose a general recipeand separable, quadratic kinetic energy is determined by

for the quantization of field theories that are chaoticthe time-dependent eigenvalues of thex 4 stability

in the classical limit, but confine ourselves to the loopMatrix

expansion taking as a basis the chaotic classical theory. 0 —Upa

Our treatment is based on the notion of the effective <1 0 > ()

potential. We consider here, as an example, mostlyhere 0 and 1 are the2 X 2 null and unit matrices,

massless scalar electrodynamics since it is free fro"Pespectiver and the x 2 matrix U, has the form
the well-known difficulties arising when, in spontaneous ' ¢

symmetry breaking, the new minimum lies far outside the T <m(2) +2 A 2622954)‘ 5)
validity of the one-loop approximation [10]. As we will P 2e“pA ep

show, the quantum corrections to the classical potentidHence, if the matrix (5) has a negative eigenvalue for
increase the threshold for chaos by modifying the groundalmost) any time, the system is unstable [14]. In other
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words, the criterion for dynamical instability of our The one-loop effective potential for massless scalar
system is that electrodynamics can be written as

1" < ﬁ
detUpa} < 0 © 10, 4) = Ups + UL MWL D], (14)
for (almost) any time. The condition (6) immediately

gives us the following condition for the onset of chaos: Where U4 is the classical potential (3) and the matrix
U,’,’A is given by (5). Hereu? is the renormalization point.

e?A2 > 242 = m_(z) 7 From the definition of the effective potential, it is evi-

3 dent that the exact effective potential must be real. The
for any p, with the corresponding energy threshold for @Pproximate calculation of this quantity in the loop expan-
chaos sion leads to regions of complexity which are impossible

to eliminate for the system under study. We see from
E, = Emg p? (8) (14) that for a classically chaotic system characterized by

3 the condition (6) the one-loop effective potential becomes
at the classical minimum of the potenti&l, = 0. Thus complex for almost all values of the fieldg p and not

classical masslessscalar electrodynamics is strongly Only for some finite range of the fields as it occurs, e.g.,
chaotic in the long wavelength limit for any magnitude in the case of spontaneous symmetry breaking at the tree

of the spatially homogeneous fields and for all values ofével for nonchaotic systems. Massless scalar electrody-
the total energy. The mass, of the scalar field sets a namics and the free Yang-Mills theory in the limit of ho-
threshold for chaos. mogeneous fields are such chaotic systems.

The self-interactionAé* (A > 0) of the scalar field It is possible to say that the complexity of the loop-

increases the threshold for chaos. Indeed, adding to tHgxPanded effective potential is a relic of the chaoticity of
potential (3) the quartic terrﬁp“ we obtain the classical theory. The imaginary part of the effective

) potential signals not only the instability of the field
my configuration, but it is a general consequence of the chaos
3 of the classical system.
Avthe lassical minimum = 0,1l £, - 0 o e consieralons one can ncereend v o)
If the gauge symmetry is spontaneously broken at th i ! gnary p [16] ;
classical level, i.e., for the potential oop effective potential fqr the unlfqrm c;hromomagneﬂc
T field of the pure Yang-Mills theory in Minkowski space
ol s A, 5y [17] were unsuccessful. Stable radiative corrections in
Upa = 7€ Ap” + 4 (p v’) (10) Minkowski space require a stable classical configuration.

. . ' The presence of the imaginary part in the one-loop
with the vacuum expectation value of the scalar field ) e ! g
. 5 > . . . effective potential is intrinsically linked to the asymptotic
and its mass:; = 2Av~, we obtain the following critical

. . ~ freedom of the non-Abelian gauge fields [16,18]. It is
magnitude of the gauge fiek, for the onset of chaos: worth noting that recently this unstable mode was detected

5 : : . . .
v directly in Monte Carlo simulations of the lattice gauge
A = ’\<p2 ) (11) theory [19].

In order to show how the quantum fluctuations set the

AL = Ap® +

(9)

At the minimum of the potential (10) this gives threshold for the onset of chaos and even suppress it,
m> we temporarily ignore the imaginary part of the potential
e?A2, = ?S (12)  (14) and, following Ref. [20], consider only the effect

of the quantum corrections along the a¥is= 0. This
which coincides with the condition (7) for the onset of “projection” retains the picture of spontaneous symmetry
chaos for the case oghassiveclassical scalar electrody- breaking by the quantum corrections, because the actual

namics without self-interaction. minima of the real part of" occur on the axed = 0
Substituting A2, into (10) and minimizingU,, with  and p = 0, as a numerical evaluation of the one-loop
respect tp we find [15] effective action in thep-A plane shows.
11 At this stage, we turn to consider the one-loop corrected
Ectlp=y = ng)\v“. (13) effective potential for massless scalar electrodynamics

with quartic self-interaction of the scalar field. We begin
Turning now to the quantum corrections, we base ouwith the case without spontaneous symmetry breaking at
discussion on the effective potential approach. As ighe classical level. The quantum corrections lead to a
well known [10], radiative corrections induce a nontrivial new minimum of the potential at = 0 but p = p #
minimum of the effective potential’, generating mass 0 instead of A = p = 0. Implementing the standard
and thus increasing the threshold for chaos. procedure of dimensional transmutation [10], we write the
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one-loop effective potential as The situation is repeated for the case of the two-loop

