
VOLUME 78, NUMBER 12 P H Y S I C A L R E V I E W L E T T E R S 24 MARCH 1997

ain

ext
drical
l is
the
dels.

2284
Impossibility of the Cylindrically Symmetric Einstein-Straus Model

José M. M. Senovilla* and Raül Vera*
Departament de Fı´sica Fonamental, Universitat de Barcelona, Diagonal 647, E-08028 Barcelona, Sp

(Received 2 December 1996)

The classical Einstein-Straus problem treats the influence of theexpansionof the universe on
the static vacuum surrounding a spherically symmetric object. In this Letter we study the n
simplest step by dropping the assumption of spherical symmetry and considering the case of cylin
symmetry. Our main result is that the cylindrically symmetric analog of the Einstein-Straus mode
impossible, even without any restriction on the matter content of the static cavity. This fact forbids
embedding of some static objects (say strings or similar objects) into the standard cosmological mo
[S0031-9007(97)02807-X]
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This Letter deals with the question of whether or n
the space surrounding astrophysical objects is influen
by the expansion of the Universe. We usually tend
consider the gravitational fields of the above-mention
objects asstatic,and yet we also believe that the Univers
they live in is expanding. Of course, this is an old proble
and has been studied several times since the appear
of general relativity. Perhaps the first attempt to give
answer to this problem was that of McVittie [1], late
developed and completed by Järnefelt [2] (see also fo
brief historical survey [3]), where they tried to discover th
possible influence of the cosmic expansion on planet
orbits. Nevertheless, it is commonly accepted that
first formally correct description of the above problem w
done by Einstein and Straus [4] back in 1945.

The classical Einstein-Straus paper [4] gave a mo
for a spherically symmetric compact object surround
by vacuum inside a spatially homogeneous and isotro
universe. The main aim was the determination of “t
influence of the expansion of the space on the (vacuu
gravitational fields surrounding the individual stars” [4
and the method was to ascertain whether or not it
possible to match the spherically symmetric vacuum (a
hence static) Schwarzschild solution to an expandin
(and hencenonstatic) exterior Robertson-Walker (RW
cosmological space-time across a hypersurface preser
the spherical symmetry. The well-known result w
that it is possible to match anydust RW geometry with
the Schwarzschild vacuum metric across any co-mov
3-sphere as long as the total mass contained inside
3-sphere in the RW part is exactly the mass of t
Schwarzschild “hole.” Thus, the result is that the
is no influence of the cosmic expansion on the sta
Schwarzschild vacuole.

This has been the standard answer for many years, e
though there have appeared other new attempts to cons
more sophisticated models in which the expansion m
influence other types of cavities (see, for instance, [5–
this is also related to the problem of formation of voids
the Universe. We refer the reader to the excellent rev
of these matters given in [3]). Nevertheless, and apart fr
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first order deviations [6], as far as we are awareall the
known models havespherical symmetry.

Therefore, it arises naturally the question of ho
much Einstein-Straus’s general conclusion depends
the assumption of spherical symmetry. In this pap
we give a perhaps surprising answer to this questio
since we attack the next simplest problem (cylindric
symmetry) and thereby we prove rather easily the impo
sibility of having a static cavity matched to a standar
RW cosmological universe whenever the cavity has
border containing a cylindrical-like piece. This prob
lem makes sense, of course, because the RW geom
itself has global cylindrical symmetry. Notice also tha
since we are dealing with junction conditions, which a
local, our result applies to many situations such a
cylinders (for strings), coin-shaped objects, or mo
complicated ones (bottle-shaped things, and many othe
as long asthey can be consideredlocally cylindrically
symmetric.

For the sake of generality we do not make any assum
tion on the energy-momentum tensor of the static cavi
and thus our results apply to either case of consideri
only the interior of the static objects, or together with the
possible static exteriors (vacuum or with electromagne
fields). The general result we obtain is thata nonstatic
Robertson–Walker metric cannot be matched to any cyl
drically symmetric static metric across a nonspacelike h
persurface preserving the symmetry.Notice that, by the
usual duality between the interior and the exterior metr
(remember that, for example, the Einstein-Straus mode
mathematically equivalent to the Oppenheimer-Snyder
collapsing dust with vacuum exterior), we are solving
the same time the problem of finding a RW interior to an
static cylindrically symmetric space-time.

