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Nonlinear Landau Damping in Collisionless Plasma and Inviscid Fluid
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The long-time nonlinear evolution of generic initial perturbations in stable Vlasov plasma and
two-dimensional (2D) ideal fluid is studied. Even without dissipation, these systems relax to new
steady states (Landau damping). The asymptotic damping laws are found to be algebraic, such as
t~! for 1D plasma potential, or=5/2 for evolving stream function in a flow with nonvanishing
shear. The rate of the relaxation is fast so that phase-gfhaideclement displacement in certain
directions is uniformly small, implying that decaying Vlasov and 2D fluid turbulences are not ergodic.
[S0031-9007(97)02778-6]
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Part of the challenge facing the theory of turbulenceVlasov-Poisson system fails ferlarger than the particle
is that it is extremely difficult to make exact statementsbounce timer, = e ~'/2 [4]. This happens because the
about the long-time behavior of a nonintegrable systenfluctuations of the distribution function do not decay,
that go beyond the mere consequences of applicable cobut rather develop free-streaming-type small scales,
servation laws. For chaotic systems with a few degree%(x,v,,) ~ 7(x — v1,v,0) ~ €, and the nonlinearity,
of freedom, there are a few results like this, mclud-av]”c/f(l)(v) ~ et, increases secularly with time.

ing the little-known Sundman’s theorems for the three- The previous analytical work on the nonlinear Viasov
body problem (cf. Ref. [1], pp. 49-68) and the famousy|asma includes the exact special stationary solutions
Kolmogorov-Armold-Moser theory [2]. Here an attempt ot gerpstein, Greene, and Kruskal (BGK) [5] and the
is made to draw certain long-time conclusions about th%onstationary theory of O'Neil for, =t < ¢ ! and
nonlinear evolution in a Vlasov plasma and in a 2D idealgmgl & [4]. O'Neil showed that the damping rate of
fluid. We study the dynamics of the relaxation of aine wave,y(r) = ¢/, starts oscillating about zero on
generlc_lnltlal pgrturbatlon in these systems and _derlvqhe trapping time scale, with a decreasing amplitude.
algebraic damping laws for the perturbation. As in therhe analytical theory of the trapping oscillations is
above finite-dimensional examples, our continuous f'”d'possible because of the unchanged shape of the wave for
ings imply the lack of ergodicity, with grave implications ; « -1, The currently prevailing conjecture is that non-
for several statistical theories of turbulence. linear plasma waves, after several trapping oscillations,
We start with the 1D Vlasov-Poisson system forgeye to a stationary stable BGK wave. This conclu-
the electron d'St”bUt'qn _f“nCt'O’f(x’v’t) = fov) *  sjon appears to be backed by numerical simulation [6],
f (x,v,1) and the electric field (x, 1) = —d, ¢ (x,1), although numerical evidence is inconclusive for the
_ long-time limit. More importantly, the stability of the
(@ + vox + Edu)f =0, nonlinear BGK waves remains an outstanding issue. This
o author is not aware of any single example of a stable
I, E = ] fdv — 1, (1) BGK wave; moreover, all analytically written BGK waves

appear linearly unstable [6], and the only known nonlinear

describing nonlinear plasma waves on a uniform ion backstability criterion [7], dfo/dH < 0, where H(x,v) =
ground. In Eq. (1), the timeis normalized to the inverse ¢(x) + v2/2 is the particle energy, holds for no
plasmafrequency);el, andx is measured in Debye lengths periodic BGK wave ([8], p. 85). This suggests that the
rp = v./w,., Wherev, is the electron thermal velocity, Landau damping will not be arrested by nonlinearity; how-
the unit forv. The problem has two basic dimension- ever, the nature of the damping will be modified for large
less parameters, the nonlinearéty~ f/f, and the typical t > € .
wave numbekrp of the initial perturbation. Our logic is as follows. Weassumethat the electric

