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Chiral Metal as a Heisenberg Ferromagnet
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The two-dimensional surface of an integer quantum hall multilayer is mapped onto a Heisenberg
spin chain with ferromagnetic coupling. Using this mapping it is shown nonperturbatively that the
surface states constitute a very anisotropic metal in the infinite size limit. For multilayers of finite
size, two diffusive mesoscopic regimes are identified and the conductance fluctuations are calculated
perturbatively for both. The Heisenberg spin-chain representation is used to study the directed wave
problem and the exact result is obtained that the mean-square deflection of a directed wave grows as
the square root of the propagation distance. [S0031-9007(97)02802-0]

PACS numbers: 72.15.Rn, 73.40.Hm, 75.10.Jm

Dirty electronic systems exhibit a variety of phasesdisorder averages [11]. Using this mapping they are
many of which are not well understood [1]. For example,able to establish the important result that the 2D chiral
electrons moving in two dimensions under the influencenodel is metallic (in the sense that the conductance
of a magnetic field exhibit a sequence of localization-scales ohmically) even for arbitrarily strong disorder.
delocalization transitions as the magnetic field or somé&his should be contrasted with conventional electronic
other system parameter is varied. Understanding of thesystems in which metallic scaling is associated with large
transitions, which underlie the quantum hall effect, is basedonductance and which are generically localized in two
largely on numerical simulation [2]. The purpose of thisdimensions [1]. The surface states of the bulk quantum
Letter is to study the two dimensional (2D) electronic hall system are thus revealed to be a novel metallic phase
states that live on the surface of an integer quanturmwith interesting localization and mesoscopic fluctuation
hall multilayer (sometimes called the bulk quantum hallphysics that awaits exploration.
effect). At the edge of each quantum hall layer the The chiral model [Eq. (1) below] that describes the
electrons circulate in one sense only and may be modelesiirface of a quantum hall multilayer is of interest from
as noninteracting chiral fermions [3]. If the layers areanother quite distinct point of view. It should apply
coupled by tunneling, the surface states comprise a 2Whenever waves propagate in a medium that is sufficiently
chiral electronic system (see Fig. 1). The Bechgaard sal@nisotropic to warrant neglect of backscattering in one
are a natural realization [4], and it is also possible todirection. The problem of waves propagating in an
fabricate an appropriate semiconductor heterostructure [Sanisotropic medium has been the focus of much attention

The key question from the point of view of quantum and is known as the directed wave problem (see, for
transport is whether the electronic wave functions are loexample, Ref. [12,13] and references therein). Although
calized or extended along the direction of the field (thedirected waves are described by the chiral model, the
z direction in Fig. 1). This determines whether the sys-question one asks in this context is very different: The
tem is metallic or insulating from the point of view of electron is assumed to be localized at a single point
transport along the direction. In either case, to fully initially. Thereafter it moves ballistically in the chiral
characterize the transport it is not sufficient to studyx direction and the wave function spreads (presumably
the disorder-averaged conductance: Localized electronic
systems generally possess a very broad distribution of
conductances. Although in contrast metallic systems of
ordinary (rather than chiral) electrons do not have a broad
conductance distribution, the conductance fluctuations of
finite-sized oMmesoscopimetallic grains have remarkable
universalproperties [6] (for example, the typical fluctua-
tions are of order?/h—independent of the mean con- N
ductance or other details of the sample).

Quantum transport in the chiral model has previ-
ously been studied numerically [7] and by mapping
onto field theories [8—10]. In particular, Balergs al.

