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We are studying bistable quantum systems coupled to a thermal environment in the presence
of an external controlling force. The impact of thermal and quantum effects on the switching
hysteresis is studied by evaluating a time-dependent real-time double path integral with the recently
developed iterative tensor multiplication scheme fordhesiadiabatic path integral propagator method
for temperatures ranging from well above to well below quantum-classical crossover temperature.
The switching dynamics and its intimate connection to quantum stochastic resonance is studied
here for the first timewithout limitation to a two-state description afmk small external forces.
[S0031-9007(97)02709-9]

PACS numbers: 03.65.—w, 05.30.—d, 05.40.+j

Ideal macroscopic switches are bistable devices whiclor adiabatically slow sweeping, since the system relaxes
are driven from one stateoi) to another stateoff) by  fast into local equilibria [1,2]. At increasing sweeping
an external force. Once the switch is in one of therates, the area of the hysteresis loop is increasing until
states and the force is released, the switch should stdly reaches a maximum, when half the time intervg)
practically forever in this position. This requirement of during which the system is bistable (within one sweeping
stability demands a dissipative (i.e., hysteretic) switchingcycle 7o = 27 /Q) balances the mean dwell-time in
mechanism. In this paper, we are studying the dynamicadne state. At very large frequencies, the area vanishes
hysteresis of small switches, operating under conditionslue to dynamical cutoff.
where thermal and quantum effects are not negligible or Making the switch small so that quantum effects
even dominate the switching dynamics. become relevant, a third time scale, namely tunneling

For the following discussion, we consider an over-time, enters the game. To our knowledge, this case has
dampedclassical bistable system (coordinatd with an  not been studied before. The questions we are addressing
external control forcef (r) with —A < F(t) < A. The in this paper are;: How does the area of the hysteresis
potential minima correspond to the positioos/off, re-  loop depend on the frequency of the control force, on the
spectively. Sweeping the potential in the absence ofemperature, and the dissipative coupling to the heat bath?
thermal fluctuations adiabatically slowly (sweeping rateHow do quantum effects influence the dynamics?

QO = 27 /1) back and forth, the system switches from Model—For a quantitative study, we use as a working
on to off when the potential minimum corresponding to model a quantum particle with masg in a quartic
on disappears, and vice versa. The time interval duringistable potential

which the potential is bistable is denoted iy < 7. In Mol Ml
a parametrice(7)-F(r) diagram, one observes a hysteresis Vig) = 64Al(]) gt — 1 0 42 1)

loop because the system stays in the metastable minimum.
At increasing temperatures, the noise-free area of the hysvith the barrier heightAU and the curvature at the
teresis loop is reduced due to thermal hopping out of theninima M 3. The system is coupled with coupling
metastable minimum, preferably shortly before the detereonstantsc; to an ensemble of harmonic oscillators with
ministic switching point is reached. For a given strengthmassesn; and frequenciew; (bath). The control force
of the fluctuations, the area of the hysteresis loop vanishdas modeled by a sinusoidal external forcing with variable
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amplitudeA and frequency). The Hamiltonian of the Here, Frvlg,q'] denotes the influence functional for
compound system is given by the Ohmic heat bath (see, e.g., [10]), given by
2
H = P V(q) + qAsin(Q1)

2w Frvlaa'1 = exi{— 4 Prilaq]).

" Z[Z_m, " _m w2<xi - mc,»ic(:?f}’ @ @plg.q1= fotdt’joﬂ dt"[q(t) — q'(t")]

whereq, p are the coordinate and momentum operators X [L(t' = "q(t") — L*(t' — t")q'(t")]
of the subsystem of interest amck,p; those of the ) .
bath oscillators (see, e.g., [3]). Eliminating the bath _ LMV‘”Cf dr'[gX (1) — ¢*()], (8)
oscillators, the Heisenberg equation of motion for the ™ 0

position operatoy is given by . . .
with the autocorrelation function of the heat bath

Q+ [yt =i+ Ve =T0, @

L(t) = ] dw
where I'(r) is a time-dependent fluctuational operator T Jo
containing all the initial values of the bath oscillator h