! 4 304 effective potential, leading to the threshold value

F(l)(p,A;ﬁ) = —ezAzp2 + 2P (A2 i) 1 2
2 3272 10 242, = 5 sm’ + sm®) = m? (22)
2
1
X {In’?—2 - —}, (15) @2 . -
p 2 whereéme ™ is the two-loop scalar boson mass correction

[21] up to O(e%) in the limit A*> < ¢*. Equations (21)

where thep* term of the classical potential is absorbed 5ng (22) are special cases of the general relation

in the subtraction point of the logarithm. The effective

, e a’T
potential now has a minimum value 3e2A2, = Fys; , (23)
. 4 p l’il’min
O _ 1y A 3)er = — 2P [ )2 4 3¢
Ey =T VA, p=p = — A° + , (16 . -
0 (p, 4; p)l 4=0 64772( 10 (16) which expresses the specific structure of scalar electrody-

o _ namics and the?y? model revealed by (5).
which lies below the classical vacuum. The masses of the Up to now we have avoided the Complications arising

scalar boson and photon are from the imaginary part of the effective potential—
21(1) appearing due to the chaoticity of the classical field
m? = J Fz = 5m§\1>2 + 5m£1)2, (17) thgory—by “proj_ecting" the quantum corrections onto the

ap= o= axisA = 0. The imaginary part of () (¢) has a physical

interpretation [21—-23] describing the decay rate per unit

. 8T volume of the initial quantum state, or the damping rate

m; = 5 = ¢2p?, (18) of certain correlation functions. This interpretation of
IA% o the imaginary part o' allows one to understand the
h coincidence of the maximal Lyapunov exponents of the
where classically chaotic SU(2) and SU(3) gauge theories and
ap  5A2 " 34 the corresponding analytically calculated damping rates of
smy = 5p%  eml) =2—=p> (19 itations of the thermalized field
A a2P" e gm2P excitations of the thermalized gauge fields [24].

In conclusion, we have shown that the onset of chaotic-
are the one-loop mass corrections to the classicallity of the classical fields in theories such as scalar electro-
masslessscalar boson generated by the scalar self-coupliggnamics is delayed by the radiative corrections. In the
and scalar-photon coupling, respectively. case of massless scalar electrodynamics, which is chaotic

We now consider (15) for the case of spatially uniformfor all energies at the tree level, the quantum corrections
fields p(z), A(r) and apply the criterion (6) obtaining the introduce a finite threshold for the onset of chaos.
critical value ofA beyond which the chaos sets in: The classical chaoticity, in turn, leads to the instabil-
5 . s ity of the effectiv_e _potential in the quantum th_eory, pre-
2A2 = Sp” A2+ 3e” n2- + 2 . (20) sumably, at any finite order of the loop expansion. Since
872 10 p>2 3 the true effective potential is known to be always a real
and convex function of the field expectation values, the

Taking (20) in the vicinity of the new minimurp = 5,  instabilities associated with deterministic chaos must be
m2 Gaussian) quantum fluctuations can provide the mecha-
eZAgr = ?S (21)  nism for this phenomenon. Unfortunately, it is not known

how to perform functional integrals in quantum field
where m; is given by (17). The comparison with (7) theory beyond the Gaussian approximation by analytical
shows that quantum corrections generate a finite threshotéchniques.
for the onset of chaos in massless scalar electrodynamics, This raises the question whether, in a given theory,
as opposed to the classical theory which is chaotic for ait is possible to find a stablelassical configuration
infinitesimal amplitude of the gauge field. in Minkowski spacearound which the theory can be
Let us briefly address the case of massless scalajuantized. Several mechanisms are known [7] which
electrodynamics with spontaneous symmetry breaking ajenerate stable solutions and hence eliminate chaos at low
tree level. Adding to the classical potential (10) theenergies in gauge theories: mass generation by the Higgs
one-loop quantum corrections, one finds again that thenechanism [13] or topological effects, mass generation
guantum fluctuations increase the stability against chaosly medium polarization at finite temperature [25], and
over and above the stabilizing threshold (11) introducedtabilization of fluctuations by external charges [26,27].
at the tree level by the mass generated by spontaneoédthough none of these mechanisms directly applies to the
symmetry breaking. QCD vacuum, the quark vacuum condensate may have a
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similar stabilizing effect. On a more general scope, thg11] The spatially uniform classical scalar electrodynamics
question of the possible stabilizing role of fermions in with its chaoticity and the corresponding quantum me-
supersymmetric Yang-Mills theories arises. We hope to  chanical aspects leading to the suppression of chaos have
return to these questions in the future. been intensely studied by the Los Alamos group [2,12].
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