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Dynamical Hysteresis in Bistable Quantum Systems

M. Thorwart* and P. Jung†

Department of Physics and Center for Complex Systems Research, University of Illinois, Urbana, Illinois 61
(Received 7 October 1996)

We are studying bistable quantum systems coupled to a thermal environment in the presence
of an external controlling force. The impact of thermal and quantum effects on the switching
hysteresis is studied by evaluating a time-dependent real-time double path integral with the recently
developed iterative tensor multiplication scheme for thequasiadiabatic path integral propagator method
for temperatures ranging from well above to well below quantum-classical crossover temperature.
The switching dynamics and its intimate connection to quantum stochastic resonance is studied
here for the first timewithout limitation to a two-state description andyor small external forces.
[S0031-9007(97)02709-9]
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Ideal macroscopic switches are bistable devices wh
are driven from one state (on) to another state (off ) by
an external force. Once the switch is in one of th
states and the force is released, the switch should s
practically forever in this position. This requirement o
stability demands a dissipative (i.e., hysteretic) switchi
mechanism. In this paper, we are studying the dynami
hysteresis of small switches, operating under conditio
where thermal and quantum effects are not negligible
even dominate the switching dynamics.

For the following discussion, we consider an ove
dampedclassicalbistable system (coordinatex) with an
external control forceFstd with 2A , Fstd , A. The
potential minima correspond to the positionsonyoff, re-
spectively. Sweeping the potential in the absence
thermal fluctuations adiabatically slowly (sweeping ra
V ­ 2pyt0) back and forth, the system switches from
on to off when the potential minimum corresponding t
on disappears, and vice versa. The time interval duri
which the potential is bistable is denoted bytbi , t0. In
a parametricxstd-Fstd diagram, one observes a hysteres
loop because the system stays in the metastable minim
At increasing temperatures, the noise-free area of the h
teresis loop is reduced due to thermal hopping out of t
metastable minimum, preferably shortly before the det
ministic switching point is reached. For a given streng
of the fluctuations, the area of the hysteresis loop vanis
0031-9007y97y78(13)y2503(4)$10.00
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for adiabatically slow sweeping, since the system relax
fast into local equilibria [1,2]. At increasing sweeping
rates, the area of the hysteresis loop is increasing u
it reaches a maximum, when half the time intervaltbi

during which the system is bistable (within one sweepin
cycle t0 ­ 2pyV) balances the mean dwell-timetd in
one state. At very large frequencies, the area vanish
due to dynamical cutoff.

Making the switch small so that quantum effect
become relevant, a third time scale, namely tunneli
time, enters the game. To our knowledge, this case h
not been studied before. The questions we are addres
in this paper are: How does the area of the hystere
loop depend on the frequency of the control force, on t
temperature, and the dissipative coupling to the heat ba
How do quantum effects influence the dynamics?

Model.—For a quantitative study, we use as a workin
model a quantum particle with massM in a quartic
bistable potential

V sqd ­
M2v

4
0

64DU
q4 2

Mv
2
0

4
q2, (1)

with the barrier heightDU and the curvature at the
minima Mv

2
0 . The system is coupled with coupling

constantsci to an ensemble of harmonic oscillators wit
massesmi and frequenciesvi (bath). The control force
is modeled by a sinusoidal external forcing with variab
© 1997 The American Physical Society 2503
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amplitudeA and frequencyV. The Hamiltonian of the
compound system is given by

H ­
p2

2M
1 V sqd 1 qA sinsVtd

1
X

i

∑
p2

i

2mi
1

1
2

miv
2
i

µ
xi 2

ciq

miv
2
i

∂2∏
, (2)

where q, p are the coordinate and momentum operato
of the subsystem of interest andxi, pi those of the
bath oscillators (see, e.g., [3]). Eliminating the ba
oscillators, the Heisenberg equation of motion for th
position operatorq is given by

q̈ 1
Z t

0
gst 2 t0d Ùqst0d dt0 1

1
M

V 0sqd ­ Gstd , (3)

where Gstd is a time-dependent fluctuational operato
containing all the initial values of the bath oscillato
position and momentum operators, and wheregssd is the
damping kernel

gssd ­
1
M

X
j

c2
j

mjv
2
j

cossvjsd . (4)

Throughout this paper, we assume an Ohmic bath w
a continuous spectral densityJsvd and an exponential
cutoff atvc

Jsvd ­ Mv Refg̃svdg ­ Mgv exp

µ
2

v

vc

∂
, (5)

where g̃svd is the one-sided Fourier transform of th
damping kernelgssd. Analytical approximate solutions
in the presence of external periodic driving have be
obtained recently by Grifoniet al. [4] within linear re-
sponse theory (for small control forces) and semicla
sical approximations around the crossover temperatu
Within a two-state approach (spin-Boson-system), whi
is a good approximation for a slowly operating contr
force (V ø v0) with a small amplitudeA (Ax0 ø h̄v0,
where x0 is the characteristic length scale of the sy
tem) and for low temperatures (kBT ø h̄v0), the period-
ically driven damped quantum system has been studied
[5–8]. For a strong external driving and for a nonadi
batic sweeping frequencyV, the two-state description
fails, and we are forced to employ numerical methods.

