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Scaling of the Mean Velocity Profile for Turbulent Pipe Flow
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An experimental investigation was conducted to determine the scaling of the mean velocity profile for
a fully developed, smooth pipe flow. Measurements of the mean velocity profiles and static pressure
gradients were performed at 26 different Reynolds numbers bet&ken 10° and 35 X 10°. The
profiles indicate two overlap regions: one which scales as a power law and one which scales as a log
law, where the log law is only evident when the Reynolds number exceeds approxif@ety 10°.
It is proposed that the velocity scales for the inner and outer regions are different, which is contrary to
commonly accepted beliefs. [S0031-9007(96)02054-6]

PACS numbers: 47.27.Jv, 47.27.Nz, 47.60.+i

In this Letter we investigate the scaling of the mean vejosition in a fully developed pipe flow. The length scale
locity profile in fully developed, turbulent flow in a smooth in the inner region is given by the quantity u..
pipe. Fully developed flow requires that the flow is free In the outer region, it can be proposed that the wall acts
from entrance effects so that all flow properties becoméo reduce the velocity below the maximum or centerline
independent of streamwise position, and they depend onlelocity in a manner which is independent of viscosity
on the Reynolds number and surface roughness of the pi2]. Here the velocity profile should behave as
wall. Here the Reynolds number Re is given Gy /v, o
whereU is the average velocity) is the diameter of the Uc = U = gy, R,uo), (2)
pipe, andv is the kinematic viscosity. When the roughnesswhereUc;, is the centerline velocity ang, is the velocity
is small enough, the pipe is said to be smooth, and the flowcale in the outer region. The length scale in the outer
depends only on the Reynolds number. Despite the largeegion is the radiu®.
number of previous studies on this type of flow (note espe- Dimensional analysis of Egs. (1) and (2) leads to
cially [1]), the existing data do not cover a very large range Ut = f(y") 3)
of Reynolds numbers, and questions of accuracy make it ' ’
difficult to unambiguously establish the scaling of the meargnd
velocity profi_le. An gxperiment was therefore performed Uer — U)/u, = g(n), (4)
to provide high-quality, mean-flow data over a range of
Reynolds numbers frol X 10° to 35 X 10° in a fully ~ whereU™ = U/u,, y™ = yu./v, n = y/R, andf and
developed, smooth pipe flow. g are the dimensionless forms @§ and gy, respectively.

In fully developed, laminar pipe flow the mean velocity Equation (3) is known as théaw of the wall, and is
profile can be described by a single length and velocityalid only in the inner region. It can be shown from
scale, and the equations of motion yield a similaritythe equations of motion that is linear very close to
solution for the velocity profile. In fully developed, the wall (/" <'5), and we expect that Eg. (3) is valid
turbulent p|pe ﬂOW, however, a Sing|e S|m||a|'|ty solution further from the wall than the linear regiOn but not into the
for the mean velocity profile has not been found or mayouter regionQ < y™ < R™ = Ru,/v). Equation (4) is
not exist. Instead, the mean velocity profile in turbulentknown as thedefect law,and is valid only in the outer
pipe flow is usually divided into two regions, a near-wall 'egion 0 < n < 1) where viscosity is not important.
or inner region, and a core or outer region, and Separa‘te Itis Conventiona”y argued that the VeIOCity scale for the
similarity solutions are sought for each region. outer region is determined by the wall shear, so that=

For the inner region, it can be argued that the viscosityt-- Using this assumption, Millikan [3] proposed that at
and wall shear stress are the important parameters goverd'ge enough Reynolds numbers there may be a region of

ing the velocity distribution [2]. That is, overlap where both Egs. (3) and (4) are simultaneously
valid. In this overlap region, where/u, < y < R, a
U= foly,usv), (1)  logarithmic mean velocity profile results. Since this is an

overlap region, it can be expressed using inner or outer
scaling variables. When nondimensionalized using inner
scaling variables we obtain

where y is the distance from the wall and, is the
velocity scale in the inner region. The inner velocity
scale is known as the “friction” velocity and is defined as

. + o 1 +

% = % fl—f, wherer,, is the wall shear stress, U" =« 'Iny" +B, (5)

p is the fluid density, andP/dx is the mean streamwise where « is known as von Karman's constant agdis a
pressure gradient, which is independent of streamwiseonstant that depends on the inner limit of validity for

u; =
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the log law. Both constants are empirical. When nondithe absolute pressure and temperature using real-gas rela-
mensionalized using outer scaling variables the resultingjonships. For a description of these relationships and a
equation is comparison with experimental viscosity and density data
Ul, —U" =—«k"'Ing + B, (6) on air, see [8]. The static pressure gradients were found
where B* is an empirical constant that depends on theusing 20 wall taps (0.79 mm diameter) equally spaced
outer limit of validity for the log law. In a pipe flow, over 25D, in the region between the secondary and
typical values fork, B, and B* are 0.41, 5.2, and 0.65, primary access ports (see Fig. 1). The velocity profiles
respectively, and the logarithmic region is believed towere measured at the primary test section with a 0.90 mm
exist for50v/u, < y < 0.15R. diameter round Pitot probe. For each velocity profile,

