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Exact Two Vortices Solution of Navier-Stokes Equations
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An exact two-dimensional solution of a viscous flow generated by two point vortices is obtained.
The viscosityn is introduced as a Brownian motion in the Hamiltonian dynamics of two point vortices.
The derived exact solution describes in particular the merging process of two Lamb vortices. In the
limit n ! 0, the apparition of a spiral structure in the topology of the vorticity distribution is observed.
This solution also describes the selection by viscosity of a particular solution among the infinity of
patterns satisfying the Euler equation. [S0031-9007(97)02769-5]

PACS numbers: 47.32.Cc, 05.40.+ j, 47.27.Qb, 47.52.+ j
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Vortex interaction is a central issue in two-dimension
fluid turbulence [1]. The basic mechanism, the collisio
of two localized vortices, was extensively studied main
using numerical simulations [2], in an attempt to unde
stand the dynamics of coherent structures. Asympto
analysis also contributed to the study of the motion of vo
tices in a two-dimensional potential flow, and the resu
used to design efficient numerical schemes amenable
describe the merging process [3]. A fundamental po
about vortex interactions is the appearance of a sp
structure, evolving rapidly and contributing to the gener
tion of small scales. The spiral structure is often invoke
to explain the statistical properties of turbulence [4].
this Letter we show that using a stochastic representat
of the Navier-Stokes equations, it is possible to find t
exact solution for the interaction of two vortices. The ro
of the viscosity and the detailed description of the spir
structure are thoroughly investigated.

Let us introduce the basic equations of the mod
and some useful notations. The vorticity of a two
dimensional flow in terms of the velocityusx1, x2, td is
given by v ­ = 3 u [= ­ s≠y≠x1, ≠y≠x2d]. The in-
compressibility condition= ? u ­ 0 permits one to intro-
duce the stream functionc defined byu ­ =c 3 êz ;
='c and the Poisson equationDc ­ 2v, where the no-
tationx' ­ sx1, x2d' ­ sx2, 2x1d has been used.

The Navier-Stokes equation written in terms of th
vorticity is

D
Dt

v ;
≠

≠t
v 1 su ? =dv ­ nDv , (1)

wheren is the viscosity.
A classical computation [5], using the Poisson equatio

gives the Biot-Savart law for a plane flow evolving in
regionV

usx, td ­
Z

V
Ksx 2 ydvs y , td dy , (2a)

where Ksx 2 yd is the velocity field in x generated
by a vortex of unit circulation located aty. Our main
interest is on local interaction processes, independen
the boundary conditions, we take thenV ­ R2, and the
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Green function is given by

Ksxd ­ 2
1

2p

x'

jxj2
. (2b)

A property of the Euler equation [Eq. (1) withn ­ 0]
is that point vortices are exact solutions, the interacti
of a vortex on itself being zero. The vorticity is in tha
case a sum of Dirac functions, and for two point vortice
it reads

vsx, td ­ G1dsssx 2 x1stdddd 1 G2dsssx 2 x2stdddd , (3)

where fxistd, i ­ 1, 2g represent the positions of the
point vortices andGi their circulations. Using (2a), the
equations of motion for the point vortices are

d
dt

xistd ­ GjKsxi 2 xjd, i fi j . (4)

This system, which can be recast into a Hamiltonian for
is easily integrable, due to the existence of two addition
integrals of motion: the relative distance between t
two vortices (r ­ x1 2 x2) and the position of their
center of mass (M ­ G1x1 1 G2x2). For a given initial
condition, the vortex evolution depends on the value
the total circulationG ­ G1 1 G2. Either G is zero and
the trajectories of the two point vortices are two parall
straight lines, orG is nonzero and the trajectories are tw
concentric circles whose center is the center of massM.

