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We derive a path-integral expression for the effective action in the continuum limit of
antiferromagnetic Heisenberg spin ladder with an arbitrary number of legs. The map is onto an
nonlinears model (NLsM) with the addition of a topological term that is effective only for odd-le
ladders and half-odd integer spins. We derive the parameters of the effective NLsM and the behavior
of the spin gap for the case of even-leg ladders. [S0031-9007(97)02716-6]
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Triggered by the discovery of high-Tc superconduc-
tivity [1] and by the fact that, in the strong-couplin
regime, the Hubbard model maps onto an antiferrom
netic (AFM) Heisenberg model [2], quantum spin syste
have become in recent years of great theoretical and
perimental interest [3]. Independently from the possi
connections with high-Tc materials, some years ago Ha
dane [4] put forward the conjecture that the value of
spin should discriminate dramatically between half-o
integer and integer one-dimensional spin chains: The
mer should be gapless, with power-law decay of spin-s
correlations, while the latter should be characterized
exponential decay of correlations and hence by a nonv
ishing spin gap. It turns out [5] that, in the continuu
limit, an AFM Heisenberg chain is described by an O(
nonlinear s model (NLsM) [6] with the addition of
a topological term (a Pontrjagin index [6]), multiplie
by a coefficientu ­ 2pS, whereS is the value of the
spin. As shown, e.g., by Shankar and Read [7], it
precisely this term that makes the half-odd integer s
chain (whereu ­ p mod 2p) massless, while it is in-
effective for integer spin chains (whereu ­ 0 mod 2p),
which are gapped.

Extensions of these results toD ­ 2 turned out to be
rather disappointing, to the extent that it has been pro
in a convincing way [8–12] that, at least for smoo
configurations (see, however, [8] for the case of a singu
“hedge-hog” field configuration), the topological term
absent irrespective of the value of the spin and also of
topology of the lattice.

Quite recently, however, it came as a surprise wh
theoretical (mostly numerical) and, subsequently, exp
mental results showed that spinladders,obtained by anti-
ferromagnetically coupling a finite number of chain
show drastically different behaviors that are basically
termined by the value of the spinand by the number
of legs in the ladder. Coupled spin chains had alre
been studied previously [13] mainly as models of sin
chains with spin higher than the minimum valueS ­

1
2 .

A systematic study of the appearance of a spin gap
even-leg ladders and of the possible onset of superc
0031-9007y97y78(12)y2457(4)$10.00
g-
s
x-

le

e
d
r-
in
y
n-

)

is
in

ed

ar

he

n
ri-

,
e-

y
le

in
n-

ductivity upon doping with holes was initiated later on b
Dagottoet al. [14] who made for the first time quantita
tive predictions on both the spin gap and on the pair co
lation function. Odd-leg ladders are instead gapless. T
“even-odd” conjecture was formulated for the first tim
by Rice et al. [15], and is very much reminiscent of th
already mentioned Haldane’s “integer–half integer” co
jecture [4] for single spin chains. According to this “eve
odd” conjecture, undoped integer-spin ladders are gap
while half-odd integer spin ladders are gapped when
number of legs is even, gapless when it is odd. These
sults have by now strong support, both theoretically [1
and experimentally [17] (for a recent review, see [18
The situation seems to be not so simple for conduct
(i.e., hole-doped) ladders. A different behavior betwe
even-leg and odd-leg ladders is predicted only for v
strong intrachain repulsions [19]. On the contrary, in t
weak coupling regime, analytical [19,20] and numeric
[21] studies suggest thatd-wave interchain pairing corre
lations become dominant over AF fluctuations in both
two-leg and the three-leg ladder, due to the simultane
presence of gapless and gapped spin modes. So, the
ation is richer than in the case of single conducting cha
that display a Luttinger liquid type [18,22] behavior.

Following mainly the ideas of Haldane [4] and Afflec
[5] on the role of the topological term in spin chain
considerable theoretical effort has been recently devo
to the investigation of the existence and the role of su
a term when a finite number of chains is coupled
form a ladder (the possible topological origin for th
different behavior of even-leg and odd-leg ladders h
been suggested for the first time in [23]). In particul
Sénéchal [24] has given a derivation of the NLsM
continuum limit of a two-leg ladder using a coherent-st
path-integral [25] expression for the partition functio
while Sierra [26] has employed an (operator) Hamilton
approach following closely Affleck’s mapping of th
Heisenberg chain onto the NLsM.

What we present here is a path-integral approach
is, however, different from Sénéchal’s. It allows
to reproduce Sénéchal’s results for the two-leg ladd
© 1997 The American Physical Society 2457
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but also to generalize them to ladders with an arbitr
number of legs and to obtain a clear understanding of w
the topological term is absent for even-leg ladders.

