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Exact Two Vortices Solution of Navier-Stokes Equations
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An exact two-dimensional solution of a viscous flow generated by two point vortices is obtained.
The viscosityr is introduced as a Brownian motion in the Hamiltonian dynamics of two point vortices.
The derived exact solution describes in particular the merging process of two Lamb vortices. In the
limit » — 0, the apparition of a spiral structure in the topology of the vorticity distribution is observed.
This solution also describes the selection by viscosity of a particular solution among the infinity of
patterns satisfying the Euler equation. [S0031-9007(97)02769-5]

PACS numbers: 47.32.Cc, 05.40.+j, 47.27.Qb, 47.52.+]

Vortex interaction is a central issue in two-dimensionalGreen function is given by
fluid turbulence [1]. The basic mechanism, the collision N
of two localized vortices, was extensively studied mainly K(x) = — 1 ox ) (2b)
using numerical simulations [2], in an attempt to under- 27 |x|?
e ot T TeTL UUCLE. ey P2 A ropeny f the Everequaton E5. (1) wih 0]
tices in a two-dimensional potential flow, and the results that point vortices are exact solutions, 'the Interaction
used to design efficient numerical sche}nes amenable Qf a vortex on |t§elf belngl zero. The vorticity Is in that

. . - _Ccase a sum of Dirac functions, and for two point vortices

describe the merging process [3]. A fundamental pom?reads
about vortex interactions is the appearance of a spira}
structure, evolving rapidly and contributing to the genera- 4 (x,7) = T 8(x — x,(1)) + Td(x — x2(1)),  (3)
tion of small scales. The spiral structure is often invoked
to explain the statistical properties of turbulence [4]. Inwhere [x;(¢), i = 1,2] represent the positions of the
this Letter we show that using a stochastic representatiopoint vortices and’; their circulations. Using (2a), the
of the Navier-Stokes equations, it is possible to find theequations of motion for the point vortices are
exact solution for the interaction of two vortices. The role
of the viscosity and the detailed description of the spiral 4 x;(1) = T;K(x; — x;), i#j. (4)
structure are thoroughly investigated. dt

Let us introduce the basic equations of the modelrhis system, which can be recast into a Hamiltonian form,
and some useful notations. The vorticity of a two-js easily integrable, due to the existence of two additional
dimensional flow in terms of the velocity(x1, x2,7) IS jntegrals of motion: the relative distance between the
given by @ =V X u [V =(d/dx1,0/9x))]. The in- o vortices ¢ = x; — x,) and the position of their
compressibility conditiorV - u = 0 permits one to intro-  anter of massMl = I';x; + I'»x,). For a given initial

dﬂce the stream functior defined byu = V¢ X & = congition, the vortex evolution depends on the value of
Vo anLd the PO'SSPn equatidn/ = —w, where the no-  the total circulationl’ = T, + T,. EitherT is zero and
tationx = (x1,x2)~ = (x2, —x1) has been used. the trajectories of the two point vortices are two parallel
The Navier-Stokes equation written in terms of thegyaight lines, ol is nonzero and the trajectories are two
vorticity Is concentric circles whose center is the center of nMss
D 9 _ Our purpose is to generalize these purely nonviscous
0?5 ¢ T Vo = rvAw, @) results to the fully viscous case. The main idea is
wherev is the viscosity. to construct a stochastic formalism which is a dual

A classical computation [5], using the Poisson equation[epresentation of the Navier-Stokes equation, in the same

gives the Biot-Savart law for a plane flow evolving in a Way as the Hamiltonian system (4) is a dual representation
region () of the Euler equation. Indeed, when the viscosity term

is added to the Euler equation the trajectories of point
u(x,r) = f K(x — y)o(y,1)dy, (2a) vortices become stochastic; this is similar to the equation
Q of heat conduction where the Laplacian operator is related
where K(x — y) is the velocity field inx generated to an underlying Wiener process. There is still, in
by a vortex of unit circulation located at Our main the presence of the viscous term, a solution of the
interest is on local interaction processes, independent dbrm (3) but the motion of the vortices is given by
the boundary conditions, we take théh= R?, and the Langevin equations. In consequence the “characteristics”

0031-900797/78(12)/2361(4)$10.00 © 1997 The American Physical Society 2361



VOLUME 78, NUMBER 12 PHYSICAL REVIEW LETTERS 24 MRcH 1997

[x1(z), x,(7)] associated to the Navier-Stokes equationghe Langevin equation

satisfy Egs. (4) with added white noise terms [6,7]: J
—r(t) = TK(r) + 2J/vb(r), 8

%X,‘(l‘) = ij(Xi — Xj) + \/Ebi(t), i 7+ ] dt ( )

whereb(r) = [b(r) — b,(¢)]/2"/? is still a white noise.

