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Impossibility of the Cylindrically Symmetric Einstein-Straus Model
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The classical Einstein-Straus problem treats the influence ofepansionof the universe on
the static vacuum surrounding a spherically symmetric object. In this Letter we study the next
simplest step by dropping the assumption of spherical symmetry and considering the case of cylindrical
symmetry. Our main result is that the cylindrically symmetric analog of the Einstein-Straus model is
impossible, even without any restriction on the matter content of the static cavity. This fact forbids the
embedding of some static objects (say strings or similar objects) into the standard cosmological models.
[S0031-9007(97)02807-X]

PACS numbers: 04.20.Jb, 04.20.Cv, 04.40.Nr

This Letter deals with the question of whether or notfirst order deviations [6], as far as we are awatethe
the space surrounding astrophysical objects is influencekhown models havepherical symmetry.
by the expansion of the Universe. We usually tend to Therefore, it arises naturally the question of how
consider the gravitational fields of the above-mentionednuch Einstein-Straus’s general conclusion depends on
objects astatic,and yet we also believe that the Universethe assumption of spherical symmetry. In this paper
they live in is expanding. Of course, this is an old problemwe give a perhaps surprising answer to this question,
and has been studied several times since the appearargiece we attack the next simplest problem (cylindrical
of general relativity. Perhaps the first attempt to give arsymmetry) and thereby we prove rather easily the impos-
answer to this problem was that of McVittie [1], later sibility of having a static cavity matched to a standard
developed and completed by Jarnefelt [2] (see also for BRW cosmological universe whenever the cavity has a
brief historical survey [3]), where they tried to discover theborder containing a cylindrical-like piece. This prob-
possible influence of the cosmic expansion on planetariem makes sense, of course, because the RW geometry
orbits. Nevertheless, it is commonly accepted that thétself has global cylindrical symmetry. Notice also that
first formally correct description of the above problem wassince we are dealing with junction conditions, which are
done by Einstein and Straus [4] back in 1945. local, our result applies to many situations such as

The classical Einstein-Straus paper [4] gave a modetylinders (for strings), coin-shaped objects, or more
for a spherically symmetric compact object surroundeccomplicated ones (bottle-shaped things, and many others),
by vacuum inside a spatially homogeneous and isotropies long asthey can be considereldcally cylindrically
universe. The main aim was the determination of “thesymmetric.
influence of the expansion of the space on the (vacuum) For the sake of generality we do not make any assump-
gravitational fields surrounding the individual stars” [4], tion on the energy-momentum tensor of the static cavity,
and the method was to ascertain whether or not it isnd thus our results apply to either case of considering
possible to match the spherically symmetric vacuum (ananly the interior of the static objects, or together with their
hence stati Schwarzschild solution to an expanding possible static exteriors (vacuum or with electromagnetic
(and hencenonstatiy exterior Robertson-Walker (RW) fields). The general result we obtain is ttre@nonstatic
cosmological space-time across a hypersurface preservifpbertson—Walker metric cannot be matched to any cylin-
the spherical symmetry. The well-known result wasdrically symmetric static metric across a nonspacelike hy-
that it is possible to match angust RW geometry with  persurface preserving the symmetrilotice that, by the
the Schwarzschild vacuum metric across any co-movingisual duality between the interior and the exterior metric
3-sphere as long as the total mass contained inside ti{eemember that, for example, the Einstein-Straus model is
3-sphere in the RW part is exactly the mass of themathematically equivalent to the Oppenheimer-Snyder [8]
Schwarzschild “hole.” Thus, the result is that therecollapsing dust with vacuum exterior), we are solving at
is no influence of the cosmic expansion on the statithe same time the problem of finding a RW interior to any
Schwarzschild vacuole. static cylindrically symmetric space-time.

