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We present an analytic expression for the onset of the Faraday instability, which is applicable to a
wide frequency range covering both shallow gravity and deep capillary waves. For sufficiently thin
fluid layers, the surface oscillates in harmonic rather than subharmonic resonance with the forcing. An
experimental confirmation of this result is reported. [S0031-9007(97)02704-X]

PACS numbers: 47.20.Ma, 47.15.Cb, 47.20.Gv

The observation of standing waves at the surface of a In the present Letter we develop a systematic pertur-
fluid layer subject to a vertical vibration dates back tobative treatment of the linear stability problem. We pro-
Faraday [1]. For sufficiently strong driving, the plane sur-vide an analytic expression for the onset acceleration
face undergoes an instabilty which gives rise to ordereénd the critical wave numbekt.. Also covered is the
wave patterns [2—4]. With a sinusoidal driving force, spa-case of shallow water wavea & h), where earlier ap-
tially periodic patterns [5—7], and quasiperiodic structuregproximations [10] fail. Our formula allows a direct inter-
of eightfold or tenfold orientational order have been ob-pretation of the competing dissipation mechanisms. The
served [8]. Faraday already recognized that the responseibharmonic instability, which dominates over most of
of the surface is subharmonic; i.e., it appears with twicehe driving frequency range, is perfectly reproduced by
the period of the drive. The first investigation of the linearour expression. We also supply a formula for the har-
stability [9] showed that the problem can be reduced to anonic threshold, which gives an estimate for the bicrit-
set of Mathieu oscillators. However, the analysis reliedcality. Finally, we report on the first experimental ob-
on the potential flow approximation which is restricted toservation of Faraday waves lmarmonicresonance with
inviscid fluids only. Viscous effects are usually treatedthe forcing.
by a heuristic damping in the Mathieu equation [10], pro- We consider a layer of an incompressible fluid of den-
portional to the kinematic viscosity. This approxima- sity p, depths with a free upper surface in contact with
tion ignores viscous boundary layers along the containeair. The layer is subject to a sinusoidal vertical vibration
walls and beneath the surface, where additional dissipaorresponding to a modulated gravitational acceleration
tion occurs. Beyer and Friedrich [11] showed that theg(r) = go + a cos2{)¢ in a frame of reference comoving
surface boundary layer gives rise to a memory kernel iwith the container. Control parameters are the modula-
the Mathieu equation. Since they used the idealized fredon amplitudea and the drive frequency = 2Q /(2).
slip boundary conditions, they did not catch the domi-The free surface is initially flat at the vertical coordi-
nating damping in the bottom boundary layer. The moshatez = 0. As the drive amplitude exceeds, the sur-
advanced theoretical investigation of the stability problenface elevationr = {(x, y, ) oscillates, where, y are the
[12] is fully numerical, which renders a physical under- horizontal coordinates and is the time. For fluids of
standing difficult. An analytic approach which accountsviscosity » and of depthh, the linear dispersion rela-
for the different competing damping mechanisms is stilltion [13] for free (i.e., a = 0) surface waves of the form
missing. Recently, Kumar [13] presented an approxima{ « expi(kx — wt) is
tion for weakly damped Faraday waves based on a truncgy _ Ak, 0) = w2(k)
tion of the numerical method [12]. Besides being rather ’ 0
implicit (a numerical minimization of the neutral stabil-  r(r* + 2r* + 5) cothrkh — (1 + 6r2 + r*)tanhkh ,
ity curve is still required), his approach is not systematicJr rcothrkh — cothkh &
since !t is qnclear to Wha_t order of viscosjty the thained 4r(r* + 1)tanhkh/(sinhkh sinhrkh) ,
result is valid [14]. He points out the very interesting pos-— e, (1)
sibility of a synchronous=t harmonic) rather than sub- r cothrkh — cothkh
harmonic surface resonance, if the wavelengts 277 /k  with (k) = tanhkh[gok + (o/p)k3]/Q2, & = vk?/
becomes comparable to the filling degth In this situa- |Q]|, and r = /1 + iw/e. The square root with the
tion, the dissipation in the bottom boundary layer becomegositive real part is accepted. For shorter notation, we
dominant. Kumar could not determine the parameter rehave nondimensionalized time and frequenciesv, wg
gion for the harmonic response by analytic means; insteaby referring to the control parametéd. In the ideal
he presented a numerical example. fluid limit » — 0, Eq. (1) reduces to the well-known
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gravity-capillary dispersion relatiom? = w3(k). The A S
parametric drive, introduced by replacing by g(z),

couples different temporal Fourier modes. The follow- SeSirticchoundarylayer G2yl |5

ing linear evolution equation for the Fourier transform T 5

{(w) = [exp(—iwt){(t)dt of the surface elevation is = ki

obtained: h -E bulk (1) -E

2 2

n ak tanhkh _. X = =

Alk, w){(w) + T[é’(w —2) + {(w + 2)] g g

=90. (2) bottom boundary layer (1/2)

L
There are several relevant length scales in the problem - -

(see Fig. 1): The wavelength = 27 /k of the surface FIG. 1. Length scales of relevance: wavelength of the pattern
pattern, the thickness of the viscous boundary layer A = 27/k, thickness of the viscous boundary layeds=

