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Quantifying Entanglement
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We present conditions every measure of entanglement has to satisfy, and construct a whole class
of “good” entanglement measures. The generalization of our class of entanglement measures to
more than two particles is straightforward. We present a measure which has a statistical operational
basis that might enable experimental determination of the quantitative degree of entanglement.
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We have witnessed great advances in quantum informa- Unless stated otherwise, the following considerations
tion theory in recent years. There are two distinct direc-apply to a system composed of two quantum subsystem
tions in which progress is currently being made: quantunof arbitrary dimensions. First, we define the tepuorifi-
computation and error correction on the one hand (for &ation procedurenore precisely. There are three distinct
short survey see [1,2]), and nonlocality, Bell's inequali-ingredients in any protocol that aims at increasing corre-
ties, and purification, on the other hand [3,4]. There haations between two quantum subsystems locally.
also been a number of papers relating the two methods Local general measurements (LGM}These are per-
(e.g., [5,6]). Our present work belongs to this secondormed by the two partiesA(and B) separately and are
group. Recently it was realized that the CHSH (Clauserdescribed by two sets of operators satisfying the com-
Horne-Shimony-Holt) form of Bell's inequalities are not a pleteness relations,; A; A =1 andZ B B, = 1. The
sufficiently good measure of quantum correlations in thggint action of the two is described @ A ® B;, which
sense that there are states which do not violate the CHShhain describes a local general measurement.
inequality, but, on the other hand, can be purified by lo- Classical communication (CG)-This means that the
cal interactions and classical communications to yield actions of A and B can be classically correlated. This
state that does violate the CHSH inequality [3]. Subsecan be described by a complete measurement on the
quently, it was shown that the only states of two two-levelwhole spaceA + B which, as opposed to local general
systems which cannot be purified are those that can bgeasurements, is not necessarily decomposable into a
written as the sum over density operators which are direcjirect product of two operators as above, each acting
product states of the two subsystems [7]. Therefore, alon only one subsystem. Ip,s is the joint state of
though it is possible to say whether a quantum state is ersybsystemsA and B then the transformation involving
tangled or not, the amount of entanglement cannot easibf GM + CC” would look like
be determined for general mixed states. Beneed. [5]
have recently proposed a measure of entanglement for a pAaB — Z A ® 1-'31'%314;r ® B;r, (1)

general mixed state of two quantum subsystems How- i
ever, this measure has the disadvantage that it is hard t§- the actions o andB are “correlated.” The mapping
compute for a general state, even numerically. In thigiven in Eq. (1) is completely positive. To ensure that it
Letter we specify conditions which any measure of enJS also trace preserving we have to requife A/ 4; ®
tanglement has to satisfy and construct a whole class cB B; = 1. Both LGM and CC are linear transformations
“good” entanglement measures. Our measures are geon the set of states. Note that as the third ingredient all
metrically intuitive. purification schemes use LGM and CC but also reject part
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of the original ensemble, making the whole transformatiorunder local general measurement only [6,10], ¢car in-

nonlinear [4]. crease under LGM+ CC, showing that it cannot properly
We note that all entangled (inseparable) states can hdistinguish between classical and quantum mechanical

purified to an ensemble of maximally entangled states [7]correlations. The von Neumann mutual information can

This implies that any good measure of entanglement hastuitively be understood as follows: The mutual informa-

to be zero if and only if the state is disentangled (definedion calculates a “distance” between a given sjatg and

by a convex sum of the forn}; p.ps ® pp). Here oneof its disentangled counterpags ® pp. The crucial

we would like to quantify the degree of entanglementword here is “one,” as there are many other disentangled

In the following we briefly review some measures of states for which we could calculafg, which indicates

entanglement between two quantum systems (for a reviethe failure of this measure for general mixed states but

of correlation measures see [8]). also suggests its successful generalization.
Entanglement of creatior-Bennettet al.[5] define Before we generalize the von Neumann mutual infor-
the entanglement of creation of a statdy mation, we present the following necessary conditions any
measure of entanglemeato) has to satisfy.
E(p) := min Z piS(pl), (2 () E(o) = 0iff o is separable.
1

