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Inhibition of Coherence in Trapped Bose-Einstein Condensates
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We analyze the dependence of the collapse and revival of many-atom coherence of a trapped Bose-
Einstein condensate on the trap potential, dimensionality of the gas, and atom number fluctuations. We
show that in a class of experimentally relevant systems the collapse time vanishes in the limit of a large
number of atoms, implying that the trapped Bose gas cannot sustain a well-defined quantum phase.
[S0031-9007(97)02828-7]
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The recent experimental realization of Bose-Einsteinwell-defined condensatihase that may be artificially cre-
condensates (BEC) of trapped cold rubidium [1], lithiumated using a quantum measurement process [8,13,14] will
[2], and sodium [3] atoms have stimulated research on theollapsein an arbitrarily short time scale and will never
fundamental properties @onfined coherent matterThe revive Even in the absence of coupling to the environ-
manifestation of many interesting physical phenomena iment, the system will inhibit coherence. This result has
this context, such as superfluidity and the Josephson efmportant consequences for experiments with the trapped
fect, is closely related to the existence of the phase oBEC gases [1,3], especially for the studies of the Joseph-
the condensate [4]. In addition, the assumption of a wellson effect [9,11] between two condensates.
defined condensate phase is implicit in theoretical analysis Two trapped condensates that are brought to contact es-
carried out using the mean-field theory [5,6]. Several autablish a relative phase after a preparation time [8,11,14].
thors have already analyzed the quantum phase dynamitfsthe contact is interrupted, the phase memory lasts a
in trapped BEC atoms and reached the common concluime of the order ofr.. In the case of. — 0, the phase
sion that due to the nonlinearities arising from the atom-memory will be lost practically immediately, and the con-
atom interactions and the discreteness of the spectrum densates will not exhibit any signatures of the Josephson
the many-body system, there will be collapses and reeffect. In the opposite case, the coherence will lagt a
vivals in the many-body coherence [7—10]. In Ref. [10]nite timer. during which the signatures of the Josephson
we have related the phenomenon of collapse (termed afect (or beatnote between the condensates [8]) are ob-
quantum phase diffusion) to quantum fluctuations of theservable. We show that the combination of intraconden-
atom numberN using the Bogoliubov-Hartree (BH) ap- sate interactions and Josephson coupling between the two
proach. In a Bose gas trapped in a harmonic potentiadondensateg andB establish, in generagub-Poissonian
in 3D, both the collapse and the revival times increasdluctuations o(N) « N'/2=# of the number ofA, or
with N, implying that the mean-field approximation re- equivalentlyB atoms, with3 > 0 determined by the trap
mains valid for long time scales. However, contrary topotential and the coupling parameters. The initial phase
the case of homogeneous systems in the thermodynamiddlictuations are enhanced in such a situation, whilés
limit [11], the collapse timer. in the 3D harmonic trap prolonged. Increasing the strength of the Josephson cou-

grows asV'/1 instead ofN!/2, i.e., much slower. pling decrease®, but above some critical scaling law
In this Letter, we analyze the dependence of the collapsketween the coupling and/, this effect saturates, and
and revival times on the specific trap potentialr) =  o(N) = /N /2. The Josephson coupling thus cannot es-

ar™, the dimensionalityD of the Bose gas, and the ini- tablish broader fluctuations a¥ than the normal ones,
tial dispersiona(N) of the atom numbewV, which is i.e., of the order oD (N).

determined by the way the system is prepared initially. The essential physics of the phase collapse and revival
In the continuous spectrum approximation [12], such ds captured by a toy model for the “zero-mode” dynamics.
trap supports condensation fgr< 2 in 1D, and arbitrary The model is described by the(U-gauge symmetric
0<mn<owinD =2. We find that if > D and the Hamiltonian,
dispersion is normal [i.eq(N) « N'/2], the collapse time

goes to zero in the limiy — . This fact sets fundamen- o =

E t5 1
tal limits on the existence afoherentcondensates. Any 2 & @)
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where g, gt are, respectively, annihilation and creation The calculation is only a litle more complex for the
operators for atoms occupying the condensate (zercggal condensate in the Bogoliubov-Hartree approximation
mode,[g, 2] = 1, andu is a “chemical potential,” which  [10]. At zero temperatur@ = 0 we linearize the second
fixes either the exact value of the atom numbgror its  quantized Hamiltonian?{ for a system of N atoms
mean(N) = (¢t2). The coupling constarit is assumed in a trap by setting¥(7) = VN yo(F) + 8¥ (), where
to scale asii = uo/V, where V is the volume of the W(7) is the atomic field annihilation operator(7)
condensate mode. Such scaling mimics the real behavidg the c-number condensate wave function normalized
of the full second quantized Hamiltonian describing aas [ d7|¢o(7)|> = 1, whereas6W(7) is the quantum
Bose gas in the trap. fluctuation part;io(7) is the lowest energyy) solution
Obviously, Fock statedn) are eigenstates ofH  of the nonlinear Schrédinger equation (NLSE)
[Eq. (1)] with energiesE, = 5n(n — 1) — un. The

exact ground state is thus the Fock state Z[L + uop (F)po(F) = 0, (6)
(&hY With £ = —37V2 + Vi(7) — w, andp(7) = Ny3 (7).
IN)F = )12 lvag, (2) The Hamiltonian becomes a bilinear form&W¥ (7) and