Pu 710 , and the capillary len th/ , where J2v/Q, depth of the layers, and lateral extension of the
v/10] priary gt/ /(p go) v ontainerL. Energy dissipation in the various regions scales

is the su.rface te_n_S|on. The geome’gry of the experlmerﬁlith different powers of the viscosityy (exponents are

dimension of the vessdl by assumingl — .
For analytic progress, we confine ourselves to the
weak dissipation limite < 1, which means that the A, ») = w2 — w? + iwe(3 + cott? kh)
depth of the viscous boundary layer is small compared ' s
to the wavelength. Furthermore, we assume tha at e2(e + iw)Y + et i
least a few times larger than the thickness of the vis- sinhkh coshkh
cous boundary layerkh/é = 3, i.e., cothvkh = 1 and
1/sinhrkh = 0. Note that there is no restriction upon X (=6tanhkh + cothkh + coth’ kh) + -
the relation betweerk and A. The two simplifications 3)

made are not very restrictive and our approach is appli-

cable to almost all recent experiments. We first expand "€ transformation of Eq. (3) into real space yields a
Eq. (1) in powers ofl /r = 0(;/&) giving damped Mathieu oscillator with nonlocal contributions

| [15]

ak tanhkh
QZ

- + + !
6 tanhkh (i;)chkh coth? kh83/2] Gt — ) (& + 9,)(r)dr, )

where G(r) = exp(—er)/+/t is the kernel. Besides the integral (cf. Ref. [11]) remains fok — o; it scales with
usual damping= £, which is related to the dissipation »*? and is related to the vortical flow field in the free
in the bulk, the two integrals also contribute to thesurface boundary layer.

damping: The moving surface emits velocity waves To proceed with the linear stability analysis, we expand
into the interior of the fluid, where history dependentthe square roots in Eq. (3) giving

dissipation occurs. The first memory integral scales like

O(»'/?) and is the leading dissipative contribution in Alk,0) = —w® + X(k, w) + 0}, (5)
the shallow water limitkh = O(1). This expression is

associated with the damping in the bottom boundary layewhere all viscous contributions up @(s/2) are collected
and dies out exponentially ag: increases. The secon? in

1/2 t
C05(2t)}{(t) + & f G(t— 1) (e + 0,2 ¢(7) dr

o p 2
0 = Z(r) + &(3 + cotht kh){ (1) + [wo + J/7 sinhkh coshkh J —o

V2 |w? lw|'/?
X(k, ) = RX) + iI(X) = —g!/?L + 32
(e, 0) = N&X) + 3 = —e o Y5

3/2 1/2
+ isgr(w)[sl/zi\/.ilwl : splol”

sinh2kh 242
We first investigate the subharmonic resonance of the surface elevation by introducing

(—15tanhkh + 5cothkh + 2 coth’ kh)

+ glw|(3 + coth kh) + ¢ (—15tanhkh + 5 cothkh + 2 coth? kh)} .(6)

lw)=a18(w — 1)+ ad(w + 1)+ & + ... @

2358



VOLUME 78, NUMBER 12 PHYSICAL REVIEW LETTERS 24 MRcH 1997

in EQ. (2). Assuming a small detuningg — 1 = O(X), onset amplitude
the solvability condition fory; = O(X) yields the neutral

- 2
stability curve alh = % S[X (kg,2)] cothkyh (11)
H
X(k,1) + (w2 — D][X(k,—1) + (0@ — 1
(XU, 1)+ (0 = DIIX G =1) + (@ = 1] with the critical wave numbek determined by
_ <ak tanhkh >2 @) )
202 jkn) = 4 + =I[X(ky, 2)] = R[X (kn,2)]. (12)

The minimum of the drive amplitude with respect taw

) . The two thresholda'® anda') intersect at a bicriticalit
[16] defines the onset of the subharmonic response ¢ de Y

(see Fig. 2), below which the harmonic response preempts
s 207 the subharmonic one. The agreement betweéh and
ac’ = K S[X(ks, 1)] cothksh . (9 the numerical result is not as good as in the subharmonic
case. This is because the expansion dfft' proceeds
The critical wave numbeks results from the dispersion j, powers of X!/2, while it goes asx! for aES). In
relation with a viscous detuning the neighborhood of the bicriticality the nondimensional
2 ~ damping coefficienfS(X (ky, 2)) exceeds unity rendering
wplks) = 1 = NX(ks, 1)]. 1) the perturbation expansion invalid in this region.
For water and for a viscous silicone oil Fig. 2 compares the The harmonic surface response is difficult to observe
analytic formula Eq. (9) with the full numerical computa- €xperimentally. The appropriafe window is rather nar-
tion [12]. Excellent agreement is achieved over a wide'OW and occurs at very low excitation frequencjes For
frequency range. Equation (9) serves as a simple and rd- below =10 Hz it is usually the maximum peaéleva-
liable substitute for the numerical solution of the stability tion (rather than the maximurforce) which prevents the
problem. The three contributions M(X) [Eq. (6)] are  shaker from reaching the threshold amplitud®’. As
related, respectively, to damping in the bottom boundarghown in the inset of Fig. 2, the bicritical point tends
layer, the bulk, and the surface boundary layer, which domtowards higher frequencies as the viscosity of the fluid
inate at low, intermediate, and higher drive frequenciesis increased. We therefore have set up an experiment
Even the sharp increase of the subharmonic onset towaragth a viscous silicone oil (Dow Corning 200). At the
lower frequencies (shallow water limith = 1) is well ~ working temperature of' = 30 °C the viscosity amounts
reproduced. v = 8.9 mn?/s, surface tensioor = 19.8 X 1073 N/m,