[10] have mapped the system onto a one-dimensional
(1D) supersymmetric ferromagnetic spin chain using the
well-established supersymmetric technique for performing FIG. 1. A quantum hall multilayer.
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diffusively) in the transverse direction. The interesting and Read [13,18,19]. In their model special assumptions
questions here concern the growth of the wave-packedire made about the disorder which make it possible to di-
width and the fluctuations in the position of the centerrectly evolve the probability function (the modulus square
of the wave packet (denoteldn)’]imp; the notation is  of the wave function) without reference to the wave func-
explained below). The broadening of the width can betion itself. The results of this paper show that the same
easily calculated, and the answer has been known sindehavior results for a more generic disorder distribution.
the 1970s [14]. [(n)*]imp is more difficult to calculate as Finally the properties of mesoscopic quantum hall multi-
the average of four Green’s functions is now required; ilayers are studied. Because of the anisotropy of the surface
has not been evaluated within this model previously. stateswo diffusive mesoscopic regimes can be identified.
In this paper a new approach to disorder averaging is inFollowing the terminology of Ref. [10] in the 1D diffu-
troduced which is distinct from the conventional replica orsive regime electrons are typically able to wind around the
supersymmetry methods and is especially adapted to thiample in the chiral direction many times before diffusing
system. Using this method it is possible to map the chirahcross in the direction. The opposite limit of sufficiently
model (in the limit of infinite size) onto a much simpler large circumference that winding paths are rare is called the
soluble 1D model: an ordinary Heisenberg ferromagnetzero-dimensional (OD) regime. The mesoscopic regimes
The absence of localization for the chiral system estabare difficult to analyze due to the winding paths. Spectral
lished by Refs. [7,8,10] then emerges nonperturbatively asorrelations were computed in Ref. [10] in the OD limit;
a consequence of the well-known quadratic dispersion ofiowever, spectral correlations are difficult to probe experi-
ferromagnetic magnons. The advantages of this mappingientally. Here conductance fluctuations are calculated in
onto an ordinary ferromagnet become evident when a moréhe two mesoscopic regimes using the standard methods of
difficult calculation is attempted. For examp[éz)*]im, ~ impurity averaged perturbation theory [6]. Universal con-
can be expressed in terms of the matrix elements of twoductance fluctuations of ordef/k are found in the 1D
magnon states of the ferromagnetic representation. Alimit coinciding with the result for ordinary metals. Inter-
though magnons interact, it is not difficult to obtain the estingly, there is a crossover to much larger fluctuations in
two-magnon eigenstates of a ferromagnet [15]. Carryinghe OD diffusive limit.
out such a calculation leads to theactresult tha{<n>2]imp The precise model used for the multilayer surface is now
grows asx'/2. This exact result agrees with the numeri- described. For simplicity we shall focus on the case of
cal simulations of [16] but contradicts those of [17]; it alsojust one filled Landau level. The surface of the multilayer
agrees with results obtained from a simplified lattice models then a 2D chiral electronic system governed by the
of directed wave propagation introduced by Saul, Kard|arSchrO'dinger equation

d
(—iv P + V,(x) — E)Gg(n,x;n/,x') — {GR(n + 1L,x;n',x") + GR(n — L,x;n',x")} = —ivd,,8(x — x'). (1)
X

Here G5 is the retarded Green’s function at frequenl:yobeys the chiral boundary conditigiy (, x; n’,x') = 0

E. r produces interlayer hopping, a} is the disorder forx < x’. Because of this boundary condition, it is possi-

potential. Units are chosen so that the edge velocitple to interpret Eq. (1) as théme-dependerschrédinger

v = 1, the interlayer separatiom = 1, andz = 1. The equation for a 1D tight-binding model with the chiral

anisotropy and chiral character of the model are reflectedoordinate x identified as time andGR(n, x,;n’', x")

by the fact that the equation is first order in the chiralidentified as the time-domain retarded Green'’s function.

x direction, whereas it is second order in the transversélote that the on-site energies of the tight-binding model

direction. fluctuate in time. It is convenient to make a gauge
A mapping onto a 1D problem is obtained by notingtransformationG® — G® exdiy,(x) — iy.(x")] where

that in the limit of infinite size (but in that limit only) the 9dvy,(x)/dx = V,(x) — E. In this gauge Eq. (1) be-

circumferenceC — o and the retarded Green’s functiop comes

Jd
—i a—GE(n,x;n',x’) — t,(0)GR(n + 1,x:n',x") — £, (x)GR(n — 1,x;n",x") = —=i8,w8(x — x). 2)
X

Heret,(x) = rexpi[y,+1(x) — yn.(x)]. | hf(x) = Z{t”(x)c,lchﬁﬂ + t;,l(x)cffcff,l}. 3)

The tight-binding model can be rewritten in second-
quantized language by introducingft and ¢® which
create and annihilate fermions on site of the tight- GR(n,x:n',x') = (OlcR P eX[(ifxdxl hld(x1)>cf/T|0>
binding lattice and which evolve in the chiral time direction " X/
according to the Hamiltonian 4)

2430

In this language the Green'’s function is given by



VOLUME 78, NUMBER 12 PHYSICAL REVIEW LETTERS 24 MRcH 1997

for x > x’. The symbolP exp() denotes a time-ordered [ B — ,
exponential. Note that there is no vacuum amplitude in the| £ €XR ¢ . dxy hia(x1) - expl— hinc(x — x')},
imp
(7)

denominator because we are calculating the single particl
Green's function rather than the propagator for a single
particle added to a filled Fermi sea, which is the objectvhere
usually studied in many-body physics [20]. The absence

of a denominator in Eq. (4) is a crucial simplification that

allows disorder averaging as discussed below. . o .