Solution with real-time path integrals.—The reduced
density matrix (traced over the bath variables) can
written according to Feynman and Vernon [9] as

rsqf , q0
f , td ­

Z
dqidq0

iJsqf , q0
f ; qi, q0

i; tdrsqi , q0
i; 0d ,

(6)
with

Jsqf , q0
f ; qi , q0

i; td ­
Z

DqDq0 exp

Ω
i
"

sSSfqg 2 SSfq0gd
æ

3 FFV fq, q0g . (7)
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Here, FFV fq, q0g denotes the influence functional for
the Ohmic heat bath (see, e.g., [10]), given by

FFV fq, q0g ­ exp

µ
2

1
h̄

FFV fq, q0g
∂

,

FFV fq, q0g ­
Z t

0
dt0

Z t0

0
dt00fqst0d 2 q0st0dg

3 fLst0 2 t00dqst00d 2 Lpst0 2 t00dq0st00dg

2
i
p

Mgvc

Z t

0
dt0fq2st0d 2 q02st0dg , (8)

with the autocorrelation function of the heat bath

Lstd ­
1
p

Z `

0
dv

3 Jsvd

"
coth

µ
h̄v

2kBT

∂
cossvtd 2 i sinsvtd

∏
, (9)

and the classical action functionalSSfqg of the system-
variableq along a pathqstd. For a numerical evaluation
of the double path integral, we have to introduce a dis
cretization in time and space. Conventional discretizatio
in time, i.e., trapezoidal discrete path integrals, requires
fine time slicing to obtain accurate long-time results. To
gether with a fine enough grid in space, this yields high
dimensional integrals which in general cannot be carrie
through, even on large scale computers. Monte Car
sampling, on the other hand, is known to be plagued b
phase cancellation problems due to fast oscillating term
In this paper, we apply an iterative tensor multiplica
tion scheme for thequasiadiabatic propagator path in-
tegral. This scheme was recently developed by Makr
and Makarov [11]. We split the time evolution opera-
tor of the compound system symmetrically into a produc
of an environmental propagator (sum of the Hamiltonian
of the bath and the coupling), the system propagator an
again an environmental propagator. We truncate the ba
memory (this requires careful testing for each set of pa
rameters) and choose a basis given by the eigenfunctio
of the position operator on the subspace spanned up
the M lowest energy eigenfunctions of the system Hamil
tonian. In our calculations, we have used the five lowes
energy eigenfunctions (M ­ 5, yielding five grid points
in space), a time slicingdt ø 1022t0 (see below), and
three grid points for the memory kernel of the bath. Fo
the details of this technique, the reader is referred to th
original literature [11].

For the numerical calculations, we have introduce
dimensionless variables and parameters. The charact
istic time scale ist0 ; 1yv0, where v0 is the angular
frequency at the potential minimum. The dimension
less parameters are given byD ­ DUysh̄v0d, T̄ ­
kBTysh̄v0d, ḡ ­ gyv0, V̄ ­ Vyv0, Ā ­ Ax0ysh̄v0d
where x0 ­

p
h̄ysMv0d. The bars are dropped from
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now on for convenience. An important temperature
the crossover temperatureTco. In the semiclassical limit
(D ¿ h̄v0), this temperature is given (in dimensionle
units) byTco ­ s1y2pd s

p
g2y4 1 1y2 2 gy2d (see, e.g.,

[12]). This temperature separates the regimeT . Tco ,
where thermal hopping dominates over quantum coh
ence, from the regimeT , Tco , where quantum tunneling
dominates over thermal hopping. This is in our case o
a rough estimate because we are in the deep quan
regime (D ø h̄v0) with only one doublet of energy
eigenvalues lying below the barrier. The initial dens
matrix is constructed from the symmetric ground sta
of the system Hamiltonian. After a transient relaxati
time, the reduced density matrix and the mean va
kql std approach their steady states (independent of ini
conditions) being periodic with the period of the extern
control force. The average area of the hysteresis loo
given by

kHl ­ 2AV
Z t0

0
kql std cossVtd dt . (10)

Results.—Throughout this paper, we have used a
mensionless barrier heightD ­ 1.0 and a cutoff for the
bath modesvc ­ 7.5. For studying hysteresis, we choos
the amplitude of the control forceA ­ 0.8 being large
enough to actuallyswitchthe system between the position
onyoff. The area of the hysteresis loop is shown as a fu
tion of the sweeping rateV ­ 2pyt0 in Fig. 1. In con-
trast to the classical switch, the curves (and especially
optimal frequencyvmax) depend only very weakly on the
temperature for low temperatures. Similar than in the cl
sical case, we argue that the maximum is determined by
time-scale matching conditiontT ­ 1y2tbi ~ 1yV, with
the decay timetT to cross the barrier due to incohere
tunneling [13], which is at low temperatures according
semiclassical results (see, e.g., [12]) indeed only wea
depending on the temperature. Givenvmax ø 0.04, the
time scale matching argument yields for the inverse