The original solution of the initial-value problem for field decays with timeE(x, 1) — 0, ast — %. Then this
Vlasov plasma by Landau [3] is strictly linear, meaningassumption is shown to be self-consistent by calculating
that € is the smallest parameter of the problem. Wethe actual damping ratef « ¢!, instead of the linear
will not assume either of the parametersor k¥ small or  exponential damping.
large; instead, the largest, or the only large, parameter Assume a periodic boundary condition inwith the
in our treatment will be time. The long-time limit is period L, and expand the electric field in a Fourier
intrinsically nonlinear, because the linearization of theseries. Then, fok # 0, the second Eq. (1) yields
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In Eq. (2), the variables of integration were changed to _
the Lagrangian variablea and b, the initial position -1k
and velocity of a particle. According to the Liouville _

theorem, the Jacobian of this transformation is unity, and ... ... .o 010 vur 0 L LY IR
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.

the distribution function is constant along the particle orbit ' a a ot
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thus reducing to its initial valug;(a, b) = f(a, b,0).
Equation (2) expresses the electric field in terms of SN
é& j @fx o
<O, (,V\ DQ)C
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the particle orbitx(a,b,) defined byi = E(x,r) and
X=2
=

0.2

the given initial condition, a problem as difficult as the
original Eq. (1). However, the integral representation of . [
E in terms of the orbit is very useful for studying the long-
time asymptotic, when the electric field is presumably
small, and the orbit becomes a motion with a constant®?}
velocity, x(a,b,t) = Ula, b)t (plus lower-order terms).
The resulting integral of an oscillatory function,

054
_ikiU(ab) FIG. 1. Contour lines ofU/(a,b) computed for exponentially
E(t) = [fi(a,b)e ?'da db, t— 2, (3) (left) and algebraically (right) decaying potentials. The com-
putation was done through the “infinite” time= 20 and
t = 1000, respectively. The bottom panel is a zoom of the
top panel. The presence of multiple extrenta goints) and
saddles X points) ofU is apparent.

for smooth f;, will generally have only two kinds of
asymptotics. If the gradient d(a, b) is nowhere zero
(as, for example, in the linear theory, wheté = b),
then the integral (3) is exponentially small at large
(the Riemann-Lebesgue lemma). If, on the other handor one exponentially damped wave shows a smddth
U has a stationary point where,U = 9,U = 0, then  with no stationary points.)
the O(¢~'/?) vicinity of this point dominates the integral,  In fact, U(a,b) has an infinite number of stationary
which scales a¥r « +~!. Below we show that/(a,b)  points (a’,b’). Upon expanding the particle orbit near
has stationary points in the general case, and therdfore such a point at large, x(a,b,t) = U/t + [Uta(a —
decays algebraically._ _ ' . a2 + Uly(b — b)) + Uly(a — a/)(b — b)]t)2 +
The problem of finding the final velociyyV as a viins + wi + 0(t™!), Eq. (2) yields the electric field
function of the initial condition, for a particle moving in 4t |arger in terms of the infinite series,
a generic decaying potential, is very similar to chaotic

scattering [9], and, likewise, due to the transient particle . _ Z fi(aj,b’:)ef'ik(U/l+V/_'”’+Wi) <L>
trapping, the function/(a, b) is quite complex (Fig. 1). £ T KLU UL, — (UL,)2]12 k2 )’
The fact thatU(a, b) is not monotonic is most transparent (4)

from the inspection of the particle bouncing at the top

(Fig. 2) and at the bottom (Fig. 3) of a decaying potentiawhich could in principle pose problems in terms of
profile. If the initial potential amplitude is small, the divergencies or cancellations.