(i) Local unitary operations leavg(o) invariant, i.e.,

where S(p,4) is the von Neumann entropy [to be defined E(o) = E(Us ® UBUU:{ ® U;).
in Eg. (3)] and the minimum is taken over all the possible (iii) The measure of entanglemeBto) cannot increase

realizations of the statpus = >.; p;li;) (4] with pi = under LGM+ CC given by0, i.e.,E(O0) = E(o).
trz(|y;) (¥:]). The entanglement of creation cannot be The origin of condition (i) is that separable states are
increased by the combined action of LGM CC [5]. known to contain no entanglement, i.e., thegnnotbe

Entanglement of distillation [5}—This is the number purified by LGM + CC to maximally entangled states;
of maximally entangled pairs that can be purified fromhowever, any inseparable state can be purified and there-
a given state. This measure depends on the particuldore contains some entanglement. The reason for condi-
process of purification, and it is not yet clear how totion (ii) is that local unitary transformations represent a
compute it in an efficient and unique way. local change of basis only and leave quantum correlations

It seems to be difficult to calculate the degree of enunchanged. The reason for condition (iii) is that any in-
tanglement for a general state using these two definitionsrease in correlations achieved by LGMCC should be
and a closed form would be very much desired for fur-classical in nature, and therefore entanglement should not
ther progress [9]. The problem is quite involved as onede increased.
has to minimize over all possible decompositions of the In the following we construct a new class of measures
density operator in question or over all possible purificathat satisfy the conditions (i)—(iii). Let us consider a
tion schemes. There are other measures of entanglemeset 7 of all density matrices of two quantum subsys-
which are simpler to calculate but which cannot distin-tems,A and B (see Fig. 1). Let us further divid& into
guish between quantum and classical correlations. Wavo disjunctive subsets: a set containing all disentangled
discuss two and show how they can be generalized to givetates—hereafter labeled By —and a set of all the en-
good measures of entanglement; in fact, we show how ttangled states (all states it — D)—hereafter labeled

derive a whole class of measures of entanglement. by . Note that both? and D (but not E) are con-
Von Neumann entropy=Given a pure statg,z of Vex sets, i.e.p;,p2 € T(D) = Ap; + (1 — AM)p; €
two subsystemsA and B we define the statep, = T (D). The entanglement of a matrix € 7" will now

trz{pap} and pp = tra{pap}, Where the partial trace has be defined as
been taken over one subsystem, eithesr B. Then the
von Neumann entropy of the reduced density operators is

given by E(o) = minD(o |l p), (5)
pED
S(pa) = — tr(palnps) = —tr(pglnpp).  (3)

In the case of a disentangled pure joint stgtg,) is zero, Wwhere D is any measure otlistance between the two
and for maximally entangled states it give@InHowever, density matricesp and o such thatE(o) satisfies the
for mixed statesp,p this measure fails to distinguish above three conditions. To satisfy condition (i) it is
classical and quantum mechanical correlations. sufficient to demand thatD(o || p) =0 iff o = p.
Von Neumann mutual information:This is defined by Because of the invariance dD under local unitary
transformations condition (ii) is automatically satisfied.
In(pa:p;pas) = S(pa) + S(ps) — S(pa), (4)  For condition (iii) to be satisfied it is sufficient to demand
that D(o || p) has the property that it is nonincreasing
which essentially reduces to Eqg. (3) for pure states of thender every completely positive trace preserving map
joint systemp,p. It is known that/y cannotincrease 0, i.e.,D(®c || ®p) = D(o || p). This can easily be
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to be
E(o) = min S(a || p). (7)
pED
Note that this is a direct generalization of the von
D(p*llp¢® pg) Neumann mutual information which is obtained for=
oa ® op. Itis now quite easy to check that this measure
° in fact satisfies conditions (i)—(iii), because it is known

that for the relative entrop§(o || p) = 0iff o = p, and
that for any completely positive trace preserving nép
we haveS(@c || Op) = S(o || p) [10,13].