This has been the standard answer for many years, evenlt might seem strange trying to match a static metric
though there have appeared other new attempts to construgith a nonstatic one, but that is precisely the point in
more sophisticated models in which the expansion maghe Einstein-Straus work: a static cavity can be contained
influence other types of cavities (see, for instance, [5—7]within the expanding Universe (of course, the vacuole
this is also related to the problem of formation of voids inis getting bigger as the hypersurface surrounding it is
the Universe. We refer the reader to the excellent revievexpanding with the Universe). For our case the problem
of these matters givenin [3]). Nevertheless, and apart frons also meaningful since we prove here explicitly that the
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matching of twoarbitrary cylindrically symmetric space- -9 0 - _ 0

. . . . . . 1 = 14 N 62 = N
times, one static and the other nonstatic, is feasible in oT ap lo- o
principle, andonly when we restrict the nonstatic one to L 9

be a RW model the impossibility arises. 5 = 5)

The junction conditions for two general cylindrically ) . .
symmetric space-times across a timelike or spacelike hyl€se space-time vector fields are defiredy on the

persurface preserving the symmetry can be found in [g]YPersurface. S .
Nevertheless, we are interested in nonspacelike hypersu ;The flrsttfundamental fornt1_s 'Phe”ted ly~ from the
faces in general, even changing its character from point t ) space-times are, respectively,

point, because a possible matching across a partly null hy- ds* |+ = (—A22 + B2%)d A2

persurface would be a satisfactory situation since we could M2 a2 L Aa o

have an object surrounded by a static region whose rim + CPd¢” + Do, (6)
is expanding at the speed of light. Therefore, we need )

the junction conditions for general hypersurfaces, which ds* |- = (—A2T? + pHdAr?

have been recently given in [10] (see also [11,12] for the 2,42 )
specific particular case of null hypersurfaces). (Actually, + g+ DL, (7)

by using the junction conditions fgeneralhypersurfaces Now, the first part of the junction conditions is always the
we will also solve the problem for partly spacelike hy- equalityds®*|,+ = ds* |,- [10-12,16,17], which in this
persurfaces, which may describe phase transitions in thgase read simply as

Universe.) Anen sren . =
Let us consider the most general whole cylindrically —ATT £ BTt = —ATT + p7, (8
symmetric line element, given in coordinates-, ¢, z} by . .
[13—15] c<c, Db, ©)
2t _A202 o B2 4 22 4 P22 ” _ ,
ds®" = —A%dt” + Bdr” + C7de” + D°dz°, (1) \whereZ means that both sides of the equality must be

where A, B, C, and D depend onr and r. (We use evaluated orr™.

the term “whole” in the sense of [13], p. B232 (see also In order to impose the remaining junction conditions we
[14]): cylindrically symmetric systems invariant also underneed the normal forms to the hypersurface, defined by the
reflection in any plane containing the symmetry axis orvectors (4) and (5) through the conditian.e’ = 0, so
perpendicular to it. In fact, we can also obtain our resulthat they take the form

in the general cylindrically symmetric case, that is, with b an .

a crossed termledz in (1), but we have preferred to n' = AB(=rdt + tc_lr)l‘f“
keep the simplicity as our first goal is the case of a RW n~ = EA(—pdT + Tdp)|,-,
metric (which has whole cylindrical symmetryY-his will
describe the nonstatic region, while the static one is give
by the analogous line element in coordinatEsp, @, z}

(10)

