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Chiral Metal as a Heisenberg Ferromagnet
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The two-dimensional surface of an integer quantum hall multilayer is mapped onto a Heisenberg
spin chain with ferromagnetic coupling. Using this mapping it is shown nonperturbatively that the
surface states constitute a very anisotropic metal in the infinite size limit. For multilayers of finite
size, two diffusive mesoscopic regimes are identified and the conductance fluctuations are calculate
perturbatively for both. The Heisenberg spin-chain representation is used to study the directed wav
problem and the exact result is obtained that the mean-square deflection of a directed wave grows a
the square root of the propagation distance. [S0031-9007(97)02802-0]

PACS numbers: 72.15.Rn, 73.40.Hm, 75.10.Jm
e
le
c
n
m
e

se
is
ic
u
a
h
el
re
2
a
t
[

m
lo
h
s
f

d
on

oa

e
-
-

vi
ng

n
th
in

re
ral
ce
r.
ic

ge
o
m

ase
n

e

y
tly
ne
n
ion
for
gh
he
e

int
l
bly
Dirty electronic systems exhibit a variety of phas
many of which are not well understood [1]. For examp
electrons moving in two dimensions under the influen
of a magnetic field exhibit a sequence of localizatio
delocalization transitions as the magnetic field or so
other system parameter is varied. Understanding of th
transitions, which underlie the quantum hall effect, is ba
largely on numerical simulation [2]. The purpose of th
Letter is to study the two dimensional (2D) electron
states that live on the surface of an integer quant
hall multilayer (sometimes called the bulk quantum h
effect). At the edge of each quantum hall layer t
electrons circulate in one sense only and may be mod
as noninteracting chiral fermions [3]. If the layers a
coupled by tunneling, the surface states comprise a
chiral electronic system (see Fig. 1). The Bechgaard s
are a natural realization [4], and it is also possible
fabricate an appropriate semiconductor heterostructure

The key question from the point of view of quantu
transport is whether the electronic wave functions are
calized or extended along the direction of the field (t
z direction in Fig. 1). This determines whether the sy
tem is metallic or insulating from the point of view o
transport along thez direction. In either case, to fully
characterize the transport it is not sufficient to stu
the disorder-averaged conductance: Localized electr
systems generally possess a very broad distribution
conductances. Although in contrast metallic systems
ordinary (rather than chiral) electrons do not have a br
conductance distribution, the conductance fluctuations
finite-sized ormesoscopicmetallic grains have remarkabl
universalproperties [6] (for example, the typical fluctua
tions are of ordere2yh—independent of the mean con
ductance or other details of the sample).

Quantum transport in the chiral model has pre
ously been studied numerically [7] and by mappi
onto field theories [8–10]. In particular, Balentset al.
[10] have mapped the system onto a one-dimensio
(1D) supersymmetric ferromagnetic spin chain using
well-established supersymmetric technique for perform
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disorder averages [11]. Using this mapping they a
able to establish the important result that the 2D chi
model is metallic (in the sense that the conductan
scales ohmically) even for arbitrarily strong disorde
This should be contrasted with conventional electron
systems in which metallic scaling is associated with lar
conductance and which are generically localized in tw
dimensions [1]. The surface states of the bulk quantu
hall system are thus revealed to be a novel metallic ph
with interesting localization and mesoscopic fluctuatio
physics that awaits exploration.

The chiral model [Eq. (1) below] that describes th
surface of a quantum hall multilayer is of interest from
another quite distinct point of view. It should appl
whenever waves propagate in a medium that is sufficien
anisotropic to warrant neglect of backscattering in o
direction. The problem of waves propagating in a
anisotropic medium has been the focus of much attent
and is known as the directed wave problem (see,
example, Ref. [12,13] and references therein). Althou
directed waves are described by the chiral model, t
question one asks in this context is very different: Th
electron is assumed to be localized at a single po
initially. Thereafter it moves ballistically in the chira
x direction and the wave function spreads (presuma

FIG. 1. A quantum hall multilayer.
© 1997 The American Physical Society 2429
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diffusively) in the transversez direction. The interesting
questions here concern the growth of the wave-pa
width and the fluctuations in the position of the cen
of the wave packet (denotedfknl2gimp ; the notation is
explained below). The broadening of the width can
easily calculated, and the answer has been known s
the 1970s [14]. fknl2gimp is more difficult to calculate a
the average of four Green’s functions is now required
has not been evaluated within this model previously.

