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Analytic Stability Theory for Faraday Waves and the Observation
of the Harmonic Surface Response
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We present an analytic expression for the onset of the Faraday instability, which is applicable to a
wide frequency range covering both shallow gravity and deep capillary waves. For sufficiently thin
fluid layers, the surface oscillates in harmonic rather than subharmonic resonance with the forcing. A
experimental confirmation of this result is reported. [S0031-9007(97)02704-X]

PACS numbers: 47.20.Ma, 47.15.Cb, 47.20.Gv
t

r
a
e
b

ic
a
o
ie
t
e
o

n
ip
h
l
r

o

r
t
t

l-
t
e
s
-

r
e

r-
-

-
he
of
y
r-
t-
-

n-

n
on

la-

-

e

The observation of standing waves at the surface o
fluid layer subject to a vertical vibration dates back
Faraday [1]. For sufficiently strong driving, the plane su
face undergoes an instabilty which gives rise to orde
wave patterns [2–4]. With a sinusoidal driving force, sp
tially periodic patterns [5–7], and quasiperiodic structur
of eightfold or tenfold orientational order have been o
served [8]. Faraday already recognized that the respo
of the surface is subharmonic; i.e., it appears with tw
the period of the drive. The first investigation of the line
stability [9] showed that the problem can be reduced t
set of Mathieu oscillators. However, the analysis rel
on the potential flow approximation which is restricted
inviscid fluids only. Viscous effects are usually treat
by a heuristic damping in the Mathieu equation [10], pr
portional to the kinematic viscosityn. This approxima-
tion ignores viscous boundary layers along the contai
walls and beneath the surface, where additional diss
tion occurs. Beyer and Friedrich [11] showed that t
surface boundary layer gives rise to a memory kerne
the Mathieu equation. Since they used the idealized f
slip boundary conditions, they did not catch the dom
nating damping in the bottom boundary layer. The m
advanced theoretical investigation of the stability proble
[12] is fully numerical, which renders a physical unde
standing difficult. An analytic approach which accoun
for the different competing damping mechanisms is s
missing. Recently, Kumar [13] presented an approxim
tion for weakly damped Faraday waves based on a trun
tion of the numerical method [12]. Besides being rath
implicit (a numerical minimization of the neutral stabi
ity curve is still required), his approach is not systema
since it is unclear to what order of viscosity the obtain
result is valid [14]. He points out the very interesting po
sibility of a synchronous (­ harmonic) rather than sub
harmonic surface resonance, if the wavelengthl ­ 2pyk
becomes comparable to the filling depthh. In this situa-
tion, the dissipation in the bottom boundary layer becom
dominant. Kumar could not determine the parameter
gion for the harmonic response by analytic means; inst
he presented a numerical example.
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In the present Letter we develop a systematic pertu
bative treatment of the linear stability problem. We pro
vide an analytic expression for the onset accelerationac

and the critical wave numberkc. Also covered is the
case of shallow water waves (l . h), where earlier ap-
proximations [10] fail. Our formula allows a direct inter
pretation of the competing dissipation mechanisms. T
subharmonic instability, which dominates over most
the driving frequency range, is perfectly reproduced b
our expression. We also supply a formula for the ha
monic threshold, which gives an estimate for the bicri
icality. Finally, we report on the first experimental ob
servation of Faraday waves inharmonic resonance with
the forcing.

We consider a layer of an incompressible fluid of de
sity r, depthh with a free upper surface in contact with
air. The layer is subject to a sinusoidal vertical vibratio
corresponding to a modulated gravitational accelerati
gstd ­ g0 1 a cos2Vt in a frame of reference comoving
with the container. Control parameters are the modu
tion amplitudea and the drive frequencyf ­ 2Vys2pd.
The free surface is initially flat at the vertical coordi
natez ­ 0. As the drive amplitude exceedsac, the sur-
face elevationz ­ z sx, y, td oscillates, wherex, y are the
horizontal coordinates andt is the time. For fluids of
viscosity n and of depthh, the linear dispersion rela-
tion [13] for free (i.e., a ­ 0) surface waves of the form
z ~ expiskx 2 vtd is

0 ­ Ask, vd ­ v2
0 skd

1
rsr4 1 2r2 1 5d cothrkh 2 s1 1 6r2 1 r4d tanhkh

r cothrkh 2 cothkh
´2

2
4rsr2 1 1d tanhkhyssinhkh sinhrkhd

r cothrkh 2 cothkh
´2, (1)

with v
2
0skd ­ tanhkhfg0k 1 ssyrdk3gyV2, ´ ­ nk2y

jVj, and r ­
p

1 1 ivy´. The square root with the
positive real part is accepted. For shorter notation, w
have nondimensionalized timet and frequenciesv, v0

by referring to the control parameterV. In the ideal
fluid limit n ! 0, Eq. (1) reduces to the well-known
© 1997 The American Physical Society 2357
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gravity-capillary dispersion relationv2 ­ v
2
0 skd. The

parametric drive, introduced by replacingg0 by gstd,
couples different temporal Fourier modes. The follo
ing linear evolution equation for the Fourier transfor
ẑ svd ­

R
exps2ivtdz std dt of the surface elevation is

obtained:

Ask, vdẑ svd 1
ak tanhkh

2V2
fẑ sv 2 2d 1 ẑ sv 1 2dg

­ 0 . (2)

There are several relevant length scales in the prob
(see Fig. 1): The wavelengthl ­ 2pyk of the surface
pattern, the thickness of the viscous boundary layerd ­p

2nyjVj, and the capillary length
p

sysrg0d, wheres

is the surface tension. The geometry of the experim
enters via the filling depthh. We ignore the lateral
dimension of the vesselL by assumingL ! `.