Our purpose is to generalize these purely nonvisco
results to the fully viscous case. The main idea
to construct a stochastic formalism which is a du
representation of the Navier-Stokes equation, in the sa
way as the Hamiltonian system (4) is a dual representat
of the Euler equation. Indeed, when the viscosity ter
is added to the Euler equation the trajectories of po
vortices become stochastic; this is similar to the equat
of heat conduction where the Laplacian operator is rela
to an underlying Wiener process. There is still,
the presence of the viscous term, a solution of t
form (3) but the motion of the vortices is given b
Langevin equations. In consequence the “characteristi
© 1997 The American Physical Society 2361
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[x1std, x2std] associated to the Navier-Stokes equatio
satisfy Eqs. (4) with added white noise terms [6,7]:

d
dt

xistd ­ GjKsxi 2 xjd 1
p

2n bistd, i fi j .

(5)
In Eq. (5) fbistd, i ­ 1, 2g represent two independen
white noises (with zero mean and unit variance) d
fined by bi ­ dWydt, whereW is the standard Wiene
process.

The vorticity (3) also becomes a stochastic process,
pending on the pathshx1std, x2stdj. Therefore, the prob-
lem of finding a solution of the Navier-Stokes equatio
is equivalent to computing the transition probabili
Psx1, x2, td associated with the stochastic differenti
equations (5) [7]. To computePsx1, x2, td one must solve
a Fokker-Planck equation [8]. The transition probabil
becomes the basic quantity from which one may calcula
for instance, the mean vorticity distributionkvl.

At this point, some comments are in order. To illustra
the formalism, we apply it to the case of one isolat
vortex. For one vortex the probability distribution is th
one of a Brownian motion. Indeed, the point vorticity
vsx, td ­ Gdsssx 2 x0stdddd, and the motion equation of th
vortex is simply Ùx0std ­ bstd. The transition probability
then satisfies a diffusion equation the solution of whi
reads

PLsx0, td ­
1

4pnt
exps2jx0j

2y4ntd , (6)

assuming that initially the vortex is at the origin. Beside
the vorticity distribution can be obtained using

kvl sx, td ­ G
Z

V
PLsx0, tddsx 2 x0d dx0 ­ GPLsx, td ,

(7)
which gives the well-known Lamb vortex [9]. In this cas
the role of the viscosity is simply related to the diffusio
of the initially concentrated vorticity. We will see tha
for two vortices new basic mechanisms induced by
viscosity appear.

In the light of these results, we can interpret Eq. (
as describing the interaction of two Lamb vortice
Hereafter, we analyze this system in the simplest ca
when both circulations are equal. WhenG1 ­ G2, the
noise terms in the Langevin equations forr ­ x1 2 x2
andM ­ sGy2d sx1 1 x2d are independent, and hence th
two vortex transition probabilityPsx1, x2, td turns out to
be the product of the probability distributions of the cen
of massPM, and of the vortex distancePr : Psx1, x2, td ­
GPMsM, tdPrsr, td. The knowledge of these probabilitie
allows the computation of the observed vorticity evolutio
by direct integration.

Using Eq. (5) we immediately find that the center
massM follows a Brownian motion withPM a Gaussian
probability distribution. Moreover, the distancer satisfies
2362
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the Langevin equation

d
dt

rstd ­ GKsrd 1 2
p

n bstd , (8)

wherebstd ­ fb1std 2 b2stdgy21y2 is still a white noise.
The Fokker-Planck equation associated to Eq. (8) is [8

≠

≠t
Prsr, td ­ 2G= ? fPrsr, tdKsrdg 1 2nDPrsr, td .

(9)
We introduce the polar coordinatesr ­ sr , ud, and adi-
mensional unitsr0, the initial vortex distance, for length
2pr2

0 yG for time, such that the Reynolds number
Re ­ Gy4pn. Besides, we supposer0 fi 0, otherwise
we would just obtain a Lamb vortex of circulationG.
In the following sr , t, nd will stand for the adimensiona
quantities where the newn is 1yRe. Using these nota-
tions we rewrite the last equation in the form

≠

≠t
Prsr , u, td ­ 2

1
r2

≠

≠u
Prsr , u, td 1 nDPrsr , u, td .