In this paper a new approach to disorder averaging is
troduced which is distinct from the conventional replica
supersymmetry methods and is especially adapted to
system. Using this method it is possible to map the ch
model (in the limit of infinite size) onto a much simpl
soluble 1D model: an ordinary Heisenberg ferromagn
The absence of localization for the chiral system es
lished by Refs. [7,8,10] then emerges nonperturbativel
a consequence of the well-known quadratic dispersio
ferromagnetic magnons. The advantages of this map
onto an ordinary ferromagnet become evident when a m
difficult calculation is attempted. For example,fknl2gimp

can be expressed in terms of the matrix elements of t
magnon states of the ferromagnetic representation.
though magnons interact, it is not difficult to obtain t
two-magnon eigenstates of a ferromagnet [15]. Carry
out such a calculation leads to theexactresult thatfknl2gimp
grows asx1y2. This exact result agrees with the nume
cal simulations of [16] but contradicts those of [17]; it al
agrees with results obtained from a simplified lattice mo
of directed wave propagation introduced by Saul, Kard
c
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and Read [13,18,19]. In their model special assumpti
are made about the disorder which make it possible to
rectly evolve the probability function (the modulus squa
of the wave function) without reference to the wave fun
tion itself. The results of this paper show that the sa
behavior results for a more generic disorder distribution

Finally the properties of mesoscopic quantum hall mu
layers are studied. Because of the anisotropy of the sur
statestwo diffusive mesoscopic regimes can be identifie
Following the terminology of Ref. [10] in the 1D diffu-
sive regime electrons are typically able to wind around
sample in the chiral direction many times before diffusi
across in thez direction. The opposite limit of sufficiently
large circumference that winding paths are rare is called
zero-dimensional (0D) regime. The mesoscopic regim
are difficult to analyze due to the winding paths. Spect
correlations were computed in Ref. [10] in the 0D lim
however, spectral correlations are difficult to probe expe
mentally. Here conductance fluctuations are calculate
the two mesoscopic regimes using the standard method
impurity averaged perturbation theory [6]. Universal co
ductance fluctuations of ordere2yh are found in the 1D
limit coinciding with the result for ordinary metals. Inter
estingly, there is a crossover to much larger fluctuations
the 0D diffusive limit.

The precise model used for the multilayer surface is n
described. For simplicity we shall focus on the case
just one filled Landau level. The surface of the multilay
is then a 2D chiral electronic system governed by t
Schrödinger equation
√
2iy

≠

≠x
1 Vnsxd 2 E

!
GR

E sn, x; n0, x0d 2 thGR
E sn 1 1, x; n0, x0 d 1 GR

E sn 2 1, x; n0, x0 dj ­ 2iydn,n0dsx 2 x0d . (1)
i-

l

n.
el
e

Here GR
E is the retarded Green’s function at frequen

E. t produces interlayer hopping, andVn is the disorder
potential. Units are chosen so that the edge velo
y ­ 1, the interlayer separationa ­ 1, and h̄ ­ 1. The
anisotropy and chiral character of the model are reflec
by the fact that the equation is first order in the chi
x direction, whereas it is second order in the transve
direction.

A mapping onto a 1D problem is obtained by noti
that in the limit of infinite size (but in that limit only) the
circumferenceC ! ` and the retarded Green’s functio
y

ity

ed
al
se

g

obeys the chiral boundary conditionGR
E sn, x; n0, x0d ­ 0

for x , x0. Because of this boundary condition, it is poss
ble to interpret Eq. (1) as thetime-dependentSchrödinger
equation for a 1D tight-binding model with the chira
coordinate x identified as time andGR

E sn, x, ; n0, x0 d
identified as the time-domain retarded Green’s functio
Note that the on-site energies of the tight-binding mod
fluctuate in time. It is convenient to make a gaug
transformationGR ! GR expfignsxd 2 ign0sx0 dg where
≠gnsxdy≠x ­ Vnsxd 2 E. In this gauge Eq. (1) be-
comes
2i
≠

≠x
GR

E sn, x; n0, x0 d 2 tnsxdGR
E sn 1 1, x; n0, x0d 2 tp

n21sxdGR
E sn 2 1, x; n0, x0d ­ 2idn,n0dsx 2 x0 d . (2)
Heretnsxd ; t expifgn11sxd 2 gnsxdg.
The tight-binding model can be rewritten in secon

quantized language by introducingcRy
n and cR

n which
create and annihilate fermions on siten of the tight-
binding lattice and which evolve in the chiral time directio
according to the Hamiltonian
-

n

hR
1dsxd ­

X
n

htnsxdcRy
n cR

n11 1 tp
n21sxdcRy

n cR
n21j . (3)

In this language the Green’s function is given by

GRsn, x; n0, x0d ­ k0jcR
n P exp

µ
i
Z x

x0

dx1 h1dsx1d
∂

c
Ry
n0 j0l

(4)
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for x . x0. The symbolP exps d denotes a time-ordere
exponential. Note that there is no vacuum amplitude in
denominator because we are calculating the single par
Green’s function rather than the propagator for a sin
particle added to a filled Fermi sea, which is the obj
usually studied in many-body physics [20]. The abse
of a denominator in Eq. (4) is a crucial simplification th
allows disorder averaging as discussed below.