To illustrate some properties of this measure we now
restrict ourselves to two spin/2 subsystems only. First
we calculateE (o) for a pure maximally entangled state.

Proposition 1-—Entropic entanglement reduces to the

von Neumann entropy (of R) for pure, maximally

FIG. 1. The set of all density matrice§ is represented - o\
by the outer circle. Its subset, a set of disentangled state%ntangled states defined byb™) = (/00) = |11>)/\/2

D is represented by the inner circle. A state belongs ~and|¥=) = (|10) = |01>)/ﬁ-_

to the entangled states, apd is the disentangled state that ~Proof.—We prove proposition 1 for the Bell state =
minimizes the distanc® (o || p), thus representing the amount |®*)(d*|. All other maximally entangled states can be
of quantum correlations ir. Statep, ® pp is obtained by  generated from this one by local unitary transformations

tracing p* over A and B. D(p* || p4» ® pp) represent the : .
classical part of correlations in the state which do not chang&(o). As o is a pure state we have

. g .
E(o) = min tr{crln —} = min —t{ocInp}. (8)
seen from the following. Ifp* is a separable density PED Pl rED

operator that realizes the minimum of Eq. (5), then,

becaus®D C D. we find Now we use the fact _that the functiof(x) = —Inx is
convex, which results in
E(e) =D |l p") = D(Oc || ©p7) FUBAID) = (If(A)l) 9)

= minD(Oo || p) = E(O0).
pED for any operatorA and any normalized stateb). This

The amount of entanglement given by Eq. (5) can be inléads to

terpreted as finding a stagg’ in D that is closest tar . .

under the measur®. Such a closest staje* approxi- £(@) = ot —(@"lnpld™) = L (@ " |p| ).
mates the classical correlations of the stat&as close as (10)
possible.” Thereforé& (o) measures the remaining quan-

tum mechanical correlations. This suggests a division of; is known [14] thatp € D = (O |p|dT) = % and
correlations of the state into two distinct contributions:  thereforeE(o) = In2. This lower limit can be reached,
quantum .corre!ation,sE(a), and classical correlations for example, by the statp = 1{|00> 00 + [11)(11]}.
D(p* || px ® pp), wherep® is the disentangled state that Tarefore we havé& (o) = In2. 2

minimizes D and p3 and pp are its reduced parts (see o any pure, entangled state with coefficientsand
Fig. 1 for a pictorial representation). B (e.g.,«|00) + B|11)) we conjecture that this measure

In the following we make special choices fd¥(o- || redyuces to the usual von Neumann reduced entropy
p). We use an entropic measure of distance betweea|a|2|n|a|z — |BI*In|BJ2, but the rigorous proof has

the two density matricesy and p, also called the von i peen found.

Neumann relative entropy, which is defined by analogy now we also calculate the entanglement of Bell-
with the classical Kullback-Leibler distance as [6,10—12]diagona| states [7]. We define the density operators
aip = leip){eipl = [P)(¥T|  and o34 = less)
S(o |l p) =tr {Um Z}, (6) <e3/4}| = | (PF|, V\{hereI\I'i>, |®*) is the usual Bell
p basis. Then a Bell-diagonal state has the= > ; A;0;.
We now prove the following.
where InZ =Ino — Inp. Note that this quantity, al- Proposition 2—For a Bell-diagonal stateo =
though frequently referred to as a distance, does not actd>, A, o;, where allA; € [0, %], we find
ally satisfy the usual metric properties, e.§i(o || p) #
S(p |l o). We now define the entanglement of a state E(c) =0, (11)
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while for A; = % we obtain of entanglement that satisfies the conditions (i)—(iii) (see
[16] for the proof that fidelity does not decrease under

E(o) = AlnA; + (1 — Ap)In(l — A)) +In2 (12) LGM + CC). Other possible measures can be found
X and will be discussed elsewhere. The Bures metric has
and analogously for; = 5. a very nice statistical, operational basis for the measure
Proof—The first case is simple once we remember thabf entanglement in terms of general measurements [17].

