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We present a general description describing the nonlinear dispersion relation of electron p
waves or electromagnetic waves propagating in a plasma with intense radiation or turbulence
find that a spectrum of photons behaves similarly to particles and can Landau damp ele
plasma waves. We derive a linear Landau damping coefficient and a quasilinear equation fo
process. [S0031-9007(96)02073-X]

PACS numbers: 52.35.Mw
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The dispersion relation of electron plasma waves in
unmagnetized plasma in the presence of an intense
diation field (or turbulence) is obtained using a kine
equation of the Klimontovich type for the photons (o
plasmons). A fluid description is used for the electr
plasma waves and thus normal Landau damping of
electron plasma wave is absent. The photon “Land
damping” will still be present since the kinetic effects
the photons are retained in the Klimontovich descriptio
The process we describe is equivalent to photon ac
eration described by Wilkset al. [1], who did numerical
calculations of photon acceleration in a large amplitu
plasma wave. More recent analytical and numerical st
ies of the same process were based on single photon
jectories [2].

In this Letter we present an analytical description
photon acceleration (or deceleration) based on a kin
description of the photons, and a fluid description of t
plasma wave thus enabling collective photon effects to
described.

We study the dispersion relation of electron plasm
waves in an unmagnetized plasma, in the presence
radiation (or turbulence). If the spectral width of th
radiation is larger than the characteristic time scales of
dominant wave processes, the wave phase effects ca
neglected and a photon description of the radiation fi
can be assumed [3].

Using this dispersion relation we can show that a n
kind of kinetic instability will eventually occur, where
the source of free energy is not the population of plas
electrons, but the radiation field itself. This can be a
seen as a new kind of modulational instability [4]. Apa
from the linear version of the plasma wave dispersi
relation, the quasilinear saturation mechanisms will a
be discussed.

In equilibrium, we have a mean electron densityn0, and
some distribution of photons (or plasmons)Nk0. We then
perturb the plasma and the photon spectrum:

n ­ n0 1 ñ Nk ­ Nk0 1 Ñk . (1)

From the electron fluid equations and Poisson’s equa
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we derive the evolution equation forñ:

≠2ñ
≠t2

1 v2
p0ñ 2 y2

Te=2ñ ­ 2n0= ?

ø
≠ $y
≠t

¿
. (2)

The term on the right-hand side is due to ponderomot
force effects due to the electromagnetic waves, a
y

2
Te is the average random velocity (thermal) of th

electrons. We also have from the momentum equat
the expression for the ponderomotive forceø

≠ $y
≠t

¿
­ 2

1
2

=jyEMj2 ­ 2
1
2

µ
e
m

∂2

=
Z jEkj2

v
2
k

d $k
s2pd3

.

(3)
By definition, the number of photons is

Nk ­
e0

4

µ
≠D
≠v

∂
vk

jEkj2, (4)

where D ; Dsv, kd ­ 0 is the photon dispersion rela
tion. Using Eqs. (3) and (4) in Eq. (2), we get

≠2ñ
≠t2

1 v2
p0ñ 2 y2

Te=2ñ ­ 2
vp0

n
=2

Z Ñk

v
2
ks ≠D

≠v dvk

3
d $k

s2pd3
. (5)

This equation is now coupled with the kinetic equation f
the photons, which gives̃Nk as a function ofNk0 andñ:

≠Ñk

≠t
1 $y ?

≠Ñk

≠$r
1 $F ?

≠Nk0

≠ $k
­ 0 . (6)

The equivalent forceF acting on the photons is deter
mined by $F ­ 2=vk, where

vk ­

8><>:
q

v2
p 1 k2y

2
Te, for plasmons,q

v2
p 1 k2c2, for photons,

(7)

In this Letter we will consider only the kinetic descriptio
for photons and consider the plasma wave only fro
a fluid approximation. The expression for the forceF
in Eq. (6) is due to the gradient of the plasma wa
frequency.
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In both cases we can write

F ­ 2
1

2vk

e2

e0m
=ñ . (8)
e

ll

248
Let us assume the perturbationsñ andÑk are written as

ñs$r , td ­ ñstdei $k?$r ; Ñk0s$r, td ­ Ñk0 stdei $k?$r . (9)

From Eqs. (5) and (6) we obtain
8><>:
≠2ñ
≠t2 1 sv2

p0 1 k2y
2
Tedñ ­ 22k2 v

2
p0

m

R Ñk0

v
2
k0 s≠Dy≠vdvk0

d $k0

s2pd3 ,

≠Ñk0

≠t 1 i $k ? $ys $k0dÑk0 ­
i

2vk0

e2

e0m ñ $k ?
≠Ñk0

0

≠$k0
.

(10a)

(10b)
n

e

Now we follow the usual Landau approach and use
Laplace transformation in time. From Eq. (10b) we th
get

Ñk0 ­ 2
ñ

2n0

v
2
p0

vk0

$ks≠Nk0
0
y≠$k0d

v 2 $k ? $ys $k0d
, (11)

wherev is complex, and from Eq. (10a)

sv2
p0 1 k2y2

Te 2 v2dñ ­
k2

m
vr

p0
ñ
n0

Z 1

v
3
k0s≠Dy≠vdvk0

3
s $k ? ≠Nk0

0
y≠$k0d

v 2 $k ? $ys $k0d
d $k0

s2pd3
.

