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Effective Actions for Spin Ladders
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We derive a path-integral expression for the effective action in the continuum limit of an
antiferromagnetic Heisenberg spin ladder with an arbitrary number of legs. The map is onto an O(3)
nonlinearo model (NLo-M) with the addition of a topological term that is effective only for odd-leg
ladders and half-odd integer spins. We derive the parameters of the effectivi Mind the behavior
of the spin gap for the case of even-leg ladders. [S0031-9007(97)02716-6]

PACS numbers: 74.25.Ha, 71.10.Hf, 75.10.Lp

Triggered by the discovery of high: superconduc- ductivity upon doping with holes was initiated later on by
tivity [1] and by the fact that, in the strong-coupling Dagottoet al.[14] who made for the first time quantita-
regime, the Hubbard model maps onto an antiferromagtive predictions on both the spin gap and on the pair corre-
netic (AFM) Heisenberg model [2], quantum spin systemdation function. Odd-leg ladders are instead gapless. This
have become in recent years of great theoretical and eXeven-odd” conjecture was formulated for the first time
perimental interest [3]. Independently from the possibleby Riceet al.[15], and is very much reminiscent of the
connections with highF. materials, some years ago Hal- already mentioned Haldane’s “integer—half integer” con-
dane [4] put forward the conjecture that the value of thgecture [4] for single spin chains. According to this “even-
spin should discriminate dramatically between half-oddodd” conjecture, undoped integer-spin ladders are gapped
integer and integer one-dimensional spin chains: The forwhile half-odd integer spin ladders are gapped when the
mer should be gapless, with power-law decay of spin-spimumber of legs is even, gapless when it is odd. These re-
correlations, while the latter should be characterized byults have by now strong support, both theoretically [16]
exponential decay of correlations and hence by a nonvarand experimentally [17] (for a recent review, see [18]).
ishing spin gap. It turns out [5] that, in the continuum The situation seems to be not so simple for conducting
limit, an AFM Heisenberg chain is described by an O(3)(i.e., hole-doped) ladders. A different behavior between
nonlinear & model (NLoM) [6] with the addition of even-leg and odd-leg ladders is predicted only for very
a topological term (a Pontrjagin index [6]), multiplied strong intrachain repulsions [19]. On the contrary, in the
by a coefficientd = 27§, where S is the value of the weak coupling regime, analytical [19,20] and numerical
spin. As shown, e.g., by Shankar and Read [7], it ig21] studies suggest thatwave interchain pairing corre-
precisely this term that makes the half-odd integer spidations become dominant over AF fluctuations in both the
chain (where# = 7 mod 27) massless, while it is in- two-leg and the three-leg ladder, due to the simultaneous
effective for integer spin chains (whefe= 0 mod 27),  presence of gapless and gapped spin modes. So, the situ-
which are gapped. ation is richer than in the case of single conducting chains,

Extensions of these results I» = 2 turned out to be that display a Luttinger liquid type [18,22] behavior.
rather disappointing, to the extent that it has been proved Following mainly the ideas of Haldane [4] and Affleck
in a convincing way [8—12] that, at least for smooth[5] on the role of the topological term in spin chains,
configurations (see, however, [8] for the case of a singulaconsiderable theoretical effort has been recently devoted
“hedge-hog” field configuration), the topological term is to the investigation of the existence and the role of such
absent irrespective of the value of the spin and also of tha term when a finite number of chains is coupled to
topology of the lattice. form a ladder (the possible topological origin for the

Quite recently, however, it came as a surprise wherifferent behavior of even-leg and odd-leg ladders has
theoretical (mostly numerical) and, subsequently, experibeen suggested for the first time in [23]). In particular,
mental results showed that spadders,obtained by anti- Sénéchal [24] has given a derivation of the U
ferromagnetically coupling a finite number of chains,continuum limit of a two-leg ladder using a coherent-state
show drastically different behaviors that are basically depath-integral [25] expression for the partition function,
termined by the value of the spiand by the number while Sierra [26] has employed an (operator) Hamiltonian
of legs in the ladder. Coupled spin chains had alreadwppproach following closely Affleck's mapping of the
been studied previously [13] mainly as models of singleHeisenberg chain onto the MIM.
chains with spin higher than the minimum valSe= % What we present here is a path-integral approach that
A systematic study of the appearance of a spin gap ifs, however, different from Sénéchal’'s. It allows us
even-leg ladders and of the possible onset of superconte reproduce Sénéchal’s results for the two-leg ladder,
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but also to generalize them to ladders with an arbitranthe unit sphere. We shall proceed now along the lines of
number of legs and to obtain a clear understanding of whiref. [8]. We assume that short-range antiferromagnetic