here we have chosen them with the same modulus at
oth sides of the hypersurface by using (8), and the sign
& defines their two possible relative orientations [18,19].
ds*™ = —A%T? + dp? + C%d@? + D*az2, (2) (We cannot normalize the normals as we are treating with
general hypersurfaces.) In the usual situations with a
Wher_e npr, C, andzD dependonly on p (and 'the timelike matching hypersurface, the remaining junction
function in front ofdp” has been put equal to 1 without ongitions demand the equality of the second fundamental
loss of generality). The parametric forms of a generakyms K5 = —nfe* V:er” inherited byo™ from the
hypersurface(r preserving the cylindrical symmetry are (+) space-timesV [f0,11,16]. However, for the case of
given by general hypersurfaces these junction conditions must be
o {1, r(A), ¢ = ¢,z = {}, 3 appropriately generalized. It is known [10] that the proper
o TN, p(M), & = 6.7 = ¢}, (3) jur_lction conditions for thg general cgse are sim@& =<
i i H,, where the symmetric tensoi8,, generalizing the
for the (+) and () space-times, respectively, where second fundamental forms are defined by
{9} =1, ¢,} (a,b = 1,2,3) are intrinsic coordinates
in the hypersurface andA), r(A), T(A), p(A) are arbitrary Hy = —{ e Ve, (11)
functions. The three independent vector fie{dgoé“t . o _
tangent too can be pushed forward to the space-timest = being the so-called rigging vectors, that is, any vector

giving field defined only orr = andnottangent tar = (obviously,
for the case of timelike hypersurfaces the normal vector
3t = ;9 .9 . 8t = 9 ’ is itself a rigging and henced,, coincides with the
at ar lg+ 0@ lo+ second fundamental form by choosifig= #). The above
P junction conditionsH,,, < H_, do not depend on the
ey = P (4)  specific choice of the rigging [10].
0.+
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The riggings are defined lyyﬂi“ # 0, and in addi- are satisfied identically and do not provide any further
tion they must be chosen such that information.
€+€+M T e, €+e+"‘ I et (12) Ca}rse (b): This is the generic case defined(bfy +
D% # 0. In this case, taking into account the above
SO as to assure thelr mutual identification. Therefore, &tatements (i), (i), and (iii), Egs. (17) and (16) lead to
suitable choice fof *

- + 7.’ a i 8 D,Pé,t g C,pb,l? D,pé,r g C’pD’r N (18)
€ = T =5 s — S
A? or B or|,. and these two equations imply in turn
Z?_—G—zﬁi-l-j’i (13) A ¢ A A Z
B “ A% 9T ap 7’ b,¢c, -D,C, =0, (29)

whereG and « are the solutions of the simple system ofWhiCh is an important relation since it involvesnly
@ pie sy guantities of the exterio(+) space-time. We shall call

equations ) it the exterior condition.
_f_z n f_z T G2<—a4 /3_2 n T2> W(i}hout loss of generality, we can always assume that
A2 B2 A? C, # 0for case (b) due to the symmetry of the equations

(14) under the simultaneous interchange of the and C

functions. Then, after substituting the explicit values of
in order to comply with (12). Then, the nontrivial G anda coming from (14), the complete set of matching
junction conditionsH,, < H,, come from Hy,,Hyg, conditions for the case (b) can be finally written after
andH, and their explicit form reads some long but straightforward calculations as

2t £ G(a® + DTh,

A

A, A, BB, 2 e(3liv 5 )
, AC,T = &A= =T, 20
rt+tr+r(A +2Art+A2r> 0 B A" (20)
. A , e
L B, .. AA,Z2 c: £ L _ L (22)
B B 32 P B2 A2
A, . , (C2 E\(A,. B ¢, &
z 2,2 3 TC2A =<;’— ;’><;’t++">— L=
G<a pT + Tp + 2a°p T—=£ A + 7T AA, ), (15) PP B2 A2 B A r A B
.C, .C, o 3 B C.C, (A A
=t _ LA B, . B, . r(A; . P
T T i GTC,. ><<+’t+ . r>+C;’C;<+’z+ . r)
Dt -Dr o . (16) AB A B A A Bi A/\ AA
F p -t B = _GTD,ps _ C, <C P Cr }'> + C’I<C’trl" + Crr r)
where in (16) we have used (9). Equations (8), (9), and BA A ANE B 22)

(14)—(16) constitute the full set ehatching conditions.