For analytic progress, we confine ourselves to
weak dissipation limit´ ø 1, which means that the
depth of the viscous boundary layer is small compa
to the wavelength. Furthermore, we assume thath is at
least a few times larger than the thickness of the v
cous boundary layer,hyd * 3, i.e., cothrkh . 1 and
1y sinhrkh . 0. Note that there is no restriction upo
the relation betweenh and l. The two simplifications
made are not very restrictive and our approach is ap
cable to almost all recent experiments. We first expa
Eq. (1) in powers of1yr ­ Os

p
´d giving
e
n
h
e
n
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y
d
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FIG. 1. Length scales of relevance: wavelength of the patte
l ­ 2pyk, thickness of the viscous boundary layersd ­p

2nyV, depth of the layerh, and lateral extension of the
containerL. Energy dissipation in the various regions scale
with different powers of the viscosityn (exponents are
indicated in parentheses).

Ask, vd ­ v2
0 2 v2 1 iv´s3 1 coth2 khd

1
´1y2s´ 1 ivd3y2

sinhkh coshkh
1 ´3y2

p
´ 1 iv

3 s26 tanhkh 1 cothkh 1 coth3 khd 1 · · · .

(3)

The transformation of Eq. (3) into real space yields
damped Mathieu oscillator with nonlocal contributions
[15]
0 ­ z̈ std 1 ´s3 1 coth2 khd Ùz std 1

∑
v2

0 1
ak tanhkh

V2
coss2td

∏
z std 1

´1y2

p
p sinhkh coshkh

Z t

2`

Gst 2 td s´ 1 ≠td2z std dt

1
26 tanhkh 1 cothkh 1 coth3 kh

p
p

´3y2
Z t

2`

Gst 2 td s´ 1 ≠tdz std dt , (4)
e
e

nd
where Gstd ­ exps2´tdy
p

t is the kernel. Besides th
usual damping~ Ùz , which is related to the dissipatio
in the bulk, the two integrals also contribute to t
damping: The moving surface emits velocity wav
into the interior of the fluid, where history depende
dissipation occurs. The first memory integral scales
Osn1y2d and is the leading dissipative contribution
the shallow water limitkh ­ Os1d. This expression is
associated with the damping in the bottom boundary la
and dies out exponentially askh increases. The secon
s
t
e

er

integral (cf. Ref. [11]) remains forh ! `; it scales with
n3y2 and is related to the vortical flow field in the fre
surface boundary layer.

To proceed with the linear stability analysis, we expa
the square roots in Eq. (3) giving

Ask, vd ­ 2v2 1 Xsk, vd 1 v2
0 , (5)

where all viscous contributions up toOs´3y2d are collected
in
Xsk, vd ­ RsXd 1 iIsXd ­ 2´1y2

p
2 jvj3y2

sinh2kh
1 ´3y2 jvj1y2

2
p

2
s215 tanhkh 1 5 cothkh 1 2 coth3 khd

1 i sgnsvd
∑

´1y2

p
2 jvj3y2

sinh2kh
1 ´jvjs3 1 coth2 khd 1 ´3y2 jvj1y2

2
p

2
s215 tanhkh 1 5 cothkh 1 2 coth3 khd

∏
. (6)

We first investigate the subharmonic resonance of the surface elevation by introducing

ẑ svd ­ a1dsv 2 1d 1 a2dsv 1 1d 1 ẑ1 1 . . . (7)
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in Eq. (2). Assuming a small detuningv2
0 2 1 ­ OsXd,

the solvability condition for̂z1 ­ OsXd yields the neutral
stability curve

fXsk, 1d 1 sv2
0 2 1dg fXsk, 21d 1 sv2

0 2 1dg

­

µ
ak tanhkh

2V2

∂2

. (8)

The minimum of the drive amplitudea with respect tov2
0

[16] defines the onset of the subharmonic response

asSd
c .

2V2

kS
IfXskS , 1dg cothkSh . (9)

The critical wave numberkS results from the dispersion
relation with a viscous detuning

v2
0skSd . 1 2 RfXskS , 1dg . (10)

For water and for a viscous silicone oil Fig. 2 compares
analytic formula Eq. (9) with the full numerical computa
tion [12]. Excellent agreement is achieved over a wi
frequency range. Equation (9) serves as a simple and
liable substitute for the numerical solution of the stabili
problem. The three contributions inIsXd [Eq. (6)] are
related, respectively, to damping in the bottom bound
layer, the bulk, and the surface boundary layer, which do
inate at low, intermediate, and higher drive frequenci
Even the sharp increase of the subharmonic onset tow
lower frequencies (shallow water limitkh . 1) is well
reproduced.