(12)

We can uses ≠D
≠v dvk0 . 2

vk0
which leads to

v2 ­ k2y2
Te 1 v2

p0

(
1 2

2k2

mn0
v2

p0

Z 1

v
2
k0

3
s $k ? ≠Nk0

0
y≠ $k0d

v 2 $k ? $ys $k0d
d $k0

s2pd3

)
. (13)

In order to develop this integral we consider the para
and the perpendicular photon motion:( $k0 ­ p

$k
k 1 $k0

' ,

$ys $k0d ­ usp, $k0
'd

$k
k 1 $y' .

(14)
e

a

l

The integral in Eq. (13) becomesZ 1

v
2
k0

s $k ? ≠Nk0
0
y≠ $k0d

fv 2 $k ? $ys$k0dg
d $k0

s2pd3
­ 2

Z d $k0
'

s2pd3

3
Z ≠Nk0

0
y≠p

fu 2 vykg

3
dp

v
2
k0

. (15)

Developing the parallel photon velocityu around the
resonant valueusp0d ­ vyk:

usp, $k0
'd . usp0, $k0

'd 1 sp 2 p0d
µ

≠u
≠p

∂
p0

,

we getZ ≠Nk0
0
y≠p

su 2 vykd
dp

v
2
k0

.
1

s≠uy≠pdp0

Z ≠Nk0
0
y≠p

sp 2 p0d
dp

v
2
k0

.

(16)
This last integral takes the standard form

Iszd ;
Z hszd

z 2 z0
dz ­ P

I hszd
z 2 z0

dz 1 iphsz0d ,

which means that
Z 1

v
2
k0

$k ? ≠Nk0
0
y≠ $k0

v 2 $k ? $ys$k0d
d $k0

s2pd3
­ 2

Z d $k0
'

s2pd3

1

sv2
k0dp0

1
s≠uy≠pdp0

(
P

I ≠Nk0
0
y≠p

p 2 p0
dp 1 ip

µ
≠Nk0

0

≠p

∂
p0

)
. (17)
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Replacing this result in Eq. (13) and usingv ­ vr 1

ig, we get from the real part of the resulting equation th
following dispersion relation:

v2
r ­ v2

p0 1 k2y2
Te 1

2k2

mn0
v4

p0

Z d $k0
'

s2pd3
sv21

k0 dp0

3
Z s≠Nk0

0
y≠pd

u 2 vyk
dp . (18)

The imaginary part gives the photon Landau damping

g ­ p
k2v

3
p0

mn0

µ
≠Gp

≠p

∂
p0

, (19)

where Gp is a kind of reduced distribution function for
photons:

Gp ­
Z 1

sv2
k0 dp0

Nk0
0

s≠uy≠pdp0

d $k0
'

s2pd3
. (20)

From this result some conclusions can be drawn.
Plasma waves with high (relativistic) phase velocitie
with negligible electron Landau damping can still b
attenuated by photon Landau damping. For therm
radiation at a temperatureT we should use in Eqs. (19)
(20) the Planck distribution:

Nk0 ­
v

2
k

p2c3

1
exps"vkykBT d 2 1

, (21)

wherevk ­
q

v
2
p0 1 k2c2.

If a photon beam is used instead of this equilibriu
distribution, relativistic plasma waves can be destabiliz
by inverse photon Landau damping.

Let us now study the quasilinear saturation of a phot
(or plasmon) beam by this mechanism of photon Land
damping. We start with the evolution equation forNk0 ,
which for uniform turbulences≠Nk0

0
y≠$r ­ 0d can be
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written as
≠Nk0

0

≠t
­ 2

ø
$Fk0 ?

≠Ñk0

≠ $k0

¿
­ 2

Z
$Fp

k0 ?
≠Ñk0

≠$k0

d $k
s2pd3

.

(22)
Using Eq. (8) for $F and Eq. (11) forÑk we can derive
from this equation a quasilinear diffusion equation fo
photons:

≠Nk0
0

≠t
­

≠

≠ $k0
? Ds $k0, td ?

≠

≠ $k0
Nk0

0
, (23)

where the diffusion coefficient is

Ds $k0, td ­ 2
i

4n2
0

v
2
p0

v
2
k0

Z
$k $k

jñkj2

v 2 $k ? $ys $k0d
d $k

s2pd3
.

(24)
These equations are coupled with the equation for t
evolution of the intensity of the electron plasma waves:

≠

≠t
jñkj2 ­ 2gk jñkj2, (25)

wheregk is determined by (19).
With Eqs. (19) and (23)–(25) we can study the quas

linear relaxation of a photon beam. The inverse proble
r

he

i-
m

of photon acceleration by a spectrum of electron plas
wavesjñkj2 can also be studied.

In conclusion we have obtained the Landau dampi
coefficient of plasma waves by photons and derived
quasilinear treatment of a photon spectrum interacti
with plasma waves.
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