A logarithmic overlap region with constants that arethe outer surface of the Pitot probe was positioned within
independent of the Reynolds number, is the “conventiona?-04 mm of the wall, and was then traversed through 3
wisdom” in pipe flow and indicates Reynolds numberof the diameter. The overall uncertainty in the distance
similarity. However, despite the large amount of datafrom the wall to the center of the Pitot probe was less
available for turbulent pipe flow, there is still some doubtthan =0.05 mm. Pitot-probe corrections were applied
as to the validity of the underlying scaling argumentsaccording to [9] (see [8] for details). The worst case
embodied in Egs. (5) and (6). For example, a poweruncertainty for a differential pressure measurement was
law scaling for the mean velocity profile can be attainedess than=0.40% of the reading. The friction velocity
by both heuristic arguments (see [4], for example) andind average velocity had an uncertainty200.45% and
overlap arguments (See [5], for example)_ +0.30%, reSpeCtiver. The Reyn0|ds number had an

To study these issues, an experimental apparatus wa#certainty of=0.93%, and the normalized velocity ")
built to enable accurate measurements across a wide ranfad an uncertainty of=0.57%. The circumferential
of Reynolds numbers, up to large values. Compresse@symmetries in the flow were found to be negligible (see
air was chosen as the working fluid to reduce costs. A8] for a description of the symmetry measurements).
closed-loop system was built with the test pipe located In Fig. 2, we plot 13 mean velocity profiles normalized
inside high-pressure piping (see Fig. 1). The test pipe hally inner scaling variables. Inspection of the individual
a nominal diameter of 129 mm. The primary test sectiorvelocity profiles reveals that for” < 0.1R" (y < 0.1R),
was located 196 D downstream of the contraction and 6 [Bhe mean velocity profile is independent of the Reynolds
upstream of the exit diffuser. After honing, the inside ofnumber, or equivalently, the outer length scdle In
the test pipe was polished to an rms surface fintgiof ~ Figs. 3 and 4 we plot all 26 velocity profiles normalized
0.15 = 0.03 wm which corresponds to an average viscouddy inner scaling variables for™ < 0.1R". The results
height ¢* = ku,/v) of 2.7 = 0.5 at a Reynolds number indicate that the mean velocity profile is independent of
of 40 X 10°. A surface is usually considered smooththe Reynolds number and consists of two distinct regions:
whenk* < 5[6]. For further details of the experimental @ power-law region fo50 < y* < 500 or 0.IR", and a
facility, see [7,8]. log-law region for500 < y* < 0.1R™*.

Measurements of the mean velocity profiles and In Fig. 3 the data are shown using log-log coordinates
static pressure gradients were performed at 26 differerin order to emphasize the power-law dependence. The ex-
Reynolds numbers betweedl X 10° and 35 x 10°.  ponent is approximately 0.137 which is close §¥1 The
Each Reynolds number was achieved by varying eithevelocity data are withint0.78% (95% confidence inter-
the density or flow rate. The flow was assumed to be inval) of the power law shown. The existence of a power
compressible since the maximum Mach number was ledaw implies that viscosity is still an important parame-
than 0.08 for all surveys. The temperature was alwayser fory* < 500. The viscous dependence suggests that
near ambient (295-300 K) and the pressure was varietthis region is part of the inner region, but it could also
between 1 and 186 atm. At these temperatures and prelse a separate overlap region in the mean velocity pro-
sures, air follows the ideal-gas relation to withir2.5%.  file exhibiting incomplete similarity (that is, it depends
Even so, the density and viscosity were calculated fronon the Reynolds number). This is not the same type of
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FIG. 1. The layout of the SuperPipe facility. The flow direction is counterclockwise.
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40— In Fig. 4 the data are shown using linear-log coordi-

i Re = 35 x 10—, | nates in order to emphasize the log-law dependence. For
35 | Re = 10 x 10° 44{"‘ 4 y* > 500, a log law with a value of« equal to 0.436

: Re=3,1><106*_>,<§‘?“=. T and an additive constant of 6.13 is in excellent agreement
30 [ Re = 1.0 x 10° x{& : ] with the velocity data upte* = 0.1R*. The value ofx