The complex conjugate of the Green’s function can
calculated from an expression analogous to Eq. (4)
introducing conjugate fermions,cAy andcA, which evolve
according to a conjugate Hamiltonian [obtained fro
Eq. (3) by making the replacementscR ! cA, t ! 2tp,
andtp ! 2t].

Localization, or its absence, is established by c
culation of the disorder-averaged diffuson propaga
jGR

E sn, x; n0, x0 dj2. For this purpose it is neccessary
simultaneously introduce both sets of fermions evolv
according to the total Hamiltonian

h1dsxd ­ hR
1d 1 hA

1d ­
X
n

htnAn 1 tp
nAy

n j . (5)

Here An ­ cRy
n cR

n11 2 c
Ay
n11cA

n . The diffuson is then
given by

jGsn, x; n0, x0 dj2 ­ k0jcA
n cR

n P exp

√
i
Z x

x0

dx1 h1dsx1d

!
3 c

Ry
n0 c

Ay
n0 j0l . (6)

The task now is to average over different realizations
the disorder potential which is taken to be Gaussian w
noise with correlationsftp

nsxdtmsx0 dgimp ­ Ddn,mdsx 2

x0 d and ftnsxdgimp ­ ftnsxdtmsx0dgimp ­ 0 [8–10], where
f. . .gimp denotes an average over disorder. Because of
absence of a denominator in Eq. (6) this average is ea
performed. It is neccessary only to evaluate
e
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P exp

√
i
Z x

x0

dx1 h1dsx1d

!#
imp

­ exph2 hintsx 2 x0 dj ,

(7)

where

hint ­
1
2

D
X
n

sAy
n An 1 AnAy

n d. (8)

Equation (8) can be verified by expanding the expone
tials in Eq. (7). The rough content of Eqs. (7) and (8)
that, for calculating averages, the fermions may be tak
to evolve according to an effective Hamiltonianhint which
is not random and does not depend onx. It is an interact-
ing Hamiltonian sinceAn is bilinear.

Consider a state in which a single siten is simultane-
ously occupied byR and A fermions—below this state
will be identified as a magnon localized at siten. The
effect of hint on such a state is to cause both fermions
hop together onto a neighboring site. This physics can
brought out clearly by definingJz

n ; 1
2 scRy

n cR
n 2 cA

n cAy
n d,

J1
n ; Jx

n 1 iJ
y
n ; cRy

n cAy
n , J2

n ; sJ1
n dy, which satisfy

the su(2) algebra, andNn ; cRy
n cR

n 1 cA
n cAy

n , which com-
mutes with all theJ ’s. In terms of these operators

hint ­ D
X
n

√
Nn 2

1
2

NnNn11 2 2 $Jn
$Jn11

!
(9)

—evidently a Heisenberg ferromagnet. As usual t
vacuum j0l is the ground state and exact low-lyin
excitations are magnons obtained by constructing pla
waves from the localized magnons mentioned abo
Explicitly, a magnon of wave vectork is given byP

n J1
n expiknj0l and has eigenvalue2Ds1 2 coskd.

The exact diffuson propagator can now be straightfo
wardly calculated by substituting Eq. (7) in Eq. (6) an
expandingc

Ry
n0 c

Ay
n0 j0l and k0jcA

n cR
n in terms of magnons.

The result is
fjGsn, x; n0, x0 dj2gimp ­ usx 2 x0 d 3
Z 1p

2p

dk
2p

expiksn 2 n0 d exph22Ds1 2 coskd sx 2 x0 dj (10)
o-

)

on

;

o a
c-

itch
in agreement with Eq. (98) of Balentset al. [10]. The
physical content of Eq. (10) is that the electrons mo
ballistically in the chiral direction and diffuse in th
transverse direction (diffusion constant­ D) [21].