The Hamiltonian for a ladder system withnl legs of
lengthN is defined by

H ­
nlX

a­1

NX
i­1

fJaSasid ? Sasi 1 1d

1 J 0
a,a11Sasid ? Sa11sidg . (1)

The only condition we shall impose on the coupli
constantJa and J 0

a,a11 is that the classical minimum o
the Hamiltonian (1) be antiferromagnetically ordered. T
partition function for the Hamiltonian (1) in a path-integr
representation which makes use of spin coherent states
is given by

Z sbd ­
Z

fDV̂g exp

(
is

X
i,a

vfV̂asi, tdg 2
Z b

0
dtHstd

)
,

(2)

wherevfV̂asi, tdg is the Berry phase factor coming fro
the exponentiation of the overlap between coherent st
at nearby time slices [27], whileHstd is obtained by
replacing in the Hamiltonian (1) the operatorSasid by the
classical variablesV̂asi, td. Explicitly,

vfV̂stdg ­
Z b

0
dt Ùfstd f1 2 cosustdg , (3)

Hstd ­
X
a,i

fJas2V̂asi, td ? V̂asi 1 1, td

1 J 0
a,a11s2V̂asi, td ? V̂a11si, tdg . (4)

The Berry phase measures the area enclosed by the
V̂std ­ sss sinustd cosfstd, sinustd sinfstd, cosustdddd on
it
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the unit sphere. We shall proceed now along the lines
Ref. [8]. We assume that short-range antiferromagne
correlations survive at the quantum level, so that w
consider the dominant contribution to the path integral
coming from paths described by

V̂asi, td ­ s21da11f̂si, td
µ

1 2
jlasi, tdj2

s2

∂1y2

1
lasi, td

s
. (5)

The fluctuation field lasid is supposed to be small
jlasidysj ø 1 and the fieldf̂si, td slowly varying. We are
then allowed to make an expansion up to quadratic orde

l, f̂0, and Ù̂
f. The parametrization of the classical fields

(5) is different from that employed in Sénéchal’s approa
[24] to the two-leg ladder, and allows for generalizatio
of the path-integral approach to ladders with an arbitra
number of legs. In particular, the fact that the fieldf̂
is chosen to depend on the site indexi along the legs,
but not on the indexa labeling the sites along the rung
reflects the assumption that the correlation length
much greater than the total width of the ladder, i.
j ¿ nla, wherej is the staggered spin-spin correlatio
length anda the lattice spacing. This is well supporte
by several numerical works (see, for instance, [28] a
[29]). The constraintV̂2

asid ­ 1 implies f̂2sid ­ 1 and
f̂sid ? lasid ­ 0. As far as the intraleg term ofHstd is
concerned, everything proceeds as for the continuum li
of the one-dimensional Heisenberg chain (see [27]
a detailed calculation) and hence we write just the fin
result,
X
a,i

Jas2V̂asi, td ? V̂asi 1 1, td ø
Z

dx

"
ss2

P
a Jad

2
f̂02sx, td 1 2

X
a

Jajlasx, tdj2
#

. (6)
rm.
ry
For the interleg term we have instead

V̂asi, td ? V̂a11si, td ø 21 1
jlasi, tdj2

2s2 1
jla11si, tdj2

2s2

1
lasi, td ? la11si, td

s2 . (7)

The termHstd in the action has then the continuum lim

Hstd ­
1
2

Z
dx

"√
s2

X
a

Ja

!
f̂02sx, td

1
X
a,b

lasx, tdLa,blbsx, td

#
,

whereLa,b is the same matrix defined in Ref. [26], i.e.,

La,b ­

(
4Ja 1 J 0

a,a11 1 J 0
a,a21, a ­ b ,

J 0
a,b , ja 2 bj ­ 1 .

(8)

(J 0
a,a21 ; J 0

a21,a and J 0
1,0 ­ J 0

nl ,nl11
­ 0 in the formula

above). We have finally to evaluate the Berry phase te
We now need the formula for the variation of the Ber
phasevff̂g upon a small changedf̂ [27]:

dv ­
Z b

0
dtdf̂ ? sf̂ 3

Ù̂
fd . (9)

We have therefore, at leading order,
X
i,a

vfV̂asi, tdg ­ s
X
i,a

s21da1ivff̂si, tdg 1
X
a,i

Z b

0
dtff̂si, td 3

Ù̂
fsi, tdg ? lasi, td

; Gff̂g 1
X
a,i

Z b

0
dtff̂si, td 3

Ù̂
fsi, tdg ? lasi, td . (10)
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out the
The first term in the last equation is the topological term. We shall return to it in a while, after having integrated
fluctuation fieldlasi, td:Z

Dflg exp
Z b

0
dt

Z
dx

(
2

1
2

X
a,b

lasx, tdLa,blbsx, td 1 i
X
a

ff̂sx, td 3
Ù̂

fsx, tdg ? lasx, td

)
­

exp

"
2

Z b

0
dt

Z
dx

P
a,b L21

a,b

2
jf̂ 3

Ù̂
fj2

#
­ exp

"
2

Z b

0
dt

Z
dx

P
a,b L21

a,b

2
j

Ù̂
fj2

#
. (11)
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The integration over the fieldlasid gives therefore the
kinetic term of the NLsM. For the topological term

Gff̂g ­ s
X
a

s21da
X

i

s21divff̂si, tdg , (12)

we can simply observe that, since the fieldf̂si, td does not
depend ona, one has just the same topological term as
the chain times a factor which is 0 for evennl and 1 for
oddnl ,

Gff̂g ­

(
u

4p

Rb
0 dt

R
dxf̂ ? s Ù̂

f 3 f̂0d, nl odd,
0, nl even.