the topological term is absent for even-leg ladders. correlations survive at the quantum level, so that we
The Hamiltonian for a ladder system wiif) legs of consider the dominant contribution to the path integral as
length N is defined by coming from paths described by
n; N
H = [JaSa(i) = Sali + 1) - at1 4G, )12\
22 0,67 = (1 i (1 - BT

T Sali) - Sani@)]. ()

The only condition we shall impose on the coupling
constant/, andJ, ., is that the classical minimum of

the I.—I.amiltoniqn (1) be antifer.romggnetic'allyorder_ed. Therhe fluctuation fieldZ,(i) is supposed to be small:
partition function for the Hamiltonian (1) in a path-integral |; (i)/s| < 1and the fieldp(i, ) slowly varying. We are

rep(esengation which makes use of spin coherent states [2g]en, allowed to make an expansion up to quadratic order in
is given . A o e .
g y 1, ¢', and¢. The parametrization of the classical fields in

Z(B) = j[DQ]exp{is Z w[Q, G, 7)] — fﬁ dTH(T)], (5) is different from that employed in Sénéchal’s approach
e 0 [24] to the two-leg ladder, and allows for generalization
(2)  of the path-integral approach to ladders with an arbitrary
number of legs. In particular, the fact that the fieid
'g chosen to depend on the site indexlong the legs,
ut not on the index: labeling the sites along the rung,
reflects the assumption that the correlation length be
much greater than the total width of the ladder, i.e.,
5 & > nja, where¢ is the staggered spin-spin correlation
A _ y _ length anda the lattice spacing. This is well supported
o[ Q(7)] fo dré(n)ll ~ cosd(n)], ®) by several numerical works (see, for instance, [28] and
.~ A [29]). The constrain2(i) = 1 implies ¢(i) = 1 and
H(r) = Z[J“SZQ“(“ 7) - Qi + 1,7) & (i) - 1,(i) = 0. As far as the intraleg term dfl(7) is
o AL A . concerned, everything proceeds as for the continuum limit
t a1 Qa(,7) - Qa1 D] (4) Gt the one-dimensional Heisenberg chain (see [27] for
The Berry phase measures the area enclosed by the pathdetailed calculation) and hence we write just the final
Q(7)=(sind(r)cose(7),sinfd(7) sing(7),cosH (7)) on | result,

4 LB 5)
S

wherew[Q,(i, 7)] is the Berry phase factor coming from
the exponentiation of the overlap between coherent stat
at nearby time slices [27], whiléi(7) is obtained by
replacing in the Hamiltonian (1) the operat®y(i) by the
classical variableQ,(i, 7). Explicitly,

24 /- A . . (Szza Ja) 2 2
Z.Ias Q,@,7) - Qi +1,7) = dx B d"“(x,7) + 2ZJa|la(x,T)| . (6)
For the interleg term we have instead ! whereL, ; is the same matrix defined in Ref. [26], i.e.,
A . A . |ltl isT |2 |ltl isT |2
0u07) - (i) ~ —1 + LleDE Hanilor) Mot Tops + T, a=b
2s 2s L p = /a a,a+ a,a—1» ) (8)
@ Ja,b, |a — bl = 1.

+ la(i’T) : la+1(i’ T) )

s2

()
(Jba—1 =Jo—1, and Jig = J, , =0 in the formula

The termH (7) in the action has then the continuum limit above). We have finally to evaluate the Berry phase term.

| A We now need the formula for the variation of the Berry
H(r) = > f dx|:(SZZJa>¢/2(x,T) phasew[¢ ] upon a small changée [27]:
a .B . . .
" Zla(x,T)La,blb(x,T)i|a Sw = jo dré¢ - (P X ). )]
a,b

|  We have therefore, at leading order,

A N B R H
> ol = s S0 0l 0] + 3 [ artdiin x 601 167

ia

. B . B
61+ 3 [ ardin) x b7 - 1), (10)
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The first term in the last equation is the topological term. We shall return to it in a while, after having integrated out the
fluctuation fieldl, (i, 7):

