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We discuss the intimate connection between the chaotic dynamics of a classical field theory and
instability of the one-loop effective action of the associated quantum field theory. Using massless sc
electrodynamics as an example, we show how the radiatively induced spontaneous symmetry bre
stabilizes the vacuum state against chaos. [S0031-9007(97)02869-X]
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It is generally believed that quantum fluctuations lead
the suppression of the most characteristic manifestatio
of dynamical chaos [1]. For the mechanical systems
is obvious: the discreteness of the phase space impo
by quantum mechanics suppresses or even elimina
the long-time behavior of the classically chaotic system
that is characterized by the positivity of the Lyapuno
exponents. Indeed, the nonstationary evolution of
classically chaotic quantum mechanical system (sca
electrodynamics) is characterized by vanishing Lyapuno
exponents [2].

For field theories with their infinite number of degree
of freedom the situation is not so straightforward. It i
well established that not only the spatially uniform limits
of Yang-Mills theory and scalar electrodynamics but als
various field theories, among which are the spherical
symmetric Yang-Mills equations [3], the Yang-Mills-
Higgs equations in the interior of a ’t Hooft-Polyakov
monopole [4], and the equations of general relativit
[5,6], exhibit dynamical chaos in the classical limit (se
[7] for details and references). Here, as in the case of t
mechanical systems, the basic question of the competiti
and interference between the highly unstable classic
fluctuations responsible for chaos and the quantum flu
tuations of the interacting fields arises. Do the quantu
fluctuations suppress the chaoticity of the classical fie
theory? Although practically all methods of the quantiza
tion of fields about chaotic classical solutions encount
this problem of instability there does not exist a prove
way to avoid or circumvent this delicate problem [8,9].

In this Letter, we do not propose a general recip
for the quantization of field theories that are chaoti
in the classical limit, but confine ourselves to the loo
expansion taking as a basis the chaotic classical theo
Our treatment is based on the notion of the effectiv
potential. We consider here, as an example, mos
massless scalar electrodynamics since it is free fro
the well-known difficulties arising when, in spontaneou
symmetry breaking, the new minimum lies far outside th
validity of the one-loop approximation [10]. As we will
show, the quantum corrections to the classical potent
increase the threshold for chaos by modifying the groun
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state of the system. The chaoticity of the classical fiel
in turn, is reflected in the presence of an imaginary part
the effective potential in the loop expansion.

Now, we briefly describe the chaotic properties o
classical scalar electrodynamics defined by the Lagrang
density for the system with bare scalar massm0:

L ­ 2
1
4

FmnFmn 1 sDmfdpsDmfd 2 m2
0fpf , (1)

where Fmn ­ ≠mAn 2 ≠nAm and Dm ­ ≠m 1 ieAm.
We consider the case of spatially homogeneous classi
fields Amstd and fstd for which the study of chaos is
extremely simplified. In the gaugeA0 ­ 0, Gauss’ law
implies that the phase of the scalar fieldf ­

1
p

2
reia is

time independent. Taking only a single component ofAi

nonvanishing, we arrive at the following simple system
of equations [11,12]:

r̈ 1 sm2
0 1 e2A2dr ­ 0, Äi 1 e2r2Ai ­ 0 , (2)

where dots indicate time derivatives. This system is cla
sically equivalent to the well-known two-dimensional dy
namical system with the quartic potentialx2y2 exhibiting
a strongly chaotic behavior. This system appears in va
ous contexts in science including chemistry, astronom
astrophysics, cosmology, and most interesting for us,
the free Yang-Mills equations [7,13].

The stability of the motion of the system (2) with the
quartic potential

UrA ­
1
2

m2
0r2 1

1
2

e2r2A2, (3)

and separable, quadratic kinetic energy is determined
the time-dependent eigenvalues of the4 3 4 stability
matrix µ

0 2U 00
rA

1 0

∂
, (4)

where 0 and 1 are the 2 3 2 null and unit matrices,
respectively, and the2 3 2 matrix U 00

rA has the form

U 00
rA ­

µ
m2

0 1 e2A2 2e2rA
2e2rA e2r2

∂
. (5)

Hence, if the matrix (5) has a negative eigenvalue fo
(almost) any time, the system is unstable [14]. In othe
© 1997 The American Physical Society 2515
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words, the criterion for dynamical instability of ou
system is that

dethU 00
rAj , 0 (6)

for (almost) any time. The condition (6) immediate
gives us the following condition for the onset of chaos:

e2A2 . e2A2
cr ­

m2
0

3
(7)

for any r, with the corresponding energy threshold f
chaos

Ecr ­
2
3

m2
0r2 (8)

at the classical minimum of the potentialEcr ­ 0. Thus
classical masslessscalar electrodynamics is strongl
chaotic in the long wavelength limit for any magnitud
of the spatially homogeneous fields and for all values
the total energy. The massm0 of the scalar field sets a
threshold for chaos.