_ () The Fokker-Planck equation associated to Eq. (8) is [8]
In Eq. (5) [b;(r),i = 1,2] represent two independent

white noises (with zero mean and unit variance) de- 9 _ )
fined byb; = dW/dt, whereW is the standard Wiener 97 Prlr,1) = =TV - [Prlr, )K@®)] + 20 AP (r,1).
process. ©)

The vorticity (3) also becomes a stochastic process, d
pending on the path&(z),x,(¢)}. Therefore, the prob-
lem of finding a solution of the Navier-Stokes equation
is equivalent to computing the transition probability
P(x1,x5,t) associated with the stochastic differential i X . .
equations (5) [7]. To compute(x,, x,, /) one must solve W would just obtain a I__amb vortex of CIIjCU|atI(.)ﬁ.
a Fokker-Planck equation [8]. The transition probabilityIn the. followmg (r,1,v) W'"_Stand for thg adimensional
becomes the basic quantity from which one may calculatéjuantities where the new is 1/Re. Using these nota-
for instance, the mean vorticity distributidm ). tions we rewrite the last equation in the form

%e introduce the polar coordinates= (r, 8), and adi-
mensional unitsy, the initial vortex distance, for length,
27rg/T for time, such that the Reynolds number is
Re= I'/47wv. Besides, we supposg # 0, otherwise

At this point, some comments are in order. Toillustrate 1 9
the formalism, we apply it to the case of one isolated Epr(r,ﬁ,f) - Epr(r,ﬁ,t) + vAP(r,0,1).
vortex. For one vortex the probability distribution is the
one of a Brownian motion. Indeed, the point vorticity is (10)

w(x,1) = T'8(x — x¢(2)), and the motion equation of the =~ From expression (10) an important difference between
vortex is simplyx(z) = b(z). The transition probability Euler and Navier-Stokes equations can be understood.
then satisfies a diffusion equation the solution of whichWhenv is zero, the solution of (8) is in polar coordinates
reads d

r=1, —0=1, (11)
exp(—|xol?/4vi), (6) dt
where (1, 8y) is the initial distance, and corresponds to
'a rotation of periodl’ = 27. A probability distribution
associated with this deterministic motion is

Pr(xo,1) =

4 vt

assuming that initially the vortex is at the origin. Besides
the vorticity distribution can be obtained using

(w)(x,1) = Fjg Pr(x0,1)0(x — x0)dxo = I'Pr(x,1), Pe(r,0,t) =6(r — 1)8(8 — 1t — 6y).  (12)

(7)  This is of course a solution of (10) witr = 0. We
which gives the well-known Lamb vortex [9]. In this case raise now an important question about the influence of the
the role of the viscosity is simply related to the diffusion VISCOSity. First, we note that the argument of the angular
of the initially concentrated vorticity. We will see that Dirac may be rewritten in the formd — 1/ (r) — 6y,

for two vortices new basic mechanisms induced by th&Vhere /' is an arbitrary function satisfying(1) = 1.
viscosity appear. Second, for any arbitrary small viscosity (in fact,—

In the light of these results, we can interpret Eq. (5)Q+) the effect of diffusion will spread ou_t thé function.s' .
as describing the interaction of two Lamb vortices." (12). Therefore, the actual distance (in the probabilistic
Hereafter, we analyze this system in the simplest cas@€nse) between the vortices will be slightly different to
when both circulations are equal. Whdh = T, the /0 = 1, which raises the problem of the choicefof This
noise terms in the Langevin equations for x, — x» is precisely the role of the viscosity, which will select a
andM = (T'/2) (x; + x») are independent, and hence thepartlcglar form of f, compatible with the Navier-Stokes
two vortex transition probabilit? (x,, x», 7) turns out to ~ €duation, as we show below. o
be the product of the probability distributions of the center W& now compute the solution of (10) with initial

of massPy;, and of the vortex distancg,: P(x;,x,,7) =  condition, given in polar coordinates

I'PyM, 1) Pr(r, ). The knowledge of these.p_robabiliti(_es P.(r,0,0) = 8(r — 1)8(8 — 6y), (13)
allows the computation of the observed vorticity evolution

by direct integration. which means that the initial distance between the two

Using Eq. (5) we immediately find that the center ofvortices is (1,6,). The Fokker-Planck equation being
massM follows a Brownian motion withPy; a Gaussian invariant by rotation, one can choo8g = 0. Moreover,
probability distribution. Moreover, the distaneesatisfies this equation is separable in radial and angular variables.
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Using the linearity of the equation, we look for a solutiontance is therefore a Brownian motion, as one could also

in the form of a Fourier series derive using the Langevin equation.
o The general formula is quite abstract and, because
Pc(r,0,t) = Z apre M'elg, \(r), of the Bessel functions of complex order, its numerical
pEZ evaluation is not easy. However, some useful information

where A2 > 0 to ensure convergence angl, are coeffi- can be obtained in the limit of small viscosity. Using

cient to be determined by the initial condition (13). Theth® asymptotic expansion of the Bessel functions, an
radial equation fog . ,(r) reduces to a Bessel differential @PProximation of (14) is given by

equation. Using a representation of the initial condition in Pi(r,0,1t) ~ G(r,H)0O(r, 0,1), v—0, (17)