]D[l]expfﬁdrj dx{— S Zla(x, T)Laplp(x,7) + iZ[cz)(x,T) X (é’)(x, ] l(x, 1) =
0 2 a,b a

-1 . o
ex;{—j;ﬂ drf dx@kz) X (2>|2:| = ex;{—/;)ﬁ drf dx%l&lz} (11)

The integration over the field,, (i) gives therefore thel These values of the parameters coincide with the ones
kinetic term of the NloM. For the topological term obtained by Sénéchal in [24] for the two-leg ladder. They
. o are different, however, from the parameters obtained by
Il =s> ()" D(-D'w[di,7)], (12) Sierra through his Hamiltonian mapping to the &
a i [26]. He has for they;-leg ladder:

we can simply observe that, since the figi¢i, 7) does not 1 1/2
depend onz, one has just the same topological term as for g = s|:2 Z JaL;i 7 Bn,} , (19)
the chain times a factor which is 0 for evepand 1 for ab.c
oddn,, Za 7. 1 1/2
(4 Par [ B x & Cs s 0 @
I[¢] =12 fO dr fdxd) - (d X ¢'), n; odd, b,c Lb,c b,c Lb.c
0, n; even.

where §,, is equal to 1 for odds; and O for evenn,.
(13) For evenn; his g is smaller, whilev, is greater, by a
factor of +/2 as compared with ours. The two results
coincide (and coincide with Affleck’s as well, as they
should) in the limit of a single chain, i.e., for;, = 1.
hey are again different for odd, > 1. We argue that
is is due to the introduction, in Ref. [26], of additional
massive fields. The latter are decoupled from the
model field and are ultimately neglected in the effective
'heory developed in [26]. Nonetheless, they appear to
affect the actual values of the parameters of the effective
o model. The agreement of our approach and of that of
Eef. [26] forn; = 1 (when there is no room for massive
jelds) seems to give support to our conjecture.
In any case the general picture for the behavior of the
Y ) spin ladder is the same as in [26]. The ladders with an
w(od + v,'?) even number of legs are mapped to laH{ 1) NLoM

_ i 3 A ) without topological term and are therefore gapped, while
£ +E‘f ~ (¢ x ). n odd, (14) the ones with an odd number of legs are described by a
i(vi(f; + v,d?),  n even, 1 + 1 NLoM with the topological term, and are gapless
) [7] for half-odd integer spin. In the casg, .., = J/,
12 J, = J, andJ' < J we haveg ~ 2/sn;; the coupling
-1 S(Z JaLbl) ’ (15) constantg gets therefore smaller and smaller when the

(6 = 27 s in the last equation.) In the case of the 2D (in-
finite) lattice, cancellation of the topological term results,
as is well known [8—12], from taking the continuum limit
also along the direction of the rungs, and holds at Ieast
for smooth field configurations. Here it is instead a di-
rect consequence of the assumption that n;a, which
lies at the heart of the parametrization chosen in Eq. (5
The staggering of the fielg along the rungs leads then to
the result that the topological term survives only for odd-
leg ladders, being of course significant only for half-odd
integer spins. Putting everything together we found tha
the antiferromagnetic Heisenberg ladder system is mapped:"
ontoa ( + 1) NLoM with the Euclidean Lagrangian

where the NloM parameters are defined by

& = = number of legs increases and the i\ enters in a weak
o coupling regime. In this regime we may use the formula
s, \" A ~ exp(—27/g) [30] to estimate the spin gap for even-
IS, 1) (16)  |eg ladders. We obtain theh ~ exp(—sn;); the gap
b.e by decreases therefore with the number of legs, as observed
Let us remark that the N&M velocity we have obtained in numerical simulations [28,29] and as expected from
coincides with the spin-wave velocity (see [26] for the fact that in the limitz, — o the difference between

the calculation of the spin-wave velocity in our model jadders with even and odd number of legs must disappear.

Hamiltonian). In the particular casg = 2 we obtain Let us also remark that the ratéyn;a ~ exp(msn;)/n;;
1 , 12 the condition ¢é < n;a we supposed at the beginning
g = L+ J/2)7% (A7) of our calculation seems therefore to be satisfied (in a
self-consistent way) better and better when the number
v, = 2sJ(1 + J'/20)"/2. (18) of legs increases (at least fdf < J). In the opposite
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