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Scaling of the Mean Velocity Profile for Turbulent Pipe Flow
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An experimental investigation was conducted to determine the scaling of the mean velocity profile fo
a fully developed, smooth pipe flow. Measurements of the mean velocity profiles and static pressu
gradients were performed at 26 different Reynolds numbers between31 3 103 and 35 3 106. The
profiles indicate two overlap regions: one which scales as a power law and one which scales as a
law, where the log law is only evident when the Reynolds number exceeds approximately300 3 103.
It is proposed that the velocity scales for the inner and outer regions are different, which is contrary t
commonly accepted beliefs. [S0031-9007(96)02054-6]
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In this Letter we investigate the scaling of the mean v
locity profile in fully developed, turbulent flow in a smoot
pipe. Fully developed flow requires that the flow is fre
from entrance effects so that all flow properties beco
independent of streamwise position, and they depend o
on the Reynolds number and surface roughness of the
wall. Here the Reynolds number Re is given byUDyn,
whereU is the average velocity,D is the diameter of the
pipe, andn is the kinematic viscosity. When the roughne
is small enough, the pipe is said to be smooth, and the fl
depends only on the Reynolds number. Despite the la
number of previous studies on this type of flow (note es
cially [1]), the existing data do not cover a very large ran
of Reynolds numbers, and questions of accuracy mak
difficult to unambiguously establish the scaling of the me
velocity profile. An experiment was therefore perform
to provide high-quality, mean-flow data over a range
Reynolds numbers from31 3 103 to 35 3 106 in a fully
developed, smooth pipe flow.

In fully developed, laminar pipe flow the mean veloci
profile can be described by a single length and veloc
scale, and the equations of motion yield a similar
solution for the velocity profile. In fully developed
turbulent pipe flow, however, a single similarity solutio
for the mean velocity profile has not been found or m
not exist. Instead, the mean velocity profile in turbule
pipe flow is usually divided into two regions, a near-wa
or inner region, and a core or outer region, and sepa
similarity solutions are sought for each region.

For the inner region, it can be argued that the viscos
and wall shear stress are the important parameters gov
ing the velocity distribution [2]. That is,

U ­ f0s y, ut , nd , (1)

where y is the distance from the wall andut is the
velocity scale in the inner region. The inner veloci
scale is known as the “friction” velocity and is defined

ut ­
q

tw

r ­
q

D
4r

dP
dx , wheretw is the wall shear stress

r is the fluid density, anddPydx is the mean streamwise
pressure gradient, which is independent of streamw
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position in a fully developed pipe flow. The length sca
in the inner region is given by the quantitynyut.

In the outer region, it can be proposed that the wall a
to reduce the velocity below the maximum or centerli
velocity in a manner which is independent of viscosi
[2]. Here the velocity profile should behave as

UCL 2 U ­ g0s y, R, uod , (2)

whereUCL is the centerline velocity anduo is the velocity
scale in the outer region. The length scale in the ou
region is the radiusR.

Dimensional analysis of Eqs. (1) and (2) leads to

U1 ­ fs y1d , (3)

and

sUCL 2 Udyuo ­ gshd , (4)

whereU1 ­ Uyut, y1 ­ yutyn, h ­ yyR, andf and
g are the dimensionless forms off0 andg0, respectively.
Equation (3) is known as thelaw of the wall, and is
valid only in the inner region. It can be shown from
the equations of motion thatf is linear very close to
the wall (y1 , 5), and we expect that Eq. (3) is valid
further from the wall than the linear region but not into th
outer region (0 , y1 ø R1 ­ Rutyn). Equation (4) is
known as thedefect law,and is valid only in the outer
region (0 ø h , 1) where viscosity is not important.

It is conventionally argued that the velocity scale for th
outer region is determined by the wall shear, so thatuo ­
ut . Using this assumption, Millikan [3] proposed that
large enough Reynolds numbers there may be a regio
overlap where both Eqs. (3) and (4) are simultaneou
valid. In this overlap region, wherenyut ø y ø R, a
logarithmic mean velocity profile results. Since this is a
overlap region, it can be expressed using inner or ou
scaling variables. When nondimensionalized using inn
scaling variables we obtain

U1 ­ k21 ln y1 1 B , (5)

wherek is known as von Kármán’s constant andB is a
constant that depends on the inner limit of validity fo
© 1997 The American Physical Society 239
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the log law. Both constants are empirical. When non
mensionalized using outer scaling variables the resul
equation is

U1
CL 2 U1 ­ 2k21 ln h 1 Bp, (6)

where Bp is an empirical constant that depends on
outer limit of validity for the log law. In a pipe flow,
typical values fork, B, and Bp are 0.41, 5.2, and 0.65
respectively, and the logarithmic region is believed
exist for50nyut , y , 0.15R.