(10)
From expression (10) an important difference betwe

Euler and Navier-Stokes equations can be understo
Whenn is zero, the solution of (8) is in polar coordinate

r ­ 1,
d
dt

u ­ 1 , (11)

where s1, u0d is the initial distance, and corresponds
a rotation of periodT ­ 2p. A probability distribution
associated with this deterministic motion is

Prsr , u, td ­ dsr 2 1ddsu 2 t 2 u0d . (12)

This is of course a solution of (10) withn ­ 0. We
raise now an important question about the influence of
viscosity. First, we note that the argument of the angu
Dirac may be rewritten in the formu 2 tfsrd 2 u0,
where f is an arbitrary function satisfyingfs1d ­ 1.
Second, for any arbitrary small viscosity (in fact,n !
01) the effect of diffusion will spread out thed functions
in (12). Therefore, the actual distance (in the probabilis
sense) between the vortices will be slightly different
r0 ­ 1, which raises the problem of the choice off. This
is precisely the role of the viscosity, which will select
particular form off, compatible with the Navier-Stokes
equation, as we show below.

We now compute the solution of (10) with initia
condition, given in polar coordinates

Prsr , u, 0d ­ dsr 2 1ddsu 2 u0d , (13)

which means that the initial distance between the t
vortices is s1, u0d. The Fokker-Planck equation bein
invariant by rotation, one can chooseu0 ­ 0. Moreover,
this equation is separable in radial and angular variab
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Using the linearity of the equation, we look for a solutio
in the form of a Fourier series

Prsr , u, td ­
X

p[Z

ap,le2l2teipugp,lsrd ,

wherel2 . 0 to ensure convergence andap,l are coeffi-
cient to be determined by the initial condition (13). Th
radial equation forgp,lsrd reduces to a Bessel differentia
equation. Using a representation of the initial condition
a base of Bessel functions and comparing to the solut
of the radial equation, we obtain the appropriated form
the coefficientsap,l. The general solution is finally writ-
ten as

Psr , u, td ­
X

p[Z

eipu
Z 1`

0
l dl e2l2tJmp

slrdJmp
sld ,

where m2
p ­ ipyn 1 p2, or after integration [10], we

obtain the explicit formula

Prsr , u, td ­ Gsr , td

3

"
1 1 2R

1X̀
p­1

I21
0

µ
r

2nt

∂
Imp

µ
r

2nt

∂
eipu

#
,

(14)

whereR stands for the real part,Imp are modified Bessel
functions, and

Gsr , td ­
1

4pnt
e2 r211

4nt I0

µ
r

2nt

∂
. (15)

The vorticity field associated to (14) and the Gaussi
PM is an exact solution of the two-dimensional Navie
Stokes equation, this is the main result of this Letter.
straightforward computation allows us to verify that (14)
effectively a normalized positive probability distribution.

The probabilityGsr , td is the axisymmetric part ofPr ,
and can be also obtained as the solution of the heat equa
with initial condition a distribution of the vorticity along
a ring, it characterizes the diffusion of the radial distanc
It is worth noticing that this axisymmetric part become
asymptotically dominant in the limitt ! 1` [Ims0d ­
d0,m, the Kroneckerd], demonstrating that the final state
of the system is isotropic. Therefore, the solution (1
describes the change in the topology of the flow, the init
localized two vortices evolve to an axisymmetric structur

An important property of the Bessel functionsImsxd
is that they are all equivalent in the limitx ! 1`,
independently of the orderm. Formally, if we take as
the common limitI0, one can write

Prsr , u, td , Gsr , tddsud, st ! 0d , (16)

which gives the expected limit (13) ast ! 0. In con-
clusion, (14) is the Green function of the Fokker-Planc
equation (10) and gives the temporal evolution of the d
tance between the two initial point vortices. Of cours
the limiting case Re­ 1yn ­ 0 gives mp ­ p and the
solution becomesPLsr 2 r0, td. The evolution of the dis-
n
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tance is therefore a Brownian motion, as one could a
derive using the Langevin equation.