6@’*(?), and can be transformed to a canonical form
for which N = Qu + @#)/&. The latter expression can
be regarded either as determining for a given u, or H = NaP? + Z hwkg}:gk, (7)
determining i in order to fix N. The ground state is k70
symmetric with respect to the phase change, i.e., its phaggnere <6 g;r are, respectively, the annihilation and

is not definite. creation operators of the elementary excitations, whereas

It is worth observing that a coherent staflz) =  the “momentum” operator is
z|z), minimizes the mean energ{|H |z) for |z| =
J(N —1/2) = +/N. This state provides a very good p = f drgo(P) [ () + sWt(H)]. @)
variational approximation of the true ground state energy,

and has a definite phase.

The coherent state, however, is not an eigenstaf¥l of
It undergoes dynamics determined by the Hamiltonian (1). A — f d7 Pa(D W () — sW (7 9
In particular, the mean value of the atomic field operator Q=i F @A) SV (F) )1, ©

§ evolves as [7] has to fulfill [0, ] =i, [Q,g] =0 (for k # 0) by
definition, and[Q, H ] = 2iNuP because of (7). These
commutation relations give

The “position” operator canonically conjugatedito

Z. N'e N
(zlg(n)1z) = VN > exdi(E, — Eq+1)t]
n=0

n!
— JN e exgN(e ™ — 1)]. 3) [L + 3uop(F)]Po(F) = 2Niitho(F), (10)
_ which has a unique solution since the operétot
For short times 3ugp(7) is positive definite [10]. We can now express

Gla() |2) = VN e #~N exy — N2 /2). (4) W(7) in terms off’L 0, g and g,fg as we have shown
elsewhere [10]{W(¥)) collapses within the time., due
so that the collapse time of the coherent stateis=  to quantum phase spreading.
1/\/_N ii. On alonger time scale, in contrast, the function In the limit of largeN we use the Thomas-Fermi ap-
(3) is periodic, and revives at every period. The timeproximation [16,17], i.e., neglect the kinetic energy term
between the two subsequent revivals (fdad is thus in NLSE. For aD-dimensional isotropic trap with the
7, = 1/it = \/N .. potential V,(r) = ar” we obtaingo(7) = {{u — Vi(r)]/
The phenomenon of collapse and revival is generig,N}!/2, &y(7) = — for r = ro and zero other-
_ : . N [2vp 3 (P’ :
for nonlinear quantum dynamics [15]. Note that in theyige: w = Vi(ro), whereasii = uo/Quprd) with ry =
standard thermodynamic limit. = v/N/u sinceV = N. [(n + D)Nuo/vpnal/@*P) and with v, denoting the
The fact that the ratior,/7. = V/N is a consequence yolume of aD-dimensional sphere with unit radius. As

of the Poissonian fluctuations of the atom number iNexpectedvi is proportional to the condensate peak den-
the coherent state. Had we used another initial statgjy andr. = 1/0/(N)i.

>—o axln), with a,’s well peaked around: = N, the Consider a Gedanken experiment where the relative
result (3) would read phased = 6, between the condensate of interest (system)
. B . {Eo—E, )t and a reference condensate is established. As is known,

@20 |2) = DV aga el Ee () this can be achieved by allowing for Josephson-type

coupling between the two condensates. Because of such
Approximating «, « exd—(n — N)*>/40*(N)], we ob- a process, the system enters a state characterized by some
tain the same, as before, withr, = 7, /0 (N). dispersion of the number of particles;(N) « N'/278,
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and some distribution of the relative phase peaked around _ F( k2 >

. \ : ; = exg — . (13)
0y. Alternatively, this can be achieved by performing a 203(N)
beatnote measurement [8,14], or by carrying out nonlocal
light scattering between the condensates that undergdnd expanding the Schrodinger equation for srall we
particle exchange [18,19]; we shall not discuss, howevegbtain
these alternative methods in this Letter. Assuming that 20N \/—~
the contact between the condensates is interrupted, and Ta(N) = NyJA/[4N@ + A)]. (14)
that both condensates are trapped in the potentials of the The collapse time can be now associated with the short
same form, the relative phase will collapse and reviveime decay of the correlation

leal?® o ex

(- N)2>
204(N)

aftertmes: GIB a6y = 3 i + DN — )
D- D Glb'(t)a(t)|G) = n+ 12N —n
ek NFEE o aNTE. 1)
If the phase measurement is performed again before time X cncn1 €XLI(E, — En+1)t],
7., the same value o, will be recovered. If the (15)

measurement is performed after, but beforer,, it will
lead to the establishment of a fixed, but randomly picke
value of #. Finally, if the measurement is performed
within the time intervaln7, — 7.,n7, + 7.], with n =

devaluated after the switch-off of the contact, i.e., in the ab-
sence of the Josephson interaction. In such a ggse
(@/2)[n(n — 1) + 2N — n) 2N — n — 1)] — 2uN.
Making use of Eq. (13), and replacing the discrete sum

