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The Spectral Form Factor Is Not Self-Averaging
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The form factor, kstd, is the spectral statistic which best displays nonuniversal quasiclas
deviations from random matrix theory. Recent estimations ofkstd for a single spectrum found
interesting new effects of this type. It was supposed thatkstd is self-averagingand thus did not require
an ensemble average. We here argue that this supposition sometimes fails and that for many im
systems an ensemble average is essential to see detailed properties ofkstd. In other systems, notably
the nontrivial zeros of Riemann zeta function, it will be possible to see the nonuniversal propert
an analysis of a single spectrum. [S0031-9007(97)02762-2]

PACS numbers: 03.65.Sq, 05.40.+ j, 05.45.+b
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Recent seminal work by Agam, Altshuler, and Andre
(AAA) [1] connects the energy level statistics of asingle
system, say a particular Sinai billiard, with the statistics
an ensembleof systems, namely, with the predictions
random matrix theory(RMT) [2]. This long conjectured
connection was never before expressed analytically. T
work has generated great interest and has led to altern
results by Bogomolny and Keating (BK) [3]. In short,
was proposed that the form factorkstd of the spectrum of
a given system can be calculated quasiclassically to g
approximation directly in terms of the classical period
orbits of the system, and the results show only sm
deviations from the RMT prediction.

For scaling systems like billiards, it was found that n
only doesthe spectral form factor approach the univers
RMT result in an appropriate high energy limit, bu
predictions are made as tohow this limit is approached.
The results of AAA and BK differ in detail from one
another, but their gross features, in particular, their sca
at high energy, are the same. (AAA-BK did not point o
how the nonuniversal difference between their predict
and RMT scales, but it follows from their results.)

It would obviously be of interest to take the spectru
of some system, obtained either numerically or expe
mentally, and use it to calculatekstd, so that compari-
son of the two approximate theories with the numerica
“exact” structure factor can be made. The AAA-BK r
sults supply a definite target for such an analysis.

The main result of this paper is thatin most cases
such a comparison isimpossible in principle,at least
using presently known methods of data analysis. Thi
based on the important fact thatthe spectral form factor
is not self-averaging.This fact was known, although i
evidently deserves more emphasis. What is new her
that we provide the first analysis of a secondary aver
which shows that it is usually impossible to extract
much from data on a single system as had previously b
taken for granted.

Correlation functions and their Fourier transforms
form factors—are ubiquitous in physics. “Two poin
0031-9007y97y78(12)y2280(4)$10.00
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correlation functions are the result of averaging “obse
ables” at two “points” of a system or of an ensemb
Often, as for laser speckle pattern, they directly rep
sent real experiments. In the case of speckle pattern
is widely known that the form factor isnot self-averaging.
Thus laser light scattered from a rough surface showsvery
large fluctuations,fluctuations as large as the average s
nal, which areparticular to that surface. These fluctu
ations disappear under an ensemble average.

Most correlation functionsare self-averaging. For in-
stance, the electrical conductance is self-averaging un
the electronic states are localized. Breakdown of s
averaging is especially interesting therefore. There is li
discussion of self-averaging for the spectral form factor
the literature, and the conclusions reached are contra
tory. One work [4] is devoted to proving (incorrectly, a
we shall argue) thatall two point spectral correlation func
tions including the spectral form factorareself-averaging.
To be precise, it states that the correlation functions c
culated from the energy levels obtained from a typical e
emplar of a large random matrix is identical to the RM
ensemble average. Other work [5–7] states clearly,
without much discussion, the correct result thatkstd is not
self-averaging. The later papers do not cite the earlier o

The numerical evidence is strong. We reproduce
Fig. 1 the form factor obtained by Eckhardt and Ma
[8] from some thousand levels of a hydrogen atom
a magnetic field. The large fluctuations about the RM
result attest to the lack of self-averaging.

AAA-BK ignore the self-averaging issue. Remarkabl
although they emphasize that they calculate for a sin
system, their results donot show large fluctuations bu
rather are characteristic ofensemble averagedresults. In
fact, it was shown [9] how to modify RMT in order to
incorporate into the matrix ensemble quasiclassical orb
information about a given system. This methoddoes
make an ensemble average. The ensemble is per
that of all Hamiltonians with the same classical lim
The results [9] are less complete than those of AAA-B
but agree qualitatively with them. We shall later try
© 1997 The American Physical Society
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FIG. 1. Spectral form factorkstd (inset) for the eigenvalues
3997, . . . , 4996 of hydrogen in a magnetic field at scaled ener
e ­ 20.1. Main figure: Time smoothed form factorktstd,
t , 0.6, for eigenvalues 1–1000 (dotted), 1001–2000 (da
dotted), 2001–3000 (long dashed), 3001–4000 (short dash
and 3997–4996 (continuous). See Ref. [8] for further deta
This system is GOE. The GOE form factor is given by t
thick line, the GUE by the thin straight lines. The shad
circle indicates schematically where nonuniversal deviati
from GUE are predicted.