A logarithmic overlap region with constants that a
independent of the Reynolds number, is the “conventio
wisdom” in pipe flow and indicates Reynolds numb
similarity. However, despite the large amount of da
available for turbulent pipe flow, there is still some dou
as to the validity of the underlying scaling argumen
embodied in Eqs. (5) and (6). For example, a pow
law scaling for the mean velocity profile can be attain
by both heuristic arguments (see [4], for example) a
overlap arguments (see [5], for example).

To study these issues, an experimental apparatus
built to enable accurate measurements across a wide r
of Reynolds numbers, up to large values. Compres
air was chosen as the working fluid to reduce costs.
closed-loop system was built with the test pipe loca
inside high-pressure piping (see Fig. 1). The test pipe
a nominal diameter of 129 mm. The primary test sect
was located 196 D downstream of the contraction and
upstream of the exit diffuser. After honing, the inside
the test pipe was polished to an rms surface finish (ky2) of
0.15 6 0.03 mm which corresponds to an average visco
height (k1 ­ kutyn) of 2.7 6 0.5 at a Reynolds numbe
of 40 3 106. A surface is usually considered smoo
whenk1 , 5 [6]. For further details of the experimenta
facility, see [7,8].

Measurements of the mean velocity profiles a
static pressure gradients were performed at 26 diffe
Reynolds numbers between31 3 103 and 35 3 106.
Each Reynolds number was achieved by varying eit
the density or flow rate. The flow was assumed to be
compressible since the maximum Mach number was
than 0.08 for all surveys. The temperature was alw
near ambient (295–300 K) and the pressure was va
between 1 and 186 atm. At these temperatures and p
sures, air follows the ideal-gas relation to within62.5%.
Even so, the density and viscosity were calculated fr
240
i-
ng

e

o

e
al
r
a
t
s
r-
d
d

as
nge
ed
A
d
ad
n
D
f

s

h
l

d
nt

er
n-
ss
ys
ied
es-

m

the absolute pressure and temperature using real-gas
tionships. For a description of these relationships an
comparison with experimental viscosity and density da
on air, see [8]. The static pressure gradients were fou
using 20 wall taps (0.79 mm diameter) equally spac
over 25 D, in the region between the secondary a
primary access ports (see Fig. 1). The velocity profil
were measured at the primary test section with a 0.90 m
diameter round Pitot probe. For each velocity profi
the outer surface of the Pitot probe was positioned with
0.04 mm of the wall, and was then traversed through 3y4
of the diameter. The overall uncertainty in the distan
from the wall to the center of the Pitot probe was le
than 60.05 mm. Pitot-probe corrections were applie
according to [9] (see [8] for details). The worst cas
uncertainty for a differential pressure measurement w
less than60.40% of the reading. The friction velocity
and average velocity had an uncertainty of60.45% and
60.30%, respectively. The Reynolds number had a
uncertainty of60.93%, and the normalized velocity (U1)
had an uncertainty of60.57%. The circumferential
asymmetries in the flow were found to be negligible (s
[8] for a description of the symmetry measurements).

In Fig. 2, we plot 13 mean velocity profiles normalize
by inner scaling variables. Inspection of the individu
velocity profiles reveals that fory1 , 0.1R1 (y , 0.1R),
the mean velocity profile is independent of the Reyno
number, or equivalently, the outer length scaleR. In
Figs. 3 and 4 we plot all 26 velocity profiles normalize
by inner scaling variables fory1 , 0.1R1. The results
indicate that the mean velocity profile is independent
the Reynolds number and consists of two distinct regio
a power-law region for50 , y1 , 500 or 0.1R1, and a
log-law region for500 , y1 , 0.1R1.

In Fig. 3 the data are shown using log-log coordinat
in order to emphasize the power-law dependence. The
ponent is approximately 0.137 which is close to 1y7. The
velocity data are within60.78% (95% confidence inter-
val) of the power law shown. The existence of a pow
law implies that viscosity is still an important parame
ter for y1 , 500. The viscous dependence suggests t
this region is part of the inner region, but it could als
be a separate overlap region in the mean velocity p
file exhibiting incomplete similarity (that is, it depend
on the Reynolds number). This is not the same type
FIG. 1. The layout of the SuperPipe facility. The flow direction is counterclockwise.
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FIG. 2. Linear-log plot of velocity profiles normalized usin
inner scaling variables for 13 different Reynolds numb
between31 3 103 and35 3 106.

incomplete similarity suggested in [4] where the emp
cal constants in the power law depend on the Reyno
number and a log law is not obtained even at very la
Reynolds numbers. Our results indicate that the pow
law scaling exists in a discrete region between the in
region and outer region or logarithmic overlap region, d
pending on the magnitude of the Reynolds number,
the empirical constants in the power law do not depe
on the Reynolds number when expressed using inner s
ing variables. We argue that this region is not the over
region expected at a very large Reynolds number, bu
intermediate overlap region that covers the range ofy1 at
which most previous experiments have been perform
At a very large Reynolds number, another overlap reg
is apparent, and the scaling in this region appears to
logarithmic.