X J(w)| cot

position and momentum operators, and whe(e) is the
damping kernel

5 k:)T>COE(wt) - isin(a)t)}, (9)

and the classical action function&k[q] of the system-
vs) = o Z _ 2 cogw;s). (4)  variableq along a pathy(r). For a numerical evaluation
of the double path integral, we have to introduce a dis-
Throughout this paper, we assume an Ohmic bath witleretization in time and space. Conventional discretization
a continuous spectral densitw) and an exponential in time, i.e., trapezoidal discrete path integrals, requires a
cutoff atw, fine time slicing to obtain accurate long-time results. To-
w gether with a fine enough grid in space, this yields high-
J(w) = Mo Ry(0w)] = Myw ex;{— —) (5)  dimensional integrals which in general cannot be carried
@e through, even on large scale computers. Monte Carlo
where ¥(w) is the one-sided Fourier transform of the sampling, on the other hand, is known to be plagued by
damping kernely(s). Analytical approximate solutions phase cancellation problems due to fast oscillating terms.
in the presence of external periodic driving have beenn this paper, we apply an iterative tensor multiplica-
obtained recently by Grifonet al.[4] within linear re-  tion scheme for theyuasiadiabatic propagator path in-
sponse theory (for small control forces) and semiclastegral. This scheme was recently developed by Makri
sical approximations around the crossover temperaturand Makarov [11]. We split the time evolution opera-
Within a two-state approach (spin-Boson-system), whicltor of the compound system symmetrically into a product
is a good approximation for a slowly operating controlof an environmental propagator (sum of the Hamiltonians
force (0 < wyp) with a small amplituded (Axo < hwy,  of the bath and the coupling), the system propagator and
where xo is the characteristic length scale of the sys-again an environmental propagator. We truncate the bath
tem) and for low temperature$7" < fiwy), the period- memory (this requires careful testing for each set of pa-
ically driven damped quantum system has been studied irameters) and choose a basis given by the eigenfunctions
[5-8]. For a strong external driving and for a nonadia-of the position operator on the subspace spanned up by
batic sweeping frequency), the two-state description the M lowest energy eigenfunctions of the system Hamil-
fails, and we are forced to employ numerical methods. tonian. In our calculations, we have used the five lowest
Solution with real-time path integrals=The reduced energy eigenfunctionsM = 5, yielding five grid points
density matrix (traced over the bath variables) can bén space), a time slicinggr =~ 107%#, (see below), and

written according to Feynman and Vernon [9] as three grid points for the memory kernel of the bath. For
the details of this technique, the reader is referred to the
p(qr.qy.1) = [ dqidq;iJ(qy. qy; 9i- 4; 0P (i, 415 0) original literature [11].