The self-interactionlf4 (l . 0) of the scalar field
increases the threshold for chaos. Indeed, adding to
potential (3) the quartic terml

4 r4 we obtain

e2A2
cr ­ lr2 1

m2
0

3
. (9)

At the classical minimumr ­ 0, still Ecr ­ 0.
If the gauge symmetry is spontaneously broken at

classical level, i.e., for the potential

UrA ­
1
2

e2A2r2 1
l

4
sr2 2 y2d2 (10)

with the vacuum expectation value of the scalar fieldy

and its massm2
s ­ 2ly2, we obtain the following critical

magnitude of the gauge fieldAcr for the onset of chaos:

e2A2
cr ­ l

√
r2 2

y2

3

!
. (11)

At the minimum of the potential (10) this gives

e2A2
cr ­

m2
s

3
, (12)

which coincides with the condition (7) for the onset
chaos for the case ofmassiveclassical scalar electrody
namics without self-interaction.

SubstitutingA2
cr into (10) and minimizingUrA with

respect tor we find [15]

Ecr jr­y ­
11

108
ly4. (13)

Turning now to the quantum corrections, we base o
discussion on the effective potential approach. As
well known [10], radiative corrections induce a nontrivi
minimum of the effective potentialG, generating mass
and thus increasing the threshold for chaos.
2516
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The one-loop effective potential for massless scal
electrodynamics can be written as

Gs1dsr, Ad ­ UrA 1
h̄

64p2
trfsU 00

rAd2 lnsU 00
rAym2dg , (14)

where UrA is the classical potential (3) and the matrix
U 00

rA is given by (5). Herem2 is the renormalization point.
From the definition of the effective potential, it is evi-

dent that the exact effective potential must be real. Th
approximate calculation of this quantity in the loop expan
sion leads to regions of complexity which are impossib
to eliminate for the system under study. We see fro
(14) that for a classically chaotic system characterized
the condition (6) the one-loop effective potential become
complex for almost all values of the fieldsA, r and not
only for some finite range of the fields as it occurs, e.g
in the case of spontaneous symmetry breaking at the t
level for nonchaotic systems. Massless scalar electrod
namics and the free Yang-Mills theory in the limit of ho-
mogeneous fields are such chaotic systems.

It is possible to say that the complexity of the loop
expanded effective potential is a relic of the chaoticity o
the classical theory. The imaginary part of the effectiv
potential signals not only the instability of the field
configuration, but it is a general consequence of the cha
of the classical system.

From these considerations one can understand why
efforts to eliminate the imaginary part [16] of the one
loop effective potential for the uniform chromomagneti
field of the pure Yang-Mills theory in Minkowski space
[17] were unsuccessful. Stable radiative corrections
Minkowski space require a stable classical configuratio
The presence of the imaginary part in the one-loo
effective potential is intrinsically linked to the asymptotic
freedom of the non-Abelian gauge fields [16,18]. It i
worth noting that recently this unstable mode was detect
directly in Monte Carlo simulations of the lattice gauge
theory [19].

In order to show how the quantum fluctuations set th
threshold for the onset of chaos and even suppress
we temporarily ignore the imaginary part of the potentia
(14) and, following Ref. [20], consider only the effect
of the quantum corrections along the axisA ­ 0. This
“projection” retains the picture of spontaneous symmet
breaking by the quantum corrections, because the act
minima of the real part ofGs1d occur on the axesA ­ 0
and r ­ 0, as a numerical evaluation of the one-loop
effective action in ther-A plane shows.

At this stage, we turn to consider the one-loop correcte
effective potential for massless scalar electrodynami
with quartic self-interaction of the scalar field. We begin
with the case without spontaneous symmetry breaking
the classical level. The quantum corrections lead to
new minimum of the potential atA ­ 0 but r ­ r̄ fi

0 instead of A ­ r ­ 0. Implementing the standard
procedure of dimensional transmutation [10], we write th
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one-loop effective potential as

Gs1dsr, A; r̄d ­
1
2

e2A2r2 1
5r4

32p2

√
l2 1

3e4

10

!