} Re = 310 X 10— g "'@“ ] was found by curve fitting the friction factor data (see [7]
25 [LoRe = 98 x 10° ' 1 or [8] for a complete description of this procedure). The
U* [ Re=31x10°— s ] constantB was found from a curve fit of the velocity pro-
a0 | Kl ] files usingx = 0.436 in the range500 < y* < 0.1R*.
] }.f ] The first three data points near the wall were neglected
15 [ o ] due to the unacceptable uncertainty in their position, and

r d ] only Reynolds numbers with at least ten data points in
0l : ] the assumed logarithmic region were analyzed. The indi-

' ’ ] vidual values ofB were averaged (no weighting) for each
Y T T T e Reynolds number. This value & shows no Reynolds
10° 10! 10% 10° 10t 10° 10° number dependence and has an average value of 6.13 with

¥ a standard error 0f20.04. The velocity data are within

FIG. 2. Linear-log plot of velocity profiles normalized using +0.68% (95% qonfldence mterva_ll) -Of the log law shoyvn.
inner scaling variables for 13 different Reynolds numbers, If y = 0.1R is the near-V\_/aII “_m't of the out'er region,
betweerd1 X 103 and35 X 106. it would appear that a logarithmic overlap region does not

. L . . existforRT < 5 X 103, which for a pipe corresponds to
incomplete similarity suggested in [4] where the empiri-po ~ 300 x 103, To distinguish a logarithmic overlap

cal constants in the power law depend on the Reynoldﬁegion over an order of magnitude if" requiresR* >
number and a log law is not obtgine_d even at very largg s |4 (Re> 3 X 10° for a pipe) which has only been
Reynolds numbers. Our results indicate that the powerscpieyed here, and in the investigations by [1] and [10].
law scaling exists in a discrete region between the INNe{herefore, the Reynolds number dependenceatiserved
region and outer region or logarithmic overlap region, de«Dy many investigators may well be due to the fact that
pending on the magnitude of the Reynolds number, ang,, scaling is not a log law, but appears to be a power

the empirical constants in the power law do not depengl,\; for 50 < y* < 500. For instance, the value of
on the Reynolds number when expressed using inner scali o, byx = (yTaU*/ay*)~! varies frbm 0.49 to 0.36

ing variables. We argue that this region is not the overlag, 5o < y* < 500 which is consistent with the variation

region expected at a very large Reynolds numbei, but agnserved by previous investigators (for example, [11]).
intermediate overlap region that covers the range oat The power-law and log-law scaling in the mean veloc-

which most previous experiments have been performedy, nofile can be explained with an overlap argument:
At a very large Reynolds number, another overlap regio,complete similarity in the power-law region and full

is apparent, and the scaling in this region appears t0 b§mijarity in the log-law region. The existence of both

logarithmic.
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FIG. 3. Log-log plot of velocity profiles withir0.1R of the  FIG. 4. Linear-log plot of velocity profiles withif.1R of the
wall normalized using inner scaling variables for 26 differentwall normalized using inner scaling variables for 26 different
Reynolds numbers betweén X 10° and35 X 10°. Reynolds numbers betweén X 10* and35 X 10°.
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FIG. 5. Velocity profiles normalized using the conventional FIG. 6. Velocity profiles normalized using the proposed outer
outer velocity scale for 26 different Reynolds numbers betweervelocity scale for 26 different Reynolds numbers between
31 X 10° and35 X 10°. 31 X 10° and35 X 10°.

regions at sufficiently high Reynolds numbers is consis-

tent with a proposal which includes a new velocity scaleor a power law [5]. To observe a log law over an order of
other thanu,, for the outer region, in Eq. (4)]. At magnitude iny* would require a5* of 50 X 10 which
high Reynolds numbers, this outer velocity scale must bgs rarely measured in laboratory experiments [12]. There-
proportional to the inner velocity scale. for this pro-  fore, for most boundary-layer experiments, the scaling in
posal to yield a log law. An outer velocity scale which the overlap region may be a power law, although it should
exhibits the proper behavior is given by = Uc,. — U.  be pointed out that the scaling proposed by [5] (which is
At low Reynolds numbersy,/u. is a nonlinear func- pased ort,) is not the same as the scaling proposed here.
tion of the Reynolds number, but at high Reynolds num- The support of ARPAONR under Grant No. NO0014-
bers,u,/u, is independent of the Reynolds number (i.e.,92-3-1796 is gratefully acknowledged.

u,/u, = const). The proposed velocity scale was used
to normalize the velocity profiles in the outer region
(0.1R <y < R). Inspection of Figs. 5 and 6 indicates
that the velocity profiles normalized byc;, — U are in *Current address: Creare Inc., P.O. Box 71, Hanover,
significantly better agreement than the velocity profiles NH 03755.
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