a base of Bessel functions and comparing to the solution ) ]

of the radial equation, we obtain the appropriated form ofvhere the asymmetric part of (17) is

the coefficients:, . The general solution is finally writ-

+o0
Tr T I W SN ¥
ten as O(r,0,1) = \/2— > e [p=50=20F (18)
th:_w

+o0
P(r,0,1) = Z elpej; Adhe 1T (AT, (A), the Theta elliptic function [10]. The functio® is a
PEZ solution of the one-dimensional heat equation in the
where ,u?, = ip/v + p?, or after integration [10], we circle. Inthe present context, it describes the development
obtain the explicit formula of a spiral structure, triggered by the interaction of the
Po(r.0.1) = G(r.1) vortices (whose cores are 01_‘ f|n|_te extent for 0_). We
e ; note that the spiral stretching increasesrawhile the

+o ) . . 1/2 .
% {1 + o9 Z 10_1< r > m( r >e,,,9] diffusion goes ast'/<, then the development of spiral

2wt 2wt structure is faster than diffusion. This may be easily seen

=1 . ..
g in the limity — 0

(14)
where stands for the real parf,,, are modified Bessel Or.0.1) =80 —1/r), (19)
functions, and which corresponds to a concentration of the probability on
1 _2a r a spiral (in the original unitsy : 8 — 6(r) = T't/2m7ror
G(r.1) = ami S Io <E> (15)  centered ar = 0 and spreading in time. The emergence

S . . of this spiral structure (decreasin is the one se-
The vorticity field associated to (14) and the Gaus&aqected b)F/) the viscosity Eselection gf(?fri 1/x] coupled

g“ kls an exr;ct s?rllgthn tﬁf the .two—dlr::[ler;stlr(])'nall_ '\tltav'er'with the rotation effectl # 0). Therefore, the viscosity
OKes equation, this IS Ihe main result or this LERer. - Ag o only important for its effect on diffusion and to-

s';;algthtfcl)rward corr:_puté:\tlon?"ows ut? tg.l\./tergy tth%t (t'14) ISpology change, but also in selecting a particular spiral
etiectively a normarized positive probability diStrIbution. - gy ctyre. The particular form ¢f, at least for small vis-

The probabllltyG(r_,t) is the axisymmetric part OPr, .cosity, may be related to the conservation of the angu-
and can be also obtained as the solution of the heat equatl?gr velocity vy — o — T'/27rr,. Expression (18) adds a
0= = 0-

with initial condition a distribution of the vorticity along “Gaussian thickness” to the spiral structure. Of course. if
a ring, it characterizes the diffusion of the radial distance, o © SP L ’
. - . ) . e maker = 0 for the radial and nonradial parts &f,
It is worth noticing that this axisymmetric part becomes - . .
. . . ) ~"“we get the expected limit, the evolution of the distance
asymptotically dominant in the Iw_mt — o0 [I,_L(O) = between two point vortices (12).
Bo.u, the Krone_ck(_eré], de_monstratlng that the f|na_1l state Besides, the probability distribution on the spiral struc-
of the system is isotropic. Therefore, the solution (14) ure follows the lawG(r, 1) and has a sharp maximum at
describes the change in the topology of the flow, the initiaf . o . ) i
. . : ! r,(1), solution of the implicit equation (returning to adi-
localized two vortices evolve to an axisymmetric structure, > . -
) . mensional quantities),
An important property of the Bessel functiodg(x) ,
is that they are all equivalent in the limit — +, Lz - 20
independently of the orden. Formally, if we take as T T () T (20)

the common limit/y, one can write )
Fort = 0, r, = 1 and decreases to zero as time grows.

Pi(r,0,1) ~ G(r,08(0),  (t—0),  (16)  Tne thickness of this maximum is given byr)!/2, and is
which gives the expected limit (13) as— 0. In con- narrow in the limit examined. According to the position
clusion, (14) is the Green function of the Fokker-Planckof this peak on the spiral, different behaviors may be
equation (10) and gives the temporal evolution of the disobtained, as can be seen with a detailed study of the spiral
tance between the two initial point vortices. Of course,structure.
the limiting case Re= 1/v = 0 gives u, = p and the In Fig. 1 the spiralS is plotted at three different times.
solution become®; (r — ro, ). The evolution of the dis- We choose the Reynolds number Rel/v = 100 in
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Time = 1 with radial valuesr € [r, — (v0)'/2,r, + (v1)"/?], that
is to say angular value € [27 + 1.67, 107 + 1.57]:
This corresponds to the development and stretching of
vortex arms, which wind around the other vortex. Here,
each arm winds the other vortex on several rotations.
After this transitory periody, quickly decreases and
atr =125, r, ~ 0.09: The spiral is tightly bounded
aroundr, and becomes similar to circles. At this time the
angular isotropy is fully developed® is almost uniform
in the region where the probability is concentrated show-
ing the disappearance of the spiral arms, and the merg-
ing is ending. Lastlyr, ~ 0 and the further evolution is
purely diffusive.
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