3

"
ln

r2

r̄2
2

1
2

#
, (15)

where ther4 term of the classical potential is absorbe
in the subtraction point of the logarithm. The effective
potential now has a minimum value

E
s1d
0 ; Gs1dsr, A; r̄dj r­r̄

A­0
­ 2

5r̄4

64p2

√
l2 1

3e4

10

!
, (16)

which lies below the classical vacuum. The masses of t
scalar boson and photon are

m2
s ­

≠2Gs1d

≠r2

Ç
r­r̄

A­0

­ dm
s1d2

l 1 dms1d2

e , (17)

m2
A ­

≠2Gs1d

≠A2

Ç
r­r̄

A­0

­ e2r̄2, (18)

where

dm
s1d2

l ­
5l2

4p2
r̄2, dms1d2

e ­
3e4

8p2
r̄2 (19)

are the one-loop mass corrections to the classica
masslessscalar boson generated by the scalar self-coup
and scalar-photon coupling, respectively.

We now consider (15) for the case of spatially uniform
fields rstd, Astd and apply the criterion (6) obtaining the
critical value ofA beyond which the chaos sets in:

e2A2
cr ­

5r2

8p2

√
l2 1

3e4

10

! "
ln

r2

r̄2 1
2
3

#
. (20)

Taking (20) in the vicinity of the new minimumr ­ r̄,
where our equations are reliable, we arrive at the relatio

e2A2
cr ­

m2
s

3
, (21)

where ms is given by (17). The comparison with (7)
shows that quantum corrections generate a finite thresh
for the onset of chaos in massless scalar electrodynam
as opposed to the classical theory which is chaotic for
infinitesimal amplitude of the gauge field.

Let us briefly address the case of massless sca
electrodynamics with spontaneous symmetry breaking
tree level. Adding to the classical potential (10) th
one-loop quantum corrections, one finds again that t
quantum fluctuations increase the stability against chao
over and above the stabilizing threshold (11) introduce
at the tree level by the mass generated by spontane
symmetry breaking.
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The situation is repeated for the case of the two-loo
effective potential, leading to the threshold value

e2A2
cr ­

1
3

sdms1d2

e 1 dms2d2

e d ­
m2

s

3
, (22)

wheredm
s2d2

e is the two-loop scalar boson mass correctio
[21] up to Ose6d in the limit l2 ø e4. Equations (21)
and (22) are special cases of the general relation

3e2A2
cr ­

≠2G

≠r2

Ç
r­rmin
A­0

, (23)

which expresses the specific structure of scalar electro
namics and thex2y2 model revealed by (5).

Up to now we have avoided the complications arisin
from the imaginary part of the effective potential—
appearing due to the chaoticity of the classical fie
theory—by “projecting” the quantum corrections onto th
axisA ­ 0. The imaginary part ofGs1dsfd has a physical
interpretation [21–23] describing the decay rate per u
volume of the initial quantum state, or the damping ra
of certain correlation functions. This interpretation o
the imaginary part ofGs1d allows one to understand the
coincidence of the maximal Lyapunov exponents of th
classically chaotic SU(2) and SU(3) gauge theories a
the corresponding analytically calculated damping rates
excitations of the thermalized gauge fields [24].

In conclusion, we have shown that the onset of chaot
ity of the classical fields in theories such as scalar elect
dynamics is delayed by the radiative corrections. In t
case of massless scalar electrodynamics, which is cha
for all energies at the tree level, the quantum correctio
introduce a finite threshold for the onset of chaos.

The classical chaoticity, in turn, leads to the instab
ity of the effective potential in the quantum theory, pre
sumably, at any finite order of the loop expansion. Sin
the true effective potential is known to be always a re
and convex function of the field expectation values, th
instabilities associated with deterministic chaos must
absent in the full quantum theory. Higher-order (non
Gaussian) quantum fluctuations can provide the mec
nism for this phenomenon. Unfortunately, it is not know
how to perform functional integrals in quantum field
theory beyond the Gaussian approximation by analytic
techniques.

This raises the question whether, in a given theor
it is possible to find a stableclassical configuration
in Minkowski spacearound which the theory can be
quantized. Several mechanisms are known [7] whi
generate stable solutions and hence eliminate chaos at
energies in gauge theories: mass generation by the Hi
mechanism [13] or topological effects, mass generati
by medium polarization at finite temperature [25], an
stabilization of fluctuations by external charges [26,27
Although none of these mechanisms directly applies to t
QCD vacuum, the quark vacuum condensate may hav
2517
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similar stabilizing effect. On a more general scope, th
question of the possible stabilizing role of fermions i
supersymmetric Yang-Mills theories arises. We hope
return to these questions in the future.
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