For the numerical calculations, we have introduced
(6) dimensionless variables and parameters. The character-
with istic time scale istyg = 1/w(, Where wy is the angular
; frequency at the potential minimum. The dimension-
J(qf,q};qi,qf;t) = [Dql)q/exp{g(ss[q] - Ss[q/])} less parameters are given b§ = AU/(fiwo), T =
kgT/[(hwo), ¥ = y/wo, & = Q/wy, A= Axo/(hw)
X TFevlg.q']. (7) where xo = \i/(Mwy). The bars are dropped from
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now on for convenience. An important temperature iscay timel/7r = 0.0267 being larger than the bare tunnel
the crossover temperatufe,. In the semiclassical limit splitting A = 0.0239. For higher temperatures, we find
(D > hwy), this temperature is given (in dimensionlessthat wy,, is shifted tolower values, which is surprising
units) byT., = (1/27) (/y*/4 + 1/2 — y/2) (see, e.g., since it implies a decrease of the decay rate for increasing
[12]). This temperature separates the regifhe> T.,, temperatures. We do not have a satisfactory explanation
where thermal hopping dominates over quantum coherfor this, but mention that semiclassics is not applicable to
ence, from the regim& < T,,, where quantum tunneling our system with a shallow barrier with only the doublet
dominates over thermal hopping. This is in our case onlyelow the barrier.
a rough estimate because we are in the deep quantumQuantum stochastic resonance for large amplitudes.
regime O = hwo) with only one doublet of energy In Fig. 2(a), the area of the hysteresis loop is shown as
eigenvalues lying below the barrier. The initial densitya function of the temperature. We find a maximum at a
matrix is constructed from the symmetric ground statefinite temperature indicating quantum stochastic resonance
of the system Hamiltonian. After a transient relaxation(see also [5,7,8]), although the amplitude of the control
time, the reduced density matrix and the mean valudorce islarger than the switching threshold. An effect like
(¢q) () approach their steady states (independent of initiathis has been observed in crystals of high-spin molecules
conditions) being periodic with the period of the external[14], where the magnetization goes through a maximum
control force. The average area of the hysteresis loop iwhen the temperature is varied. In classical systems, the
given by area of the hysteresis loop at such large amplitudles
o decreases monotonically for increasing temperatures [2].
(H) = —AQ[ (q) (t) cogQ1)dt . (10)  Furthermore, we observe that for decreasing damping, the
0 maximum of the area of the hysteresis loop disappears
Results—Throughout this paper, we have used a di—?n favor_ of a slow monotonous decre(?\se of the area for
mensionless barrier heigl? = 1.0 and a cutoff for the ggsrg‘:‘vs;ggbfr:geieg?tures' In the following, we explain the
bath modes, = 7.5. For studying hysteresis, we choose As described above, in classical systems, the area of the

the amplitude of the control forca = 0.8 being large hvst o | o ing for d S t
enough to actuallgwitchthe system between the positions ySIEresis 100p IS increasing for decreasing temperature
to reach at zero noise the largest value. In quantum

on/off. The area of the hysteresis loop is shown as a func- .
tion of the sweeping rat@ = 2/ in Fig. 1. In con- systems, however_, as th'e temperature d_epreases, tunneling
trast to the classical switch, the curves (and especially thgPerating on a f!nlte time scaler faC|I!tat¢s escape
optimal frequencywo.,) depend only very weakly on the out of th_e potential well before the switching point is
temperature for low temperatures. Similar than in the clas[e"’mtmed ']ITT < T”"/zb' Thedareda of the hysttﬁretss Ioopt
sical case, we argue that the maximum is determined by thgn theretore—as observed—aecrease as the temperature
time-scale matching conditiony = 1/27,; « 1/Q, with

the decay timerr to cross the barrier due to incoherent

tunneling [13], which is at low temperatures according to 5 : : : :
semiclassical results (see, e.g., [12]) indeed only weakly a.) IO TR - R
. . a4l B B... y=1.00
depending on the temperature. GiveR., = 0.04, the ﬁ\
3k e ol B

time scale matching argument yields for the inverse de-

Area
]
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FIG. 2. The area of the hysteresis loop is shown (a) as a

FIG. 1. The area of the hysteresis loop is shown as a functiofunction of the temperature a® = 0.015 and A = 0.8 for

of the sweeping rat€) at y = 1.0, A = 0.8, and temperatures various damping constantg and (b) as a function of the

T = 0.01, 0.05, 0.1, and 1.0. dampingT = 0.3, A = 0.8, andQ = 0.015.
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is decreasing, yielding a maximum of the area, althouglatures, the sweeping frequency at which the maximum

the amplitude is large enough for deterministic switching.occurs is determined by the tunneling time scale. For
Why does this effect disappear for weak damping? Athigh temperatures, we find that this synchronization fre-

weak damping, the crossover temperat@tg becomes quency is shifted to lower values. Stochastic resonance

large and quantum tunneling determines the area of this shown to be effective for not too small damping, but

hysteresis loop up to large temperatures. The curve faslso—in contrast to classical systems—FHarge driving

v = 0.01 in Fig. 2(a) is therefore almost temperatureamplitudes. The results presented here are of relevance

independent without a peak. A similar effect is alsofor a number of fields such as chemical physics, quantum

observed for small amplitudes where the potential remaing/ells, and especially for the recent observations of quan-

bistable throughout the sweeping cycle. In Fig. 3, wetum steps and their temperature dependence in the magne-

show the area of the hysteresis loop in such a case aigation of high-spin molecules [14].