explain why AAA-BK fail to find the large fluctuations
inherent in a form factor calculated for a single system

It is known to be essential to use an energy aver
(see below). There is an additional average available
a single system [5,8], namely, atime average in which
kstd is averaged over a range of timet 6

1
2 t. Such an

average is also illustrated in Fig. 1. We shall argue t
for some systems this average, used with care, suffi
to achieve agreement with the results of AAA-BK, whi
other systems require an ensemble average.

Of all the two level spectral correlation function
(which are interrelated by linear transformations), t
form factor is of special interest because, according
Berry [10], the dimensionless timet, the argument ofkstd,
is essentially the relevant classical orbit period in un
of the Heisenberg time,t h̄ ­ 2p h̄yD, where D is the
mean level spacing. In particular, for smallt, it has long
been established and exploited [11] that the form facto
strongly peaked at the periods of the short periodic orb
and the weights of these peaks are determined by
stability properties of the orbits. Other correlators sm
over the time and are not so directly interpreted. Th
are other reasons [5] for preferringkstd.

Another nice feature ofkstd is that there are definite
nonuniversal effectsin a particular rangeof t, namely,
neart ­ 1. This is thenew resultof the above theories
[1,3,9]. These deviations from RMTdisappear in the
high energy limit, and the range over which the deviatio
occur shrinks to zero,as some power,h, of inverse
energy. Exactlywhich power determines whether th
effects can be observed in numerical calculations.
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The form factor is usually loosely defined as the Four
transform of the two level correlation functionCsxd,

Csxd ­

* X
a,b

d

µ
E 1 xDy2 2 Ea

D

∂
3 d

µ
E 2 xDy2 2 Eb

D

∂+
e0,W

. (1)

The spectrum is given by the sequence of levelsEa. The
average ofE is over an energy rangeW about a central
energye0. AAA-BK make no further average. The form
factor is kstd ­

R
dx e2pixtCsxd. To be interesting, the

results must depend only weakly on the averaging wind
W , and, indeed, they should not depend much on exa
how the average is made. This is supposed to be
case if (a) there are a large number of energy levels
the average, i.e.,w ; WyD ¿ 1 and (b)W is classically
small, denotedW ø e0. Then D and the properties of
periodic orbits vary little in the windowe0 6

1
2 W .

Theorists like to clean things up by taking a limi
e0yW ! `, WyD ! `. This requires an infinite numbe
of levels, and also knowledge of how things scale
e0 ! `. Billiards are prominent scaling systems. Fo
numerical calculations one must study the deviations fr
the limiting behavior.

To be precise we adopt the definition of Refs. [5
7]. Let the average be Gaussian, i.e.,k fsEdle0,W ­
W21

R
dE fsEd expf2psE 2 e0d2yW 2g. The x integral

in the Fourier transformmust also be cut off,and again a
Gaussian is chosen: expf2psxDy2Wxdg2 with Wx ­ W .
However, AAA tacitly choose an unspecified smallWx

or at any rate make approximations requiringWx ø

W . BK, after making approximations usingWx # W ,
extend thex integral to infinity. This is clearly untenable
although it was probably not meant to be taken serious

The choiceWx ø W has virtue. However, the sam
effect can be achieved by making a time convolution
kstd, i.e., smearing eacht by an amountt, and we choose
this route. It is also more general, since thent can depend
on the central timet, if desired.

With our definition,kstd can be rewritten

kstd ­

É X
a

Fae2pisEayDdt

É2
(2)

where F2
a ­ sDyW d expf2psEa 2 e0d2yW2g. Thus the

absolute square of a single sum appears, greatly simp
ing the double sum. More general “window” functions
Fa, appropriately normalized, do just as well. (Figure
uses a “Hanning” window.) For larget, one expects just
the diagonal terms in the double sum to survive, so tha
some sensek ! 1 in this limit. At very smallt, it is ex-
pected on general grounds thatkstd . dstd. But for small
t, the sum can be replaced by an integral, and a Gaus
of width DyW replaces thed function.