bouncing at the bottom is possible only i decays The series (4) turns out to be absolutely (exponentially
sufficiently slowly, e.g. « et %, 0 < a < 2, inorder in j) convergent, because it is possible to analyze the
that the bounce time, « ¢ ~'/2 be less tharr. The accumulation of the stationary points of. This is due
initial, linear Landau damping is exponential, seeminglyto the adiabaticity of the particle motion at large time,
suggesting no bouncing, hence no stationary points ofvhen the bounce frequenay, « ¢'/? « t~/2 is much
U(a,b) and the persistence of the exponential dampinglarger than the potential damping ratg/¢ = t~!. As a
However, a simple perturbation analysis of the particleresult, the adiabatic invariadta, b), the(x, v) plane area
motion near the topof an evolving potential hill shows inside a nearly closed trapped particle orbit, is conserved,
that one can always pick initial conditions such that theand the corresponding angle varialslds growing with
behavior of Fig. 2 takes place. To some confusion, thighe bounce frequencyl = [’ w; dr « t'/2. Untrapping
turns out possible only if the spatial extrema &fx,7)  occurs when the shrinking separatrix of the decaying
anda, ¢ (x, ) do not coincide, that is, if there is more than potential, with the area « +~12, intersects the orbit
just one wave, a safely generic situation. (The result ofvith the conserved ared (Fig. 4). For a smallJ «

the left Fig. 1 is for two waves. A similar computation (a — ag)*> + b2, the crossing time* « J~2 and the angle

2370



VOLUME 78, NUMBER 12 PHYSICAL REVIEW LETTERS 24 MRcH 1997

by Bb to the algebraic damping rate, we infer as a by-product the

(%) Ulay,b) / spectrumk;, = k2, k < t, implying the development of

by ) steps in the electron density perturbatiopt. That is,

/\ the shape of the wave changes significantlysfor €.
x ! \/ b In hlg_her dimensionsd > 1, asymptotic formula_(S) is
/ also valid. Ifk - U(a, b) has stationary points (which we
by b cannot guarantee fat > 1), the saddle-point integration
/ predicts a faster damping ratg,o 9.

FIG. 2. Particle bouncing in a decaying potential and its, We.now FU”.‘ tc.) the dlfferent_proble_m Of the relaxat|_on
signatureU(a, b). Near the potential top, an increase in the in 2D ideal inviscid incompressible fluid with the velocity

initial velocity b can bring the particle to the decaying potential v = Vi (x, y, ) X z described by the Euler equation,
barrier earlier, when the barrier was higher, and thus turn the 5
particle aroundU(ag, bo) > 0, U(ag, by + 6b) < 0. (0; +v-Vo =0, w=-Vy. (6)

As in the case of Vlasov plasma, we are interested in the

long-time relaxation of an initial perturbatio#(x, y, ¢)

imposed on a stable shear flaw(x). The deep analogy

bt this problem with the Landau damping in plasmas has

been noted [11,12]. We will assume a periodic boundary

condition iny [along the shear flow(x) = —¢)(x)].

fr linear theory, the perturbation of the stream function

¢ is known to be damped, because the reconstruction of
from the conserved vorticitw with growing gradients

nvolves an integration,

6* « J~!. Following a small change during the separatrix
crossing [10], the adiabatic invariant of the passing
particle (now defined as twice the phase-space area)
conserved again and defines the final velofiitya, )| =
J(a,b)/2L. The sign ofU, roughly sgiisin6*), depends
on whether the crossing happens in the upper or in th
lower half-plane of Fig. 4. The width of the steps Gf

is still finite, 60" o e~ o ¢~1/7@b): jt is determined
by the exponentially narrow near-separatrix layer, where
the bounce perio@#/w, diverges logarithmically, and
the adiabaticity does not hold. Thus we obtain the

_ / ) /! / li
approximate analytical expression for the final velocity: Yplx.y.1) = f Glr.xy = y)olx,y,t)dxdy, (7)

Ula,b) = J(a,b)/2L tanHe"/@?) sing~'(a, b)]. where G is the boundary-condition-dependent
Green’s function with a discontinuous derivative at
(5)  (x,y) = (x',y"). If the flow is unbounded in thex