a function of the temperature (see also [7] for a related M. T. wishes to thank the Friedrich-Naumann-Stiftung

effect in a two-state approximation). for financial support. P.J. wishes to thank the Deutsche
Synchronization of tunneling by tuning the dampirg  Forschungsgemeinschaft for financial support within the

Although the area of the hysteresis loop does not have Heisenberg-Program. We would like to thank Dmitrii E.

maximum as a function of temperature in the tunnelingMakarov, Karl Hess, Milena Grifoni, and Peter Hanggi

dominated regime, one observes a strong nonmonotonfor valuable discussions.

behavior as a function of the damping. In Fig. 2(b), we

show the area of the hysteresis looffat 0.3 as a func-

tion of the dampingy in a tunneling-dominated regime.

The values of the damping at which one finds maxima

depend on the switching frequency and amplitude. At a

given frequency and amplitude, the tunneling process is *Present address: Universitat Augsburg, Institut fir

best synchronized with the control force at those values of ~ Physik, Memminger Str. 6, 86135 Augsburg, Germany

the damping where the area shows maxima. The reason TPresent address: School of Physics, Georgia Institute of

for the two maxima is that as a function of damping, the _ Technology, Atlanta, Georgia

guantum (and classical) transition rate first increases lin-[11 M-C. Mahato and S.R. Shenoy, Phys. Rev5€ 2503

_ : - 1994).
early fromy = 0 for weak damping and decreases with ( .
1/y for large damping [12]. Between these two limits, L ‘(]igésl)ah'"'ps and K. Schulten, Phys. Rev. %, 2473

there is a turnover at some intermediate damping value.[3] A.O. Caldeira and A.J. Leggett, Ann. Phys. (N.YL#9,
For a given driving frequency, this yields therefore two 374 (1983).
optimal values for the damping, at which the matching  [4] M. Grifoni, L. Hartmann, S. Berchthold, and P. Hanggi,
condition for tunneling and driving is fulfilled. Phys. Rev. B53, 5890 (1996).

In conclusion, the area of the hysteresis loop of a[5] R. Lofstedt and S.N. Coppersmith, Phys. Rev. L&,
sweeped bistable quantum switch shows a maximum as 1947 (1994).

a function of the sweeping frequency. For low temper- [6] M. Grifoni, M. Sassetti, P. Hanggi, and U. Weiss, Phys.
Rev. E52, 3596 (1995).
[7] M. Grifoni and P. Hanggi, Phys. Rev. Let#6, 1611

15 F T l T T ] (1996).
ok [8] D.E. Makarov and N. Makri, Phys. Rev. B2, R2257
A " (1995).
A Ny [9] R.P. Feynman and F. L. Vernon, Jr., Ann. Phys. (N.Y.)
A "4 24, 118 (1963).
ol A % r=10 | [10] U. Weiss,Quantum Dissipative Systerf\orld Scientific,
| Singapore, 1993).
8 * [11] D.E. Makarov and N. Makri, Chem. Phys. Le®21, 482
< R S (1994); N. Makri and D. E. Makarov, J. Chem. Ph§§2,
~~~~~~~ o 7=01 4600 (1995); N. Makri and D. E. Makaroihid. 102, 4611
sk T s (1995).
’ [12] P. Hanggi, P. Talkner, and M. Borkovec, Rev. Mod. Phys.
62, 251 (1990).
B, 30 [13] We exclude coherent tunneling as the cause of the
.y . ,: T peak sincew..x = 0.04 does not match the bare tunnel
0.0 0.2 0.4 T 0.6 0.8 1.0 splitting of the bistable potentiah =~ 0.02, the damp-

FIG. 3. The area of the hysteresis loop is shown as a function

ing is relatively large and the line shape is strongly
asymmetric.

of the temperature fan = 0.4 for different damping constants [14] J.R. Friedman, M.P. Sarachik, J. Tejada, and R. Ziolo,

betweeny = 0.1 andy = 3.0 (O = 0.015).

2506

Phys. Rev. Lett76, 3830 (1996).