Equation (2) makes it clear that for the spectrum of
chaotic system,kstd, for large t, is approximately given
2281
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by a random walk in the complex plane of aboutw
steps. For the kind of systems envisaged, there will
significant random walk character even fort , 1. Insofar
as the phases of the individual terms in the sum Eq.
are indeed independent random variables, one may s
that the distribution of values ofy ­ kstd is rs yd ­ e2y.
This result is independent of the form ofFa and ofW , as
long as there are many terms in the sums of Eq. (2),
as long asw ¿ 1. The mean value (over an ensemb
of such random variables) iskstd ­ 1, and the variance
equals the mean. These results have been numeri
confirmed for the data of Fig. 1 [12].

For t , 1, think of the Ea ’s as ordered. Then i
will take some number,gstd, of steps, say, before th
knowledge of the original phase is lost. Thus there
wygstd effective random walk steps. The effective st
length is still of order unity, because the phase chan
systematically by an amounte2pitat each step. This give
a formula for the distribution,rfkstdg ­ gstde2kstdgstd. A
natural guess forgstd gives

rfkstdg ­
1

kEstd
e2kstdykEstd, (3)

wherekEstd is the ensemble average form factor. Usi
the quasiclassical approximation, Ref. [6] obtains a re
implying Eq. (3) for smallt. Equation (3) was in effec
used in doing the time average, in Fig. 1.

Thus, for any largeW , kstd suffers large fluctuations
unlesst is very small. IncreasingW does not change
the distribution, but rather makeskstd vary more rapidly
with t. If t is changed by an amount of orderDyW , then
kstd changes appreciably. For example, one estimates
random walk average*É

d
dt

X
a

Fae2pitsEa2e0dyD

É2+
­

4p2

D2

X
a

sEa 2 e0d2F2
a

, 2pw2.

From this it follows that smearing the timet by an
amountt is like averaging over a numbertw independent
choices from the distributionrfkstdg. Thus the “noise”
in the smeared functionktstd is reduced by a factop

1ywt. (This holds only fort , 1.) Of course,ktstd
changes appreciably only whent is varied by an amount o
ordert.

In the limit tw ! ` the noise disappears, andktstd in
that limit becomes self-averaging. For some purposes
is adequate. For example, consider the “proof” [4] t
“all” spectral correlation functions of particular membe
of an ensemble of random matrices are self-averaging
“ergodic”). Of course,Csxd, Eq. (1), is manifestlynot
self-averaging, since it consists of lots ofd functions,
while the ensemble average is smooth. But Pan
argued that “observable” quantities involve an integ
over x. Presumably he meant to take the limits of su
an integral as fixed and independent ofe0. Then in the
limit e0 ! ` followed by W ! `, Pandey indeed find
2282
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the energy smearedCsxd ! the RMT prediction. But
since the largeW limit is taken first, for fixed finitex,
it is the same as doing a time average withtWyD ! `.

We need a sharper result. Based on Refs. [1,3
we predict for billiards lacking time reversal invar
ance [Gaussian unitary ensemble (GUE)] thatjkkstdl 2

kRstdj , e
21y2
0 , for jt 2 1j , e

21y2
0 . A modified en-

semble average [9] ofk is indicated andkR is the
RMT form factor. Here units are chosen so th
D ­ mass ­ h̄ ­ 1.

We consider the rescaled “signal function”hssd ;
p

e0 fkts1 1 syp
e0 d 2 kRs1 1 syp

e0 dg which should
approach a theoretically predictable limit, of order uni
ase0 ! ` providedwe can choose a time smearingtse0d
which leads to aktstd sufficiently close to the modified
ensemble predictionkkstdl.

Put w ~ e
b
0 , and t ~ e

2a
0 . Clearly b # 1, so that

W ø e0 for large e0. If the time smearing is not to
lose the signal, thena $

1
2 . The noise inktstd then

scales ase
sa2bdy2
0 . Multiplying by e

1y2
0 to calculate the

noise inh gives a noise proportional toe
sa2b11dy2
0 where

1
2 sa 2 b 1 1d $

1
4 . Thus, we predict that the noise i

the signal functiongrowsat high energy, and therefore th
theoretical signal, of order unity, will be swamped.

We do not believe that there can be more sophistica
schemes to extract the signal from the noise. Any s
scheme must necessarily involve very high energy d
if ensemble averages are forbidden. Because the n
grows at high energy in the rescaledhssd, it hurts rather
than helps to use very high energy data. We concl
that it is impossible in principle to check the theoretic
predictions,absent an actual ensemble average.