It might seem strange trying to match a static metr
with a nonstatic one, but that is precisely the point
the Einstein-Straus work: a static cavity can be contain
within the expanding Universe (of course, the vacuo
is getting bigger as the hypersurface surrounding it
expanding with the Universe). For our case the proble
is also meaningful since we prove here explicitly that th
© 1997 The American Physical Society
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matching of twoarbitrary cylindrically symmetric space-
times, one static and the other nonstatic, is feasible
principle, andonly when we restrict the nonstatic one t
be a RW model the impossibility arises.

The junction conditions for two general cylindrically
symmetric space-times across a timelike or spacelike
persurface preserving the symmetry can be found in [
Nevertheless, we are interested in nonspacelike hyper
faces in general, even changing its character from poin
point, because a possible matching across a partly null
persurface would be a satisfactory situation since we co
have an object surrounded by a static region whose
is expanding at the speed of light. Therefore, we ne
the junction conditions for general hypersurfaces, whi
have been recently given in [10] (see also [11,12] for t
specific particular case of null hypersurfaces). (Actual
by using the junction conditions forgeneralhypersurfaces
we will also solve the problem for partly spacelike hy
persurfaces, which may describe phase transitions in
Universe.)

Let us consider the most general whole cylindrical
symmetric line element, given in coordinatesht, r , w, zj by
[13–15]

ds21 ­ 2Â2dt2 1 B̂2dr2 1 Ĉ2dw2 1 D̂2dz2, (1)

where Â, B̂, Ĉ, and D̂ depend ont and r . sssWe use
the term “whole” in the sense of [13], p. B232 (see als
[14]): cylindrically symmetric systems invariant also unde
reflection in any plane containing the symmetry axis
perpendicular to it. In fact, we can also obtain our res
in the general cylindrically symmetric case, that is, wi
a crossed termdwdz in (1), but we have preferred to
keep the simplicity as our first goal is the case of a R
metric (which has whole cylindrical symmetry).ddd This will
describe the nonstatic region, while the static one is giv
by the analogous line element in coordinateshT , r, w̃, z̃j

ds22 ­ 2A2dT2 1 dr2 1 C2dw̃2 1 D2dz̃2, (2)

where now A, C, and D dependonly on r (and the
function in front ofdr2 has been put equal to 1 withou
loss of generality). The parametric forms of a gener
hypersurfaces preserving the cylindrical symmetry are
given by

s1:htsld, rsld, w ­ f, z ­ z j ,

s2:hT sld, rsld, w̃ ­ f, z̃ ­ z j ,
(3)

for the s1d and s2d space-times, respectively, wher
hjaj ; hl, f, z j sa, b ­ 1, 2, 3d are intrinsic coordinates
in the hypersurface andtsld, rsld, T sld, rsld are arbitrary
functions. The three independent vector fieldsh≠y≠jaj
tangent tos can be pushed forward to the space-tim
giving

$e 1
1 ­ Ùt

≠

≠t
1 Ùr

≠

≠r

Ç
s1

, $e 1
2 ­

≠

≠w

Ç
s1

,

$e 1
3 ­

≠

≠z

Ç
s1

, (4)
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$e 2
1 ­ ÙT

≠

≠T
1 Ùr

≠

≠r

Ç
s2

, $e 2
2 ­

≠

≠w̃

Ç
s2

,

$e 2
3 ­

≠

≠z̃

Ç
s2

. (5)

These space-time vector fields are definedonly on the
hypersurface.