A similar perturbation expansion can be computed
the first harmonic stability tongue. We obtain for the

FIG. 2. The critical onset amplitude for the subharmonic (S)
and harmonic (H) Faraday instability as a function of th
forcing frequencyf ­ Vyp. Thick lines correspond to the
analytic results [Eqs. (9) and (11)]; thin lines are obtained
an exact numerical treatment. Parameters for water (dash
r ­ 1.0 gycm3, s ­ 72.4 3 1023 Nym, n ­ 1 mm2ys, h ­
1 mm; for silicone oil (solid):r ­ 0.934 gycm3, s ­ 20.1 3
1023 Nym, n ­ 10 mm2ys, h ­ 1 mm.
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onset amplitude

asHd
c .

4V2

kH

q
IfXskH , 2dg cothkHh (11)

with the critical wave numberkH determined by

v2
0 skHd . 4 1

2
3

IfXskH , 2dg 2 RfXskH , 2dg . (12)

The two thresholdsasSd
c andasHd

c intersect at a bicriticality
(see Fig. 2), below which the harmonic response preem
the subharmonic one. The agreement betweenasHd

c and
the numerical result is not as good as in the subharmo
case. This is because the expansion forasHd

c proceeds
in powers of X1y2, while it goes asX1 for asSd

c . In
the neighborhood of the bicriticality the nondimension
damping coefficientIsssXskH , 2dddd exceeds unity rendering
the perturbation expansion invalid in this region.

The harmonic surface response is difficult to obser
experimentally. The appropriateV window is rather nar-
row and occurs at very low excitation frequenciesf. For
f below .10 Hz it is usually the maximum peakeleva-
tion (rather than the maximumforce) which prevents the
shaker from reaching the threshold amplitudea

sHd
c . As

shown in the inset of Fig. 2, the bicritical point tend
towards higher frequencies as the viscosity of the flu
is increased. We therefore have set up an experim
with a viscous silicone oil (Dow Corning 200). At the
working temperature ofT ­ 30 ±C the viscosity amounts
n ­ 8.9 mm2ys, surface tensions ­ 19.8 3 1023 Nym,
and densityr ­ 0.929 gycm3. We use a cylindrical alu-
minum container of radiusR ­ 45 mm and depthh ­
5 mm. Between a radius of35 mm and the outer edge
the depth profile decreases continuously to zero to da
meniscus waves. An electromagnetic shaker V400 (LD
is used with a maximum force of 98 N and a peak e
vation of 8 mm, as specified by the manufacturer. Wa
form generation as well as data aquisition is perform
by a personal computer. The acceleration is measured
a piezoelectric device (Bruel and Kjaer 4393). For pa
tern visualization the container is illuminated strobosco
ically from above by a concentric ring (20 cm in diam
eter) of 50 high intensity light emitting diodes (LED)
A CCD camera located in the middle of the ring ob
serves the pattern from the top. The LEDs are synch
nized to the drive and triggered with eitherV or 2V.
This technique allows a clear distinction between the s
harmonic and harmonic surface resonance. As explai
above, bottom damping is crucial for the harmonic Fa
day instability. This requires a depth to wavelength r
tio of kh & 1. In our experiment we use a filling dept
of h . 0.8 mm. For this combination of parameters th
stability theory predicts the harmonic-subharmonic bicr
icality, a

sSd
c ­ a

sHd
c , at f . 9 Hz, which is close to the

low frequency limit of our apparatus. Figure 3(a) presen
a photograph of a pattern in harmonic resonance w
2359
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FIG. 3. Surface patterns as observed in the experiment.
Driving force and surface oscillate synchronously atf ­ 9 Hz
(harmonic response). (b) Subharmonic surface response
9 Hz at a drive withf ­ 18 Hz. (c) Subharmonic surface
oscillation with 5 Hz at a drive withf ­ 10 Hz.

the drive. Both, the vessel and the surface are oscilla
synchronously with 9 Hz. To confirm our observatio
2360
(a)

ith

ing
n

we show in Fig. 3(b) a subharmonic surface patte
oscillating again with 9 Hz but excited withf ­ 18 Hz.
As expected, the wavelength in Figs. 3(a) and 3(b) a
the same. Finally, Fig. 3(c) depicts a subharmonic patte
driven at f ­ 10 Hz exhibiting a considerably larger
wavelength. All patterns have been obtained by slow
increasing the drive amplitudea beyond the threshold
while keepingf constant. The small aspect ratio of ou
container (diameter to wavelength ratio) did not allow th
observation of well ordered structures [17].

In summary, we have presented analytic expressions
the onset of subharmonic Faraday waves in perfect agr
ment with the numerical solution. The analysis is bas
on the low viscosity approximation and assumes a fi
ing depth larger than the thickness of the viscous boun
ary layer. Almost all recent experiments reported in th
literature are covered by these assumptions. Particula
interesting is the case of shallow water waves (l . h)
for which the harmonic instability preempts the subha
monic one. This theoretical prediction is confirmed by a
experiment.
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