Fortunately, there are systems which have much lar
“quasiclassical” corrections to the random matrix resu
than do strongly chaotic billiards. Most notable is t
spectrum of nontrivial zeros of the Riemann zeta functi
Although the hypothetical GUE “Hamiltonian’ whos
spectrum coincides with the zeros is not known, or ev
proved to exist, the “quasiclassical” parameters are kno
[13]. In the language used above, withe0 having the
mathematical meaning of height in the complex pla
along the critical line, the mean level spacing shrin
according toD ­ 2py lnse0y2pd, which we denoteD ,
e

20
0 . This turns out to give the scaling of the nonunivers

effects. We expect, based on the techniques of Ref.
that corrections tokstd of magnitudee

20
0 over a width

jt 2 1j , e
20
0 will exist. There should be enough da

available [13] to verify this prediction.
GUE billiards with strong, nonisolated orbits will als

have effects neart ­ 1 observable in principle, bu
they are probably too difficult in practice. The weig
of a nonisolated orbit in the Gutzwiller formula goe
as e

21y4
0 rather thane

21y2
0 as for unstable orbits. We

expect corrections neart ­ 1 of magnitudee
21y4
0 over

a time window e
21y4
0 thus allowing t ­ e

21y4
0 . This
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leads to noise of magnitudee21y8
0

in the rescaledhssd.
Thus, with many energy levels in the neighborhood
the 108 level, such an effect might be seen in a dire
calculation ofktstd from the spectrum of, say, a stadium
billiard containing Bohm-Aharonov flux lines to brea
time reversal symmetry. In general, a signal of width a
strengthe

2h
0 can in principle be extracted from the da

on a single system only ifh #
1
3 .

The discontinuity of slope att ­ 1 in the RMT kstd
for the GUE case plays an essential role in enhancing
nonuniversal effects neart ­ 1. Gaussian orthogonal en
semble (GOE) systems (with time reversal symmetry) u
fortunately have very small effects att ­ 1 and should be
even harder to observe. However, Gaussian symple
ensemble (GSE) systems, (sympletic symmetry) are
vorable because the RMT result is singular att ­ 1 and
thus can suffer large corrections from the nonuniversal
fects. These two cases have not been worked out in
detail up to now, however.

A similar discussion can be given forCsxd directly.
The nonuniversal contributions toCsxd are spread over
a wide x scale, however, in contrast to the case of t
form factor, makingCsxd less convenient thankstd. On
the other hand, certain often used linear transforms ofkstd
are self-averaging, in agreement with Pandey [4]. Amo
them areS2sLd and D3sLd, the number variance and th
Dyson-Mehta spectral rigidity. The former is given b
S2sLd ­

R
dt kstd fsinpLtyptg2. For L , 1 or smaller,

there is an effective time average over a scale of or
unity, thus eliminating the noise for largeW . For large
L, the contribution of the integral comes from smallt,
where the nonuniversal signal dominateskstd.

We now ask how AAA-BK can fail to find these
large fluctuations. AAA start from a supersymmetr
integral representation ofCsxd, and then make severa
approximations. One of these relies onx ø w. If
consistently imposed, this inequality is equivalent to
time average withtw ¿ 1. In the limit, the noise
associated with the lack of self-averaging is suppress
However, the nonuniversal signal is also suppres
unlessh ,

1
3 .

BK, in an indirect and imaginative way, extend th
diagonal approximation originally used [10] fort ø 1 to
all values of t. It is assumed that the energy avera
by itself validates the operation used to give the diago
approximation which is equivalent to the idea that t
actions of all orbits (unrelated by symmetry) may b
separately averaged. In addition, statistics of class
orbits are invoked in the form of the Hannay-Ozorio d
Almeida sum rule [14]. BK’s result forkstd is formally
a sum ofd functions,dst 2 tpd at the orbit periods, but
(we argue), thesed functions should have a widthDyW .
Except fort very small, the spacing between thetp ’s will
be much smaller than this, since the spacing decrea
exponentially with increasingtp . (This is the exponentia
f
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proliferation of orbits in chaotic systems.) Invokin
the sum rule [10,14] yields a smooth, non-noisy resu
This is in accord with previous work [7] where it wa
stated that the neglected off-diagonal contributions
responsible for the lack of self-averaging.

Thus, the results announced by AAA-BK cannot
obtained from single systems unless the exponenth #
1
3 . This probably precludes direct confrontation of the
results with experiments on single systems, althou
numerical experiments on the Riemann zeta can
studied. However, their important argument that t
statistics of a single system approaches that of RMT
not affected by the results of this paper. And their resu
remain of interest whenever an ensemble of wave syst
with the same classical parameters can be found.
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