The general formula is quite abstract and, becau
of the Bessel functions of complex order, its numeric
evaluation is not easy. However, some useful informati
can be obtained in the limit of small viscosity. Usin
the asymptotic expansion of the Bessel functions,
approximation of (14) is given by

Prsr , u, td , Gsr , tdQsr , u, td, n ! 0 , (17)

where the asymmetric part of (17) is

Qsr , u, td ­

r
pr
2nt

1X̀
p­2`

e2 p2r

nt
fp2 1

2p
su2 t

r
dg2

, (18)

the Theta elliptic function [10]. The functionQ is a
solution of the one-dimensional heat equation in t
circle. In the present context, it describes the developm
of a spiral structure, triggered by the interaction of th
vortices (whose cores are of finite extent fort . 0). We
note that the spiral stretching increases ast while the
diffusion goes ast1y2, then the development of spira
structure is faster than diffusion. This may be easily se
in the limit n ! 0

Qsr , u, td ­ dsu 2 tyrd , (19)

which corresponds to a concentration of the probability
a spiral (in the original units)S : u ! usrd ­ Gty2pr0r
centered atr ­ 0 and spreading in time. The emergenc
of this spiral structure (decreasing as1yr) is the one se-
lected by the viscosity [selection offsxd ­ 1yx] coupled
with the rotation effect (G fi 0). Therefore, the viscosity
is not only important for its effect on diffusion and to
pology change, but also in selecting a particular spi
structure. The particular form off, at least for small vis-
cosity, may be related to the conservation of the ang
lar velocityyu ­ r Ùu ­ Gy2pr0. Expression (18) adds a
“Gaussian thickness” to the spiral structure. Of course
we maken ­ 0 for the radial and nonradial parts ofPr ,
we get the expected limit, the evolution of the distan
between two point vortices (12).

Besides, the probability distribution on the spiral stru
ture follows the lawGsr , td and has a sharp maximum a
rpstd, solution of the implicit equation (returning to adi
mensional quantities),

rp ­
I1s rp

2nt d
I0s rp

2nt d
# 1 . (20)

For t ­ 0, rp ­ 1 and decreases to zero as time grow
The thickness of this maximum is given bysntd1y2, and is
narrow in the limit examined. According to the positio
of this peak on the spiral, different behaviors may b
obtained, as can be seen with a detailed study of the sp
structure.

In Fig. 1 the spiralS is plotted at three different times
We choose the Reynolds number Re­ 1yn ­ 100 in
2363
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FIG. 1. Plot of the spiralS at t ­ 1, 10, and 12.5. Dotted
circle: r ­ rp ­ 0.98, 0.59, and 0.09; solid circle: atr ­ r0 ­
1; dotted line:u ­ up.

such a way as to observe the merging of two vortices d
ing a valid approximation time. At the beginningt ­ 1,
the distance distribution is closely concentrated arou
rps1d , 0.98 , 1: The two vortices have mutually ro-
tated byup , py3 but their distance is practically the
initial one. The vortices are still clearly separated. Th
coupling effects between rotation and diffusion are st
negligible. Therefore, at short times the vorticity distr
bution corresponds to two well-separated Lamb vortic
subject to rotation (G fi 0).

At time t ­ 10, rp , 0.59 andup , 4py3. The dis-
tance distribution is essentially concentrated on the sp
2364
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with radial valuesr [ frp 2 sntd1y2, rp 1 sntd1y2g, that
is to say angular valuesu [ f2p 1 1.6p, 10p 1 1.5pg:
This corresponds to the development and stretching
vortex arms, which wind around the other vortex. Her
each arm winds the other vortex on several rotations.

After this transitory period,rp quickly decreases and
at t ­ 12.5, rp , 0.09: The spiral is tightly bounded
aroundrp and becomes similar to circles. At this time th
angular isotropy is fully developed,Q is almost uniform
in the region where the probability is concentrated sho
ing the disappearance of the spiral arms, and the me
ing is ending. Lastly,rp , 0 and the further evolution is
purely diffusive.
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