Let us see what information we can extract from thetogether with (9) and (19) [and one of the (18)if= 0].
matching conditions. First of all, the derivatives along consider then the pertinent physical problem of deter-
the hypersurface of (9) give mining the interior(—) space-time given the exterior one.

a s Thus, we assume that we knaWwB, C, D explicitly. The
o+ iC, pCp, iD; + 7D, pD (7 first thing to do is check whether or not the exterior condi-
Combining (17) and (16) we get the following statementstion (19) is satisfied. If (19) holds identically, which may
(otherW|sea Would not eX|st) happen, for example, whefi = D, or may lead to cases

() D, = C =C, = 0 =D, = Cp Z0. (i)—(iii), then no information comes from it.

iD, <D, = 0 =D, Zo. In general, howev_er, _(19) will not Ige sati_sfied identi-

iy &, Z e, 20— c, Z . cally, and therefpre it gives an _expllc_|t relation between

(V) 7 =0 j =0, and then necessarily’, < t(A) an+dr(/\) or, in other Words,_lt provides the hypersur-

' ; faceo™ as seen from the exterior. Then, the) space-

D, =0. . . time will get completely determined, except in the above

() r=0eT=0 and then necessarily especial case (iv), as follows: from (21) we obtalp on

C,=D,=0. the hypersurface. Then, from the derivative (17) of (9)
Thus, we can consider two different cases: we find p, and therebyp(A) up to an additive constant.

Case (a) ThiS case is defined By, = C,, =D, =  The combination of thi (1) and (9), taking into account
D, <D, <% C,<0,and the whole system of matching that C and D depend only orp, determines completely
conditions is completed with (8), (9), (14), and (15). Thisthe functionsC(p) and D(p) [and (18) is automatically
case must be treated separately because (16) and (1gtisfied]. Then, from (22), (20), andA) we getA , /A,
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and upon integration the functiaf(p) up to an irrele- Clp) = a(t0)2<p —n )
vant multiplicative constant. Finally, the last relation (20) a(ty) >/’
providesT (A), which together withp (A) gives the hyper-
surfaces ™~ as seen from the interior explicitly. (We have D(p) = a(to)\/l - 622<p _ n, e), (28)

tacitly assumed thal’ # 0. If T = 0 the reasoning is a(1o)

identical, buta is not determln(_ed.) In. summary, we have heren is a constant and(p) is arbitrary. In particular,
proved that a general nonstatic metric (1) can be matche}{%e matching of a RW space-time with a stasiacuum
to a static metric (2provided there exists a hypersurface metric [15] is possible only for a flate = 0) RW with

in which the exterior condition (19) holdsFurthermore, ) ; . -
. L . : Minkowski space-time. An explicit smooth example can
the static space-time is completely determined in general, :
be found in Ref. [20].

With all this information at hand, let us finally attack As a closing remark, we can notice that the negative

the problem for a RW exterior. The RW metric in It in this L he K ' bili f
explicitly cylindrically symmetric form is [3] result in this Letter supports the known instability o
the Einstein-Straus model [3]. Furthermore, our results

ds> = —di® + 2O [dr® + S2(r, €) d > seem to imply that the problem of the influence of the

’ expansion on the space surrounding individual objects has
+ 2,2,,(r, €)dz*], (23)  no satisfactory answer in general relativity yet.

This work originated in a conversation of J. M. M. S.

wherea(t) is the scale factor and.(r, €) satisfiesE?r = with Professor W.B. Bonnor during a meal in the 19th

1 — €3% with €3 = €, or equivalently Jena Meeting on Relativity, held in Tambach-Dietharz,
sinhr, €= —1, Germany, last September 1996. R. V. wishes to thank the

S(r, €) {r’ e=0, (24) Direcci6 General de Recerca, Generalitat de Catalunya,

sinr, e=1, for financial support.

where € is the curvature index so that= 1,0, —1 for
closed, flat, or open RW models, respectively. Thus, we

have nowA = 1, B =a, C = a3, andD = 43 ,, and *Also at Laboratori de Rica Matematica, Institut d’Estu-
the necessary exterior condition (19) becomes dis Catalans, Catalonia.
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