FIG. 3. Log-log plot of velocity profiles within0.1R of the
wall normalized using inner scaling variables for 26 differe
Reynolds numbers between31 3 103 and35 3 106.
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In Fig. 4 the data are shown using linear-log coor
nates in order to emphasize the log-law dependence.
y1 . 500, a log law with a value ofk equal to 0.436
and an additive constant of 6.13 is in excellent agreem
with the velocity data up toy1 ø 0.1R1. The value ofk
was found by curve fitting the friction factor data (see [
or [8] for a complete description of this procedure). T
constantB was found from a curve fit of the velocity pro
files usingk ­ 0.436 in the range500 , y1 , 0.1R1.
The first three data points near the wall were neglec
due to the unacceptable uncertainty in their position, a
only Reynolds numbers with at least ten data points
the assumed logarithmic region were analyzed. The in
vidual values ofB were averaged (no weighting) for eac
Reynolds number. This value ofB shows no Reynolds
number dependence and has an average value of 6.13
a standard error of60.04. The velocity data are within
60.68% (95% confidence interval) of the log law shown

If y ø 0.1R is the near-wall limit of the outer region
it would appear that a logarithmic overlap region does n
exist for R1 , 5 3 103, which for a pipe corresponds t
Re , 300 3 103. To distinguish a logarithmic overlap
region over an order of magnitude iny1 requiresR1 .

5 3 104 (Re . 3 3 106 for a pipe) which has only been
achieved here, and in the investigations by [1] and [1
Therefore, the Reynolds number dependence ofk observed
by many investigators may well be due to the fact th
the scaling is not a log law, but appears to be a pow
law for 50 , y1 , 500. For instance, the value ofk
given byk ­ s y1≠U1y≠y1d21 varies from 0.49 to 0.36
for 50 , y1 , 500 which is consistent with the variation
observed by previous investigators (for example, [11]).

The power-law and log-law scaling in the mean velo
ity profile can be explained with an overlap argume
incomplete similarity in the power-law region and fu
similarity in the log-law region. The existence of bo

FIG. 4. Linear-log plot of velocity profiles within0.1R of the
wall normalized using inner scaling variables for 26 differe
Reynolds numbers between31 3 103 and35 3 106.
241
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FIG. 5. Velocity profiles normalized using the convention
outer velocity scale for 26 different Reynolds numbers betw
31 3 103 and35 3 106.

regions at sufficiently high Reynolds numbers is cons
tent with a proposal which includes a new velocity sca
other thanut , for the outer region [uo in Eq. (4)]. At
high Reynolds numbers, this outer velocity scale must
proportional to the inner velocity scaleut for this pro-
posal to yield a log law. An outer velocity scale whic
exhibits the proper behavior is given byuo ­ UCL 2 Ū.
At low Reynolds numbers,uoyut is a nonlinear func-
tion of the Reynolds number, but at high Reynolds nu
bers,uoyut is independent of the Reynolds number (i.
uoyut ­ const). The proposed velocity scale was us
to normalize the velocity profiles in the outer regio
(0.1R , y , R). Inspection of Figs. 5 and 6 indicate
that the velocity profiles normalized byUCL 2 Ū are in
significantly better agreement than the velocity profi
normalized byut . We believe thatUCL 2 Ū is the cor-
rect velocity scale in the outer region of a pipe and sho
be used instead ofut . At sufficiently high Reynolds num-
bers (R1 . 5 3 103 or 500nyut , y , 0.1R), the scal-
ing in this overlap region was found to be logarithmic a
UCL 2 Ū is proportional tout . Using UCL 2 Ū as the
velocity scale, the log law can be accurately represen
by the equation

UCL 2 U
UCL 2 Ū

­
1

1.89
ln h 1 0.348 . (7)

The new outer velocity scale presented here was es
lished for a pipe flow. For similar values ofR1, we may
expect channel flow and boundary layers to scale the s
way as pipe flow. An equivalent outer velocity scale fo
boundary layer is given byuo ­ Uedpyd, whereUe is the
freestream velocity,dp is the displacement thickness, an
d is the boundary-layer thickness. At high Reynolds nu
bers,dpyd should be proportional to

p
Cf (Cf is known as

the skin friction coefficient) for a logarithmic overlap re
gion to exist. For a boundary layer some controversy ex
over whether the scaling in the overlap region is a log l
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FIG. 6. Velocity profiles normalized using the proposed ou
velocity scale for 26 different Reynolds numbers betwe
31 3 103 and35 3 106.

or a power law [5]. To observe a log law over an order
magnitude iny1 would require ad1 of 50 3 103 which
is rarely measured in laboratory experiments [12]. The
fore, for most boundary-layer experiments, the scaling
the overlap region may be a power law, although it sho
be pointed out that the scaling proposed by [5] (which
based onUe) is not the same as the scaling proposed he
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