a Bell-diagonal statg is separable, i.ep € D, iffits It derives from the nature of fidelity as a “measure”

spectrum lies if0, %] [14]. ThereforeE(o) = 0. of distinguishability between two probability distribu-
To prove the theorem fok; = % we again utilize the tions p,; = tr(aA,TAi) and p;, = tr(pA,TAi), where
fact thatf(x) = — Inx is convex. We obtain >, A;rAi = 1. More precisely,

E(o) = Z AnA; + mln —t{oinp}

Flo,p) = min 3 \t(@ala) Ytrpalay,  (5)
Ain i

>ZA InA; + mln—Z/\ In{e;lple;).
where the minimum is taken over all possible general

(13)  measurements. This possibly enables us, in principle,
to determine Eq. (5) and therefore also the degree of

We know thatp € D implies that all p; = é (0r  entanglement experimentally.

otherwise the state can be purified [4,7]). Therefore we go far we have only defined entanglement between
can determine the minimum not over the states flBM w0 subsystems of arbitrary dimensions. It is, however,
but over the spaceB of all Bell-diagonal states with strajghtforward to generalize this notion to more than two
spectrum in[0, 5]. This gives a lower bound to Eq. (13) subsystems. Let us for simplicity assume that we have

because three systemsi, B, andC. Then the entanglement would
_ _ be a minimum distance of Eq. (5) over all disentangled
pnélg - Z AiIndeilple;) = Enelg - Z AiIndeilple;). states, which, in this case, would be of the form
i i

Defining p; = (e;|ple;) we have to minimize the function _ , ‘ A
F(propa popa) = — 3 A Inpr under the constraints PABC Zl: pipaspc t qipacps + ripapsc. (16)
>4, pi = landp; €0, %]. This minimization yields
Again, we can see that this class of measures has to sat-
p1=1/2, pi = A/2(1 = Ay). (14)  isfy the three imposed conditions. In the same fashion the
above approach to quantifying the entanglement could be
The statep = > ; p;o; with the values from Eq. (14) lies generalized to any number of quantum subsystems. How-
in D [14] and therefore the lower limit can be reached,ever, the complexity involved in minimizing the distance
which proves Eq. (12). increases with increasing the number of subsystems under
Note that the expression for the entanglement Eq. (12¢onsideration.
given in proposition 2 is different from the entangle- In this Letter we have presented conditions every
ment of creation [5]. For a Werner state with= 0.625  measure of entanglement has to satisfy, and shown that
we obtain=0.04In2, whereas the entanglement of cre-there is awhole classof distance measures suitable
ation is=0.117In2. It is not clear yet what these num- for entanglement measures. The central idea of our
bers actually mean, and whether they give a bound tgonstruction is that we calculate the distance between a
the maximum possible efficiency of purification schemesgiven state and all possible disentangled states, taking
For consistency, it is only important that éf; is more the minimum as the actual amount of entanglement.
entangled theno, for one measure than it also must This construction approximates classical correlations as
be for all other measures. Comparing Benrmittal's  closely as possible and therefore measures the quantum
entanglement of creation with our entanglement meaeorrelations only. The generalization to entanglement
sure for Bell-diagonal states shows that this is in factmeasures for more than two particles is straightforward.
the case. Our work suggests further investigation is worthwhile
So far we have discussed only the von Neumanrnnto the relationship between purification procedures and
relative entropy. However, there are many other posthe various measures of entanglement suggested above,
sible distances that we can choose fBfo || p) in as well as finding a closed form for the expression for
Eq. (5) to quantify entanglement of two arbitrarily entanglement.
dimensional subsystems. An example of interest is We thank the Oxford Quantum Information Group for
the Bures metricDg(o || p) = 2 — 2{/F(o, p), where useful discussions. This work was supported by the
F(o,p) =[tr{/p 0'\/5}1/2]2 is the so-called fidelity (or European Community, the UK Engineering and Physical
Uhlmann’s transition probability) [15]. It can be shown Sciences Research Council, the Alexander von Humboldt
that if we use this distance in Eq. (5) we obtain a measur&oundation, and the Knight Trust.
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