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The Role of Surface Tension in Stable Single-Bubble Sonoluminescence
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A theory for stable bubble oscillations in high pressure sound fields is presented. It is based on the
strong influence of the surface tension on the dynamics of small bubbles and takes into account rectified
diffusion and the resonancelike response of small bubbles to very strong acoustic pressure amplitudes.
This theory provides an explanation for the existence of small, stably oscillating bubbles that have been
observed in experiments on sonoluminescence. [S0031-9007(96)02169-2]

PACS numbers: 43.25.+y, 43.35.+d, 47.55.Bx, 78.60.Mq

Bubbles in a liquid that are subject to an external soundlissolve slowly due to a continuous mass flux from the
field not only oscillate strongly nonlinearly but may also interior of the bubble into the liquid. In the presence
emit light. This phenomenon is callednoluminescence of a periodic acoustic field the bubble starts to oscillate.
(SL) and was discovered by Marinesco and Trillat [1] in During the expansion period gas diffuses from the liquid
1933. Since then it has been investigated experimentallinto the bubble, and during the contraction cycle the
as well as theoretically by many authors [2—12]. Thediffusion process takes place in the opposite direction.
interest in SL was restimulated by the elaborate experiThere is a net flow of gas into the bubble because the
ments of Gaitaret al. [6], who investigated SL of a single area of the bubble wall is greater during the expansion
bubble in water trapped by a strong periodical acoustiperiod and therefore more gas will enter during the
field. This phenomenon is callesingle-bubble sonolu- expansion than will leave during the contraction cycle.
minescenc€SBSL) and was investigated in a number of This phenomenon is callecectified diffusionand leads
papers [7-11]. to a growth of the bubble [21,22]. For small amplitudes

One of the most striking results of SBSL experimentsit was shown [23,24] that the growth rate depends on
was the observation that bubbles can oscillate permahe sound field amplitudé,, the resonance radiug,,
nently for several days without dissolution and withoutand the equilibrium radiuskRy, of the bubble. This
changing their size. A detailed investigation of the un-growth rate is closely correlated with the response curve
derlying physical mechanism shows that there are manthat describes the dependence of the maximum bubble
effects and phenomena that have to be taken into accoumaidius on the equilibrium radius.The theory for weakly
This list includes rectified diffusion, surface tension, dis-nonlinear oscillations gives a good description of the
solved gas, thermoconductivity, acoustic radiation, viscosgrowth and dissolution processes of sufficiently large
ity, microstreaming around a bubble (maybe generated bpubbles and small pressure amplitudes. However, it
surface waves on the bubble [13]), the nonlinear charactesrovides no answer to the questions pertaining to (stable)
of bubble oscillations, and the fragmentation and coalessonoluminescenc&Vhy are small gas bubbles in a liquid
cence of bubbles [14-17]. The analysis of experimentastable in the presence of a strong sound field?
and theoretical results shows that the main effects that are For single-bubble oscillations under medium and large
important for the generation of stable cavitation bubblegpressure amplitudes a complicated scenario of bifurcations
are rectified diffusion, surface tension, and shape oscillaand coexisting (chaotic) attractors exists [25,26]. Our
tions. The mechanisms of how gas diffusion may leachumerical simulations show, however, that for very small
to stability of the bubble size were discussed in [18] inbubbles in very strong sound fields the dynamics becomes
order to analyze the possibility of multiple stable equilib-more regular and a new type of strong resonance with
rium radii of the bubble. The stability of shape oscilla- a thresholdlike increase in oscillation amplitude occurs
tions was investigated in [19,20] where it was shown thaf12,27]. The physical reason for this phenomenon is
large bubbles have a tendency to disintegrate due to urthe fact that for very small bubbles the surface tension
stable surface oscillations. In this Letter we focus on theressure P, = 20 /R, is very high and the bubbles
influence of rectified diffusion and surface tension on theébehave like flexible solid particles even for large driving
stability of small bubbles in a sound field. pressures. One cycle of a typical bubble oscillation for