Next consider the directed wave problem. The elect
is assumed to be initially localized at the origin of th
coordinate systemn0 ­ 0, x0 ­ 0. After it moves ballis-
tically in the chiral direction to a locationx, the amplitude
to be in layer n is given by GRsn, x; n0 ­ 0, x0 ­ 0d
and the position of the wave-packet centerknl ­P

n njGRsn, x; 0, 0dj2. By symmetry, evidentlyfknlgimp ­
0; and the mean-square deflection of the wave-pac
center is therefore

fknl2gimp ­
X
n,m

nmfjGsn, x; 0, 0dj2jGsm, x; 0, 0dj2gimp.

(11)

The largex asymptotic behavior offknl2gimp is desired.
ve

on
e

ket

To perform this calculation it is neccessary to intr
duce two sets each ofR and A fermions (cR , cA, dR , dA)
which evolve according to the Hamiltonian of Eq. (5
but with An ! cRy

n cR
n11 2 c

Ay
n11cA

n 1 sc ! dd. Repeat-
ing the previous arguments,

fjGsn, x; 0, 0dj2jGsm, x; 0, 0dj2gimp

­ k0jcA
n cR

n dA
mdR

m exph2hintxjdRy
0 d

Ay
0 c

Ry
0 c

Ay
0 j0l . (12)

Here hint is given by Eq. (8) but withAn redefined as
above. The important states are (localized) two-magn
states which are of two kinds. In the first type acR-cA

pair occupies one site while adR-dA pair occupies another
in the second typecR is paired withdA and cA with dR

[22]. These states are closed under the action ofhint which
generally causes paired fermions to hop together t
neighboring site. An exception is when the two pairs o
cupy adjacent sites, in which case the fermions may sw
2431
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partners and a state of one kind is transformed into
other. Thus the two-magnon states define a sort of t
body problem with a contact interaction of a kind famili
from ordinary ferromagnetism [15]. Following the sta
dard method explicit forms for the two-magnon eigensta
are obtained which can be used to straightforwardly eva
ate Eqs. (11) and (12); details will be given elsewhere [1
Contrary to the naive assumption that the center underg
a random walk, and hencefknl2gimp , x, exact calculation
reveals thatfknl2gimp ­

p
s2Dxdyp.

Finally consider multilayers that are of finite size in bo
chiral and transverse direction thus permitting electron
wind around the sample in the chiral direction. Duri
each circumnavigation, the electrons will typically diffu
a distance

p
DC in the transverse direction. Consequen

there are two distinct regimes depending on whetherN øp
DC (0D limit) or N ¿

p
DC (1D limit). Here N ­

number of layers in the multilayer. Finite-sized samp
are difficult to analyze due to the complex interference p
duced by winding paths. However, the conductance fl
tuations can be calculated using diagrammatic perturba
theory within the approximation normally used for diffu
sive electrons [6]. The result isfsdgd2gimp ­ Ase2yhd2

(1D limit) and fsdgd2gimp ­ A0hsCDdyN2j se2yhd2 (0D
limit). Here A andA0 are constants of order unity whic
we have not computed explicitly [23]. Conductance flu
tuations are of ordere2yh in the 1D limit as they are
for ordinary metallic grains. The larger nonuniversal r
sult for the 0D limit may be interpreted as follows: Th
electron moves a distanceN2yD ø C in the chiral direc-
tion before it diffuses into the phase-randomizing prob
The sample therefore breaks up intoCDyN2 incoherent
blocks, each with independent conductance fluctuation
ordere2yh. Although the perturbative results given he
have an appealing physical interpretation, the validity
these results deserves further study via simulation or n
perturbative analysis (which may be possible in the
limit [24]). By the familiar “ergodic hypothesis” of meso
scopic physics [6] we expect the statistical fluctuations
the conductance calculated here would be experimen
manifested as fluctuations in the conductance of a gi
specimen when a tunable parameter, e.g., the magn
field, is varied.

It is interesting to compare the method of this pap
with other field theory representations of the chiral mod
Because single particle properties are being calcula
Eqs. (3)–(8) would remain valid even if the fermions we
replaced by bosons (cR , cA ! bR , bA) yielding an interact-
ing boson representation of the chiral model rather than
Heisenberg ferromagnet analyzed here. If fermionsanda
redundant set of bosons are introduced, the supersym
ric representation of Balentset al. [10] results. It is very
convenient to be rid of the unneeded bosons, e.g., w
analyzing the directed wave problem; but it is important
emphasize that the bosons are optional only for the infi
system. For a finite circumference the boundary conditi
2432
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on Eq. (1) change, and it becomes necessary to introd
bosons whether operator methods (this paper) or functio
methods (Balentset al.) are used.
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