0,1,..., the sam&, will be measured. b it I ¢
The principal result of our Letter is the scaling law of overn by an integral, we ge
7. andr, with N as given by Eq. (11): If the initial atom (GlbY()a(t) |G) « N exd —2i* o2 (N)*] (16)

number fluctuations are normaB (= 0), the standard )
mean-field result where both. — » and 7, — » holds SO thatr. = 1/[2ia4(N)]. From Eq. (14) we obtain
only whenD > 7. If the opposite is true (.ep < 5), B = n/[4(n + D)]in the limit ¥ —  and A = const.
then increasing the number of atoms in the trap result§ince B is positive, the atom number fluctuations are
in shorter collapse and longer revival times Mis— .  Sub-Poissonian, whereas the initial phase distribution

Any coherence prepared in the system will collapse in ars br(.)ader.than in the case of Poissonian fluc;tuations.
arbitrarily short time and will never revive. Physically it means that whea does not vary withv,

In an actual experiment, however, the expongnts ~ Josephson coupling becomes relatively weak compared to
established by the interplay of Josephson coupling an#'€ internal nonlinear interactiond/ {), and the precision
condensate interactions. We illustrate this point using &f fixing of the relative phase decreases.
toy model for the two symmetric condensates [9]. For N fact, if A = N, with fwi = n/(n + D), we get
the moment, we leave a more technical discussion of th€ = n/[4(n + D)] — {/4 > 0, and the corresponding
general asymmetric case in the framework of quantun§lependence of the collapse time on the atom number

field theory aside. We consider two condensatesd B _ Nﬁ;—f{j—;/{ 17)
interacting via Josephson coupling that allow for coherent
exchange of particles, For ¢ = 0, the collapse time is the longest. The critical
- value of7 is then2D, i.e., inhibition of coherence occurs
H = Latataa + bTbthb) — w(ata + bth) for n > 2D.
2 For the values of greater than the critical valug,;,
—Math + bta), (12) the scaling behavior changes completely, since as clearly

seen from Eq. (14p is strictly equal to zero in this case,
where a, at, b, bt are the annihilation and creation independent of the value af. We deal here with the
operators of theA and B atoms, respectively. The critical behavior with respect to the exponeght Below
coupling constantA is assumed to be positive. Such athe critical valuel.,;, the Josephson interactions may be
coupling atT = 0 selects the relative phase. In ordertermed asveak,and their effect on establishing the phase
to estimate the collapse time of the relative phase varies continuously with’. Above the critical value, the
after the interruption of the coupling, we have to evaluateJosephson interactions becors&ong, and their effect
dispersion of theA-atom numbero,(N) in the ground on establishing the phase saturates. The atom number
state of Eqg. (12). This can be done either using the BHluctuations remain sub-Poissonian, but become normal
approach, or directly, from the Hamiltonian. In the latterwith o3(N) = N/2, whereas the phase is established
case, we represent the exact ground state for a fixed totalith the corresponding maximal possible precision. The
number of atom&n in a form|G) = > ,_,c.|n)al2N —  collapse time is given in this limit as in Eq. (11) by
n)g, wheren is the number oA atoms. The amplitudes 7. « NDP=1/2(n+D) "gnd the critical value of is D.
cq, Which can be chosen to be real, are strongly peaked at The predicted scaling laws of collapse and revival times
n = N. By shiftingn = N + k, making an ansatz could in principle be measured in lower dimensional trap
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TABLE I. Exponents of the atom numbeéf dependence of various quantities for a conden-
sate in theD-dimensional trap with;(r) = ar” and with normal atom number fluctuations.

ro Mm u Tr Te
, D n D D —nq
N’s exponent - v E—
n+D n+ D n+D n+D 2(n + D)

structures. In the discussion presented above, we have asgual to /N/2. A summary of our results is presented
sumed for simplicity that the measurements of the relativén Tables | and II.
phase between the two condensates is an abrupt strongThis work grew out of discussions during the Topi-
measurement and that in between the measurements tbal Meeting on Bose-Einstein Condensation held at In-
two condensates are uncoupled. Another possible schersétute for Theoretical Atomic and Molecular Physics at
would involve a weak Josephson-type coupling that wouldHarvard University and Smithsonian Astrophysical Ob-
make a continuous phase measurement [18]. The exiservatory. We are grateful to the organizers, I. Silvera
tence of collapse and revivals in the presence of Josepland Yu. Kagan, for the opportunity to attend this meeting
son coupling has been shown numerically in Ref. [9]; weand NSF for the financial support. A.l. acknowledges the
have not, however, examined the dependence of atonsupport of David and Lucile Packard Foundation. M.L.
number scaling laws under a continuous coupling schemé¢hanks Y. Castin, R. Dum, and M. Ol'shanii for enlight-
Finally, we point out that it is in principle possible to use ening discussions.
weak measurements the expectation value of the rela-
tive phase without having actual transfer of atoms [20].
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