Without external sound field, bubbles of any sizethis case is shown in Fig. 1(b) for the normalized bubble
are unstable because the pressure inside the bubble redius R(z)/Ry. Figure 1(a) shows the driving pressure
larger than in the liquid, and therefore the bubble will of the external sound fielg,(r) = —P, sin(wt). When
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FIG. 1. The influence of surface tension on bubble oscilla-
tions. Plotted is one period of oscillation (frequeney= ) ) ]
w/2m =20 kHz) of the normalized sound field pressure FIG. 2. (a) Response curves showing the normalized maxi-
pa(1)/po (@) and of the normalized bubble radiudr)/R, mum bubble radiusR,,/Ry vs the equilibrium radiusk, for
vs time ¢ (b), (c) for a pressure amplitude af, = 1.5 bar.  different pressure amplitude®, = 1.1-1.5 bar. (b) lllustra-
(b) A bubble with equilibrium radiusR, = 1 um oscillates tion of the cavitation threshold showing the nonlinearly aver-
with small amplitude due to the relatively high surface tensiondged concentration near the bubble wall, vs the equilibrium

pressureP, = ZG'/R(). (C) ForRy, = 1.5 um Strong|y nonlin- radiusR(_) for different pr.eSSUre amplltudeiSa = 1.1-1.5 bar.
ear oscillations with high amplitude occur. The horizontal dashed lines denote different levels of gas con-

centrationsc.. in the liquid. The open circles denote the cavi-
tation threshold valu&,, of the radius and the filled circle the
stable bubble radiug;.

we increase the size of the bublitg it starts to oscillate

differently. During the expansion period the influence of
the surface tension decreases rapidly, and therefore t
amplitude of the expansion grows enormously leading t
a strong collapse. The transition point may be calle
nonstatic Blake thresholfB,28]. The kind of oscillation

present beyond this threshold is shown in Fig. 1(c). Th
results given in Fig. 1 and in all following figures have
been computed using the Keller-Miksis model [26,29]:

rzz%rves are shown in Fig. 2(a) for different values of
he pressureP,. One can see that the nonmonotonous
ehavior starts foP, > 1.2 bar.

Now we investigate the rectified diffusion in the strong
Fesonance region for small bubbles. The theoretical for-
mulation for mass transport across the dynamic interface
associated with a spherical bubble undergoing volume os-

R . 3., R R\ P cillations was derived in Ref. [31]. The equations gov-
<1 - E>RR +t 5 R <1 - 3—C1> = < + a) " erning the convection and diffusion of dissolved gas in
the liquid outside a spherical bubble can been written in

R ap i the following form:
| pC dt dc | RAOR() dc _ 21( 28_6) )
with X ot r2 ar 2ar\" ar )
_ 20\ (Ro\™ _ 20\ (R(1)\
_<p0+ R0><R> Po C|r=R(t):H<P0+R_O><R—O> , C|r=oc:Coo,
20 4u -
_ — = _R — a t s (2)
R R pa(t)
for air bubbles in water at 2@C with k = 1.4, o = dm P
0.0725 N/m, po = 1 bar, C; = 1500 m/s, and a driving = 47 R*(t)D - (3)
frequency ofw = 27 - 20 kHz. Qualitatively the same T r=R@)
results have been obtained for the Gilmore model [30]. Here Eq. (1) describes the convective diffusion, where