, directi f I ") = ¢ W= yYnlike
Near the bottom of the wella = ay, the behavior rection, for- examp e’G’_‘(x’x) ~C o
of Eqg. (5) is consistent with the numerical result in plasma waves, the damping law #fis algebraic already

Fig. 3. Equation 5 also implies an exponentially growingin linear theory:y o t~2 for monotonicvo(x) [12-14]

. — 2 .
curvature Ul, = ¢/ near the steps as one moves to@nd>? /2 for wy(x) with an extremum [15].
the accumulation point of thé/ extrema, hence the Similar to the Vlasov case, the linear damping in fluid

exponential convergence of the series (4). Thus the lond2réaks down for large raising the question of the long-

time behavior of the electric field (4) is dominated by a ime asymptotic. To th.is end, we use 'the same tr?ck
few “strongest” stationary points df(a,b). In addition S for the Viasov equation. Upon applying the Fourier
transform iny to Eq. (7) and changing the integration

—— variables(x’,y’) to the Lagrangiam variable&:, b), we
I ] obtain
05 ] Ui =fGk[x,X(a,b,t)]e_iky(“’b”)wi(a,b)dadb, (8)

where w;(a, b) is the total initial vorticity, andX,Y) is
the orbit of a fluid element with the initial positida, b).
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FIG. 3. The cross section ob/(a,b) for the algebraically
decaying potential shown in Fig. 1. Near the bottom of the
potential well, the particle makes many bounces before beinglG. 4. The adiabatic invariant before (a) and after (b) the
released in an essentially random direction. separatrix crossing in a decaying potential well.
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Consider the case of a smooth and monotoni¢x). cles to arbitrarily high energies in an evolving collision-
Then, for a very small perturbation, the unperturbed orbitess plasma does not contradict conservation laws; how-
(X,Y) = (a,b + vol(a)r) yields an oscillatory integral ever, this turns out exactly prohibited by self-consistent
in a, which is not exponentially small because of thedynamics.

derivative discontinuity inG;. Changing the variable The shear damping of perturbations is not specific to
to the monotoniay(a) and integrating by parts twice then plane parallel fluid flow; similar results hold for circular
yields i (x,1) = t72 for k # 0, the well-known linear monopole vortices developing in the course of long-time
result. Foruvg(x) with a stationary point, the singularity turbulent evolution [22,23] and also in the framework
of the Green’s function does not matter, and a stationaryef related 2D geophysical fluid equations. In these
phase integration ovar yields;Z « 1712 in agreement Systems, nonlinear Landau damping is the mechanism
with [15]. Based on the ordering of terms in Eq. (6) for Of the turbulence relaxation toward large-scale coherent
the regime Withz « 12, Brunet and Warn [15] argued structures. Finally, it appears that decaying 2D turbu[ence
that the nonlinearity remains small and does not changl§ More about dynamics (vortex merger and the nonlinear
the damping rate. Such an analysis appears superficid@MPping of vortex perturbations) than statistics.
because the accumulation of a small nonlinear effect in 1his work grew out of extensive and fruitful discus-
the Euler equation is secular. Our analysis of Eq. (85i0NS Wlth Andrel_Gruzmo_v, who suggested the possible
goes as follows. The flow disturbance of ordemakes ngnergodmty of ideal fluid flows. | also thank T.M.
the orbit essentially depend on bathand b, e.g.,Y = O’Neil, J. M. Greene, a_nd W.R.. Young for very useful
b + vo(a)t + € [vi(a,b,t,e)dt. Thus the integral (8) and pleasant conversations. This work was supported by
is also oscillatory inb for ¢t > e~!. This is when the the U.S. DOE Grant No. DE-FG0388ER53275 and ONR
nonlinearity comes into effect. Because of periodicity, erant No. N00014-91-J-1127.

the phasékY(a, b) has a stationary point ih producing

the additional factor of ~!/2 in the integral asymptotic.
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