The first fundamental forms inherited bys6 from the
s6d space-times are, respectively,

ds21js1 ­ s2Â2Ùt2 1 B̂2 Ùr2ddl2

1 Ĉ2df2 1 D̂2dz 2js1 , (6)

ds22js2 ­ s2A2 ÙT 2 1 Ùr2ddl2

1 C2df2 1 D2dz 2js2 . (7)

Now, the first part of the junction conditions is always t
equalityds21js1 ­ ds22js2 [10–12,16,17], which in this
case read simply as

2Â2Ùt2 1 B̂2 Ùr2 s
­ 2A2 ÙT 2 1 Ùr2, (8)

Ĉ
s
­ C, D̂

s
­ D , (9)

where
s
­ means that both sides of the equality must

evaluated ons6.
In order to impose the remaining junction conditions w

need the normal forms to the hypersurface, defined by
vectors (4) and (5) through the conditionnmem

a ­ 0, so
that they take the form

n1 ­ ÂB̂s2Ùrdt 1 Ùtdrdjs1 ,

n2 ­ ẽAs2 ÙrdT 1 ÙTdrdjs2 ,
(10)

where we have chosen them with the same modulu
both sides of the hypersurface by using (8), and the s
ẽ defines their two possible relative orientations [18,1
(We cannot normalize the normals as we are treating w
general hypersurfaces.) In the usual situations wit
timelike matching hypersurface, the remaining juncti
conditions demand the equality of the second fundame
forms K6

ab ­ 2n6
n e6m

a =6
me6n

b inherited bys6 from the
s6d space-times [10,11,16]. However, for the case
general hypersurfaces these junction conditions mus
appropriately generalized. It is known [10] that the prop
junction conditions for the general case are simplyH1

ab
s
­

H2
ab where the symmetric tensorsH6

ab generalizing the
second fundamental forms are defined by

H6
ab ­ 2,6

n e6m
a =6

me6n
b , (11)

$, 6 being the so-called rigging vectors, that is, any vec
field defined only ons6 andnot tangent tos6 (obviously,
for the case of timelike hypersurfaces the normal vec
is itself a rigging and henceHab coincides with the
second fundamental form by choosing$, ­ $n). The above
junction conditionsH1

ab
s
­ H2

ab do not depend on the
specific choice of the rigging [10].
2285
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The riggings are defined byn6
m ,6m fi 0, and in addi-

tion they must be chosen such that

,1
m,1m s

­ ,2
m,2m, ,1

me1m
a

s
­ ,2

me2m
a , (12)

so as to assure their mutual identification. Therefore
suitable choice for$, 6 is

$, 1 ­ 2
Ùr

Â2

≠

≠t
1

Ùt

B̂2

≠

≠r

É
s1

,

$, 2 ­ G

µ
2a2 Ùr

A2

≠

≠T
1 ÙT

≠

≠r

∂ É
s2

,
(13)

whereG anda are the solutions of the simple system
equations

2
Ùr2

Â2
1

Ùt2

B̂2

s
­ G2

µ
2a4 Ùr2

A2
1 ÙT 2

∂
,

2Ùr Ùt
s
­ Gsa2 1 1d ÙT Ùr ,

(14)

in order to comply with (12). Then, the nontrivia
junction conditionsH1

ab
s
­ H2

ab come from Hll, Hff,
andHz z and their explicit form reads

Ùrẗ 1 Ùtr̈ 1 Ùr

µ
Â,t

Â
Ùt2 1 2

Â,r

Â
Ùr Ùt 1

B̂B̂,t

Â2
Ùr2

∂
1 Ùt

µ
B̂,r

B̂
Ùr2 1 2

B̂,t

B̂
Ùr Ùt 1

ÂÂ,r

B̂2
Ùt2

∂
s
­ G

µ
a2 ÙrT̈ 1 ÙT r̈ 1 2a2 Ùr2 ÙT

A,r

A
1 ÙT 3AA,r

∂
, (15)

Ùr
Ĉ,t

Â2
2 Ùt

Ĉ,r

B̂2

s
­ 2G ÙTC,r ,

Ùr
D̂,t

Â2
2 Ùt

D̂,r

B̂2

s
­ 2G ÙTD,r ,

(16)

where in (16) we have used (9). Equations (8), (9), a
(14)–(16) constitute the full set ofmatching conditions.