(13)
(u ­ 2ps in the last equation.) In the case of the 2D (i
finite) lattice, cancellation of the topological term resul
as is well known [8–12], from taking the continuum lim
also along the direction of the rungs, and holds at le
for smooth field configurations. Here it is instead a
rect consequence of the assumption thatj ¿ nla, which
lies at the heart of the parametrization chosen in Eq.
The staggering of the field̂f along the rungs leads then t
the result that the topological term survives only for od
leg ladders, being of course significant only for half-o
integer spins. Putting everything together we found t
the antiferromagnetic Heisenberg ladder system is map
onto a (1 1 1) NLsM with the Euclidean Lagrangian

L ­

8>>><>>>:
1

2g s 1
ys

Ù̂
f

2
1 ysf̂02d

1
iu

4p f̂ ? s Ù̂
f 3 f̂0d, nl odd,

1
2g s 1

ys

Ù̂
f

2
1 ysf̂02d, nl even,

(14)

where the NLsM parameters are defined by

g21 ­ s

√ X
a,b,c

JaL21
b,c

!1y2

, (15)

ys ­ s

√ P
a JaP

b,c L21
b,c

!1y2

. (16)

Let us remark that the NLsM velocity we have obtained
coincides with the spin-wave velocity (see [26] f
the calculation of the spin-wave velocity in our mod
Hamiltonian). In the particular casenl ­ 2 we obtain

g ­
1
s

s1 1 J 0y2Jd1y2, (17)

ys ­ 2sJs1 1 J 0y2Jd1y2. (18)
r

,

st

).

-

t
ed

These values of the parameters coincide with the o
obtained by Sénéchal in [24] for the two-leg ladder. Th
are different, however, from the parameters obtained
Sierra through his Hamiltonian mapping to the NLsM
[26]. He has for thenl-leg ladder:

g21 ­ s

"
2

X
a,b,c

JaL21
b,c 2

1
4

dnl

#1y2

, (19)

ys ­ s

"
2

P
a JaP

b,c L21
b,c

2 dnl

1

s2
P

b,c L21
b,cd2

#1y2

, (20)

where dnl
is equal to 1 for oddnl and 0 for evennl .

For evennl his g is smaller, whileys is greater, by a
factor of

p
2 as compared with ours. The two resul

coincide (and coincide with Affleck’s as well, as the
should) in the limit of a single chain, i.e., fornl ­ 1.
They are again different for oddnl . 1. We argue that
this is due to the introduction, in Ref. [26], of addition
massive fields. The latter are decoupled from thes-
model field and are ultimately neglected in the effecti
theory developed in [26]. Nonetheless, they appear
affect the actual values of the parameters of the effec
s model. The agreement of our approach and of tha
Ref. [26] for nl ­ 1 (when there is no room for massiv
fields) seems to give support to our conjecture.

In any case the general picture for the behavior of
spin ladder is the same as in [26]. The ladders with
even number of legs are mapped to a (1 1 1) NLsM
without topological term and are therefore gapped, wh
the ones with an odd number of legs are described b
1 1 1 NLsM with the topological term, and are gaples
[7] for half-odd integer spin. In the caseJ 0

a,a11 ­ J 0,
Ja ­ J, and J 0 ø J we haveg , 2ysnl ; the coupling
constantg gets therefore smaller and smaller when t
number of legs increases and the NLsM enters in a weak
coupling regime. In this regime we may use the formu
D , exps22pygd [30] to estimate the spin gap for even
leg ladders. We obtain thenD , exps2psnld; the gap
decreases therefore with the number of legs, as obse
in numerical simulations [28,29] and as expected fro
the fact that in the limitnl °! ` the difference between
ladders with even and odd number of legs must disapp
Let us also remark that the ratiojynla , expspsnldynl ;
the condition j ø nla we supposed at the beginnin
of our calculation seems therefore to be satisfied (in
self-consistent way) better and better when the num
of legs increases (at least forJ 0 ø J). In the opposite
2459
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regime J 0 ¿ J the coupling constant becomes stro
since g , sJ 0yJd1y2 and we can therefore estimate th
spin gap asD ­ ysg in the strong coupling regime [7]
For two legs we getD , J 0 whenJ 0 ¿ J, a result which
also agrees with what was found in the literature throu
other techniques [18].

Note added.—Just after completion of this work
preprint by G. Sierra has appeared [31] in which t
mapping of spin ladders to the NLsM is reviewed also
within a path-integral formalism. The values for th
NLsM parameters found by Sierra agree with ours.
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