A similar perturbation expansion can be computed forand densityp = 0.929 g/cn?. We use a cylindrical alu-

the first harmonic stability tongue. We obtain for the minum container of radiu® = 45 mm and depth: =
5 mm. Between a radius &5 mm and the outer edge,

0 5 10 the depth profile decreases continuously to zero to damp
NN meniscus waves. An electromagnetic shaker V400 (LDS)
is used with a maximum force of 98 N and a peak ele-
vation of 8 mm, as specified by the manufacturer. Wave
form generation as well as data aquisition is performed
by a personal computer. The acceleration is measured by
a piezoelectric device (Bruel and Kjaer 4393). For pat-
tern visualization the container is illuminated stroboscop-
ically from above by a concentric ring (20 cm in diam-
| eter) of 50 high intensity light emitting diodes (LED).
siicone of A CCD camera located in the middle of the ring ob-
2 == waler serves the pattern from the top. The LEDs are synchro-

-
o

%6,"e apnyduwe josuo

\’ _________ S " ] 1 nized to the drive and triggered with eith€r or 2Q).
\ ] This technique allows a clear distinction between the sub-
h ' =5 ' 700 ‘ T50 harmonic and harmonic surface resonance. As explained
forcing frequency = Qrn [Hz] above, bottom damping is crucial for the harmonic Fara-

FIG. 2. The critical onset amplitude for the subharmorgy (@Y instability. This requires a depth to wavelength ra-

and harmonic i) Faraday instability as a function of the ti0 of k2 < 1. In our experiment we use a filling depth
forcing frequencyf = Q /. Thick lines correspond to the of 2 = 0.8 mm. For this combination of parameters the

analytic results [Egs. (9) and (11)]; thin lines are obtained bystability theory predicts the harmonic-subharmonic bicrit-

an exact numerical treatment. Parameters for water (dashedE . S " H ~ . .

p = 1.0 g/en?, o = 72.4 X 1073 N/m, » = 1 mm2/s, h = ICality, ac’ = ac, at f = 9 Hz, WhICh' is close to the

1 mm; for silicone oil (solid):p = 0.934 g/cn?, o = 20.1 X low frequency limit of our apparatus. F|gure 3(@) presents
1073 N/m, » = 10 mm?/s,h = 1 mm. a photograph of a pattern in harmonic resonance with
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we show in Fig. 3(b) a subharmonic surface pattern,
oscillating again with 9 Hz but excited witfi = 18 Hz.

As expected, the wavelength in Figs. 3(a) and 3(b) are
the same. Finally, Fig. 3(c) depicts a subharmonic pattern
driven at f = 10 Hz exhibiting a considerably larger
wavelength. All patterns have been obtained by slowly
increasing the drive amplitude beyond the threshold
while keepingf constant. The small aspect ratio of our
container (diameter to wavelength ratio) did not allow the
observation of well ordered structures [17].

In summary, we have presented analytic expressions for
the onset of subharmonic Faraday waves in perfect agree-
ment with the numerical solution. The analysis is based
on the low viscosity approximation and assumes a fill-
ing depth larger than the thickness of the viscous bound-
ary layer. Almost all recent experiments reported in the
literature are covered by these assumptions. Particularly
interesting is the case of shallow water wavas={ i)
for which the harmonic instability preempts the subhar-
monic one. This theoretical prediction is confirmed by an
experiment.

Fruitful discussions with S. Fauve are gratefully ac-
knowledged. This work is supported by the Deutsche
Forschungsgemeinschaft.
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FIG. 3. Surface patterns as observed in the experiment. (6[9‘5] To transfprm Vet i %ond,‘l/f +iw’ |nto. real space

Driving force and surface oscillate synchronouslyfat 9 Hz use the identityl/7 [ u™'? ext—(e + iw)uldu =

(harmonic response). (b) Subharmonic surface response with (& + iw) 2,

9 Hz at a drive withf = 18 Hz. (c) Subharmonic surface [16] Up to O(X) minimization with respect to eithér or wi is

oscillation with 5 Hz at a drive witlf = 10 Hz. equivalent.

[17] For the harmonic surface resonance [Fig. 3(a)], we had to
drive the shaker to elevations 50% above the maximum
the drive. Both, the vessel and the surface are oscillating  specified by the manufacturer. Note, however, thatthe

synchronously with 9 Hz. To confirm our observation distortion of the container vibration did not exceed 2%.
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