Let us see what information we can extract from t
matching conditions. First of all, the derivatives alon
the hypersurface of (9) give

ÙtĈ,t 1 ÙrĈ,r
s
­ ÙrC,r , ÙtD̂,t 1 ÙrD̂,r

s
­ ÙrD,r . (17)

Combining (17) and (16) we get the following statemen
(otherwises would not exist):

(i) D̂,t
s
­ Ĉ,r

s
­ D̂,r

s
­ Ĉ,t

s
­ 0 () D,r

s
­ C,r

s
­ 0 .

(ii) D̂,t
s
­ D̂,r

s
­ 0 �) D,r

s
­ 0.

(iii) Ĉ,t
s
­ Ĉ,r

s
­ 0 �) C,r

s
­ 0.

(iv) Ùr ­ 0 () Ùr ­ 0, and then necessarilŷC,t
s
­

D̂,t
s
­ 0.

(v) Ùt ­ 0 () ÙT ­ 0, and then necessarily
Ĉ,t

s
­ D̂,t

s
­ 0.

Thus, we can consider two different cases:
Case (a): This case is defined byD,r

s
­ C,r

s
­ D̂,t

s
­

D̂,r
s
­ D̂,r

s
­ Ĉ,t

s
­ 0, and the whole system of matchin

conditions is completed with (8), (9), (14), and (15). Th
case must be treated separately because (16) and
2286
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are satisfied identically and do not provide any furthe
information.

Case (b): This is the generic case defined byC2
,r 1

D2
,r

s

fi 0. In this case, taking into account the above
statements (i), (ii), and (iii), Eqs. (17) and (16) lead to

D,rĈ,t
s
­ C,rD̂,t , D,rĈ,r

s
­ C,rD̂,r , (18)

and these two equations imply in turn

D̂,t Ĉ,r 2 D̂,r Ĉ,t
s
­ 0 , (19)

which is an important relation since it involvesonly
quantities of the exteriors1d space-time. We shall call
it the exterior condition.

Without loss of generality, we can always assume tha
C,r

s

fi 0 for case (b) due to the symmetry of the equation
under the simultaneous interchange of theD and C
functions. Then, after substituting the explicit values o
G anda coming from (14), the complete set of matching
conditions for the case (b) can be finally written afte
some long but straightforward calculations as

AC,r
ÙT

s
­ ẽ

µ
Â

Ĉ,r

B̂
Ùt 1 B̂

Ĉ,t

Â
Ùr

∂
, (20)

C2
,r

s
­

Ĉ2
,r

B̂2
2

Ĉ2
,t

Â2
, (21)

ÙTC2
,rA,r

s
­

µ
Ĉ2

,r

B̂2
2

Ĉ2
,t

Â2

∂ µ
Â,r

B̂
Ùt 1

B̂,t

Â
Ùr

∂
2

Ĉ,t

Â

Ĉ,r

B̂

3

µ
B̂,t

B̂
Ùt 1

B̂,r

B̂
Ùr

∂
1

Ĉ,t

Â

Ĉ,r

B̂

µ
Â,t

Â
Ùt 1

Â,r

Â
Ùr

∂

2
Ĉ,r

B̂

µ
Ĉ,tt

Â
Ùt 1

Ĉ,tr

Â
Ùr

∂
1

Ĉ,t

Â

µ
Ĉ,tr

B̂
Ùt 1

Ĉ,rr

B̂
Ùr

∂
,

(22)

together with (9) and (19) [and one of the (18) ifÙr ­ 0].
Consider then the pertinent physical problem of dete

mining the interiors2d space-time given the exterior one.
Thus, we assume that we knoŵA, B̂, Ĉ, D̂ explicitly. The
first thing to do is check whether or not the exterior condi
tion (19) is satisfied. If (19) holds identically, which may
happen, for example, when̂C ­ D̂, or may lead to cases
(i)–(iii), then no information comes from it.