. ; . Equation (8) can be verified by expanding the exponen-

;I'h? co&n?lex conjugate of_the Grelen s function c?r; tk)ﬁ'zgls i Eq( ()7) The rough con)':entri)f Eqsg ol andp(8) -

calculated from an expression analogous to Eq. (4 T I
: ; . : : hat, for calculating averages, the fermions may be taken
mtrodu_c N9 conjugatg fermlons{‘T.and_cA, whlch_evolve to evolve according to an gffective Hamiltoniag, )\;vhich
according 1o a conjugate Hamiltonian gobtalned *fromis not random and does not dependxonlt is an interact-
Eq(.j (3) by n}aklng the replacements — c*, 1 — =17, ing Hamiltonian sinced,, is bilinear
andt* — —1]. " :

Localization, or its absence, is established by cal- Consider a state in which a single sitdls simultane-

culation of the disorder-averaged diffuson propagatof/)v lﬁflgeordcgﬂiﬁg dbg; an?q‘; fgﬂ%ﬂ;ﬁgglg\{vst;?és'?ﬁite
|GR(n,x;n',x")|2. For this purpose it is neccessary to 9

simultaneously introduce both sets of fermions evolvingﬁﬁect Of hin ON such a_state IS to cause .bOth fe_rmlons to
. o op together onto a neighboring site. This physics can be
according to the total Hamiltonian

brought out clearly by definings = ~+(cRtcR — cAcAt),
s i =ht iJn = cRteAt) J— = (JHt, which satisfy

the su(2) algebra, and, = cXfc® + ¢4cAt, which com-
mutes with all theJ’s. In terms of these operators

_ 1
Fing = o D DAfA, + A,AD). (8)

hig(x) = hfd + h114d = Z{tnAn + f;Ai}
n
Rt .R At 4

Here A, = ¢y ¢4 — cu+1c,. The diffuson is then
. B 1 o
given by Rint = DZ(Nn - ENnNn+1 - 2-]an+1) (9)
. 2 _ /olA R e , "N
|G(n,x;n',x")|* = <O|c,,cnPexp(z ]X dx h1d(X1)) —evidently a Heisenberg ferromagnet. As usual the
Rt At vacuum [0) is the ground state and exact low-lying
X cyr Cyr |0> (6)

excitations are magnons obtained by constructing plane
The task now is to average over different realizations ofvaves from the localized magnons mentioned above.
the disorder potential which is taken to be Gaussian whit&xplicitly, a magnon of wave vectok is given by
noise with correlationg(x)t, (x')limp = D8umd(x — 2. J, €Xpikn|0) and has eigenvalu#D (1 — cosk).

x") and[t,(x)limp = [t2(x)t, (x")Jimp = 0 [8—10], where The exact diffuson propagator can now be straightfor-
[...Jimp denotes an average over disorder. Because of theardly calculated by substituting Eq. (7) in Eq. (6) and
absence of a denominator in Eq. (6) this average is easikyxpandingc,lfﬁcfﬁlw and{(0|c2ck in terms of magnons.

n

performed. It is neccessary only to evaluate | The result is
/ ]2 / i dk ] ! !
G, x;n', x" ) Jmp = O0(x — x) X 2—explk(n — n')yexp{—2D(1 — cosk) (x — x')} (20)
- rs
in agreement with Eq. (98) of Balentt al.[10]. The I To perform this calculation it is neccessary to intro-

physical content of Eq. (10) is that the electrons moveducetwo sets each oR andA fermions ¢®, ¢4, dk, d4)

ballistically in the chiral direction and diffuse in the which evolve according to the Hamiltonian of Eg. (5)

transverse direction (diffusion constaatD) [21]. but with A, — cﬁ*c,’fﬂ — Cﬁlcﬁ + (¢ — d). Repeat-
Next consider the directed wave problem. The electroning the previous arguments,

is assumed to be initially localized at the origin of the ) )

coordinate system’ = 0,x' = 0. After it moves ballis- [1G (n,x;0,0)|°|G(m, x;0,0)|" Jimp

tically in the chiral direction to a location, the amplitude — (OlcAcRdA aR expl—Timaxtda do T ek Teat10y. (12)

to be in layern is given by GR(n,x;n’ = 0,x' = 0)

and the position of the wave-packet centér) =

>, nlGR(n,x;0,0)|*. By symmetry, evidentl(n)Jimp =

0; and the mean-square deflection of the wave-pack

center is therefore

Here hiy, is given by Eq. (8) but with4, redefined as
above. The important states are (localized) two-magnon
tates which are of two kinds. In the first typec&-c4
air occupies one site whiled -4 pair occupies another;
in the second type? is paired withd4 andc* with 4R

(1) Timp = . nm[|G(n, x;0,0)*1G (m, 30, 0)[Jimp.- [22]. These states are closed under the actionefvhich
n.m generally causes paired fermions to hop together to a
(1) neighboring site. An exception is when the two pairs oc-
The largex asymptotic behavior dkn)*Jim, is desired. cupy adjacent sites, in which case the fermions may switch
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partners and a state of one kind is transformed into then Eq. (1) change, and it becomes necessary to introduce

other. Thus the two-magnon states define a sort of twobosons whether operator methods (this paper) or functional

body problem with a contact interaction of a kind familiar methods (Balentst al) are used.

from ordinary ferromagnetism [15]. Following the stan- It is a pleasure to thank Leon Balents and Matthew

dard method explicit forms for the two-magnon eigenstategisher for illuminating discussions and for patient ex-
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