FIG. 1. The area of the hysteresis loop is shown as a func
of the sweeping rateV at g ­ 1.0, A ­ 0.8, and temperatures
T ­ 0.01, 0.05, 0.1, and 1.0.
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cay time1ytT ø 0.0267 being larger than the bare tunne
splitting D ø 0.0239. For higher temperatures, we find
that vmax is shifted tolower values, which is surprising
since it implies a decrease of the decay rate for increasi
temperatures. We do not have a satisfactory explanati
for this, but mention that semiclassics is not applicable
our system with a shallow barrier with only the double
below the barrier.

Quantum stochastic resonance for large amplitudes.—
In Fig. 2(a), the area of the hysteresis loop is shown
a function of the temperature. We find a maximum at
finite temperature indicating quantum stochastic resonan
(see also [5,7,8]), although the amplitude of the contr
force islarger than the switching threshold. An effect like
this has been observed in crystals of high-spin molecul
[14], where the magnetization goes through a maximu
when the temperature is varied. In classical systems, t
area of the hysteresis loop at such large amplitudesA
decreases monotonically for increasing temperatures [
Furthermore, we observe that for decreasing damping, t
maximum of the area of the hysteresis loop disappea
in favor of a slow monotonous decrease of the area f
increasing temperatures. In the following, we explain th
observed behavior.

As described above, in classical systems, the area of
hysteresis loop is increasing for decreasing temperatu
to reach at zero noise the largest value. In quantu
systems, however, as the temperature decreases, tunne
operating on a finite time scaletT facilitates escape
out of the potential well before the switching point is
reached iftT , tbiy2. The area of the hysteresis loop
can therefore—as observed—decrease as the tempera

FIG. 2. The area of the hysteresis loop is shown (a) as
function of the temperature atV ­ 0.015 and A ­ 0.8 for
various damping constantsg and (b) as a function of the
dampingT ­ 0.3, A ­ 0.8, andV ­ 0.015.
2505



VOLUME 78, NUMBER 13 P H Y S I C A L R E V I E W L E T T E R S 31 MARCH 1997

r
-
e

t

ce
m
-

ne-

e
e

of

.

e

,

is decreasing, yielding a maximum of the area, althoug
the amplitude is large enough for deterministic switching

Why does this effect disappear for weak damping? A
weak damping, the crossover temperatureTco becomes
large and quantum tunneling determines the area of t
hysteresis loop up to large temperatures. The curve
g ­ 0.01 in Fig. 2(a) is therefore almost temperatur
independent without a peak. A similar effect is als
observed for small amplitudes where the potential remai
bistable throughout the sweeping cycle. In Fig. 3, w
show the area of the hysteresis loop in such a case
a function of the temperature (see also [7] for a relate
effect in a two-state approximation).

Synchronization of tunneling by tuning the damping.—
Although the area of the hysteresis loop does not have
maximum as a function of temperature in the tunnelin
dominated regime, one observes a strong nonmonoto
behavior as a function of the damping. In Fig. 2(b), w
show the area of the hysteresis loop atT ­ 0.3 as a func-
tion of the dampingg in a tunneling-dominated regime.
The values of the damping at which one finds maxim
depend on the switching frequency and amplitude. At
given frequency and amplitude, the tunneling process
best synchronized with the control force at those values
the damping where the area shows maxima. The reas
for the two maxima is that as a function of damping, th
quantum (and classical) transition rate first increases l
early from g ­ 0 for weak damping and decreases wit
1yg for large damping [12]. Between these two limits
there is a turnover at some intermediate damping valu
For a given driving frequency, this yields therefore tw
optimal values for the dampingg, at which the matching
condition for tunneling and driving is fulfilled.

In conclusion, the area of the hysteresis loop of
sweeped bistable quantum switch shows a maximum
a function of the sweeping frequency. For low tempe

FIG. 3. The area of the hysteresis loop is shown as a functi
of the temperature forA ­ 0.4 for different damping constants
betweeng ­ 0.1 andg ­ 3.0 (V ­ 0.015).
2506
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atures, the sweeping frequency at which the maximum
occurs is determined by the tunneling time scale. Fo
high temperatures, we find that this synchronization fre
quency is shifted to lower values. Stochastic resonanc
is shown to be effective for not too small damping, bu
also—in contrast to classical systems—forlarge driving
amplitudes. The results presented here are of relevan
for a number of fields such as chemical physics, quantu
wells, and especially for the recent observations of quan
tum steps and their temperature dependence in the mag
tization of high-spin molecules [14].
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