In general, however, (19) will not be satisfied identi-
cally, and therefore it gives an explicit relation between
tsld andrsld or, in other words, it provides the hypersur-
faces1 as seen from the exterior. Then, thes2d space-
time will get completely determined, except in the abov
especial case (iv), as follows: from (21) we obtainC,r on
the hypersurface. Then, from the derivative (17) of (9
we find Ùr, and therebyrsld up to an additive constant.
The combination of thisrsld and (9), taking into account
that C and D depend only onr, determines completely
the functionsCsrd and Dsrd [and (18) is automatically
satisfied]. Then, from (22), (20), andrsld we getA,ryA,
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and upon integration the functionAsrd up to an irrele-
vant multiplicative constant. Finally, the last relation (20
providesTsld, which together withrsld gives the hyper-
surfaces2 as seen from the interior explicitly. (We hav
tacitly assumed thatÙT fi 0. If ÙT ­ 0 the reasoning is
identical, butA is not determined.) In summary, we hav
proved that a general nonstatic metric (1) can be match
to a static metric (2)provided there exists a hypersurfac
in which the exterior condition (19) holds.Furthermore,
the static space-time is completely determined in gener

With all this information at hand, let us finally attack
the problem for a RW exterior. The RW metric in
explicitly cylindrically symmetric form is [3]

ds21 ­ 2dt2 1 a2std fdr2 1 S2sr , ed dw2

1 S2
,rsr , ed dz2g , (23)

whereastd is the scale factor andSsr , ed satisfiesS2
,r ­

1 2 eS2 with e3 ­ e, or equivalently

Ssr , ed ­

8<: sinhr , e ­ 21 ,
r , e ­ 0 ,
sinr , e ­ 1 ,

(24)

where e is the curvature index so thate ­ 1, 0, 21 for
closed, flat, or open RW models, respectively. Thus, w
have nowÂ ­ 1, B̂ ­ a, Ĉ ­ aS, and D̂ ­ aS,r , and
the necessary exterior condition (19) becomes

0
s
­ saS,r d,tsaSd,r 2 saS,r d,rsaSd,t

­ aa,tsS2
,r 1 eS2d ­ aa,t ,

(25)

that is

a,t
s
­ 0 . (26)

This means that eitherÙt
s
­ 0 or a is constant in a

neighborhood ofs. In the first case the matching
hypersurface is spacelike, and in the second case the
metric is, in fact, static. Therefore, we have arrived at t
main result:a nonstatic RW space-time cannot be match
to a cylindrically static metric across a nonspacelik
hypersurface.This implies that the cylindrical analog o
the Einstein-Straus problem has no solution.

For the sake of completeness, let us consider the po
ble matching defined by (26) for a nonstatic RW metri
From (26) we know that the matching hypersurface mu
be the spacelike hypersurfaces1:t ­ t0 (correspondingly
s2:T ­ T0) where the expansion of the RW model van
ishes, if it exists. The complete set of the remaining
matching conditions, after a short manipulation, is then

aS
s
­ C, a2 s

­ eC2 1 D2, C2
,r

s
­ S2

,r . (27)

In this case, the static partner (we do not use the te
“interior” because the matching hypersurface is an insta
of time) is determined and the metric functions are
)

ed

al.

e

W
e
d

si-
.
st

-

rm
nt

Csrd ­ ast0dS
µ

r 2 n
ast0d

, e

∂
,

Dsrd ­ ast0d

s
1 2 eS2

µ
r 2 n
ast0d

, e

∂
, (28)

wheren is a constant andAsrd is arbitrary. In particular,
the matching of a RW space-time with a staticvacuum
metric [15] is possible only for a flatse ­ 0d RW with
Minkowski space-time. An explicit smooth example ca
be found in Ref. [20].

As a closing remark, we can notice that the negati
result in this Letter supports the known instability o
the Einstein-Straus model [3]. Furthermore, our resu
seem to imply that the problem of the influence of th
expansion on the space surrounding individual objects
no satisfactory answer in general relativity yet.
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