When the equilibrium radius of the bubble is increasedr(r) is the bubble radius governed by some dynamical
further the influence of the surface tension presstye equation for bubble oscillations, is the mass concentra-
becomes smaller and a nonmonotonous resonance curtien of gas dissolved in the liquid, ard is the diffusivity
for the normalized radiug,,/R, occurs. These response of the gas in the liquid. Equation (2) gives the boundary
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conditions at the bubble surface and far from it providedradius. For sufficiently large amplitude®,, however,
by Henry’s law, which relates the concentration of gas inthe corresponding concentration curves possess a global
a liquid to the partial pressure of the gas above the ligminimum for small bubble radii. This nhonmonotonous
uid. The symbolH denotes Henry's constant ard is  dependence ofc), on Ry is a result of the strong
the initial uniform gas concentration in the fluid where theresonance shown in Fig. 2(a).
bubble is assumed to be created. Equation (3) describesSince the characteristic timg,; in Eq. (4) is always
the rate of the gas transport across the bubble interface. positive the evolution of the mean bubble mass depends
This mass transport problem was solved approximatelpnly on the difference between the concentration of gas in
for large Peclet numbers [31] (Re Riw/D > 1). In  the liquid ¢. and the nonlinearly averaged concentration
this case Egs. (1)—(3) can be simplified by a transformanear the bubble walic),. As can be seen in Fig. 2(b)
tion of the problem into normalized Lagrangian coordi-there are two possible scenarios. ¢lf is large [upper
natesn = [r3 — R3(1)]/3R; to avoid difficulties because dashed line in Fig. 2(b)] a single equilibrium poia), =
of the moving boundary conditions. Another analyticalc. exists that is unstable. This case is denoted in Fig. 2(b)
difficulty— oscillatory behavior of the concentration close by the open circle at the point of intersection of the
to the bubble surface and slow diffusion behavior farthemupper dashed line with the concentration curve Fgr=
away from the bubble—was solved by splitting the prob-1.2 bar. The unstable equilibrium provides a threshold
lem into two parts. Finally, it was shown that the time value Ry, for the bubble radius. Bubbles with radius
averaged rate of mass transport in the case of any nom®y < Ry, dissolve due to diffusion flux from the bubble
linear periodic bubble oscillation may be approximated asnto the liquid. On the other hand, bubbles wRk > Ry,

follows: grow permanently due to rectified diffusion until they
dit e — () % dn become very large (and may disintegrate).
ar T, Tyq —[0 B + ROFPY’ If ¢. is small [lower dashed line in Fig. 2(b)] two

equilibrium points(¢c), = ¢.. exist. The left fixed point
(4)  denoted by the open circle in Fig. 2(b) is unstable and
_ cR@),) _ Co  _ m _ R closely related to the previous case. It defines the
¢= T, Coo = o’ m = mo’ R = Ry’ cavitation threshold radiu®,. The equilibrium point
d plotted as a filled circle at the right hand side in Fig. 2(b)

Here ¢y is the saturation concentration in the liqui . ;
is stable and provides a stable radRysfor single bubbles
separated from gas at presspreby a plane boundary and scillating in the acoustic field. Bubbles with radius

my is the mass of the gas soluted in the liquid displaced b . .
i . 2 m < R < R, grow until they reach the stable radiRs.
the undisturbed bubble. The variabte= tD/R; is the If the bubble radius is larger thaR, the bubble shrinks

slow diffusion time scale, and’,; is the dimensionless until Ry — R,. A necessary condition for the existence

characteristic time of rectified diffusion mass growth rate . X
of the bubble. of R, is a nonmonotonous dependence of the nonlinearly

averaged concentratidid), on the equilibrium radiu®,
for small bubbles. Only in this case a rangecefvalues
exists such that stable bubble oscillations are possible.
r For given small values of the concentration of gas in the
(F(1)) = 1 f f()dt; liquid ¢.. there exists a lower threshold valu# for the
T Jo pressure amplitudeB, that leads to stable bubbles as can
and second, a “nonlinear averaging” procedure in &e seen in Fig. 3 showing the dependence of the threshold

In this approach two different averaging procedures ar
used. First, ordinary averaging over the peribaf the
acoustic field

specific nonlinear time scale value Ry, (dashed curve) and the stable bubble radiys
1 T (solid curve) on the pressure amplitudg. For small
(f@)r = W ]0 R*(n)f (1) dr, values ofP, bubbles of any size will dissolve. At some
0

critical value P the stable bubble radiug; occurs due
where the radius evolutioR(z) is used for computing the to a saddle-node bifurcation. When the pressBjeis
gas concentration near the bubble wélp,. This ap- increased further the value &, increases, the bubble
proach was also used by Brenrefr al. [18] to investi- becomes very large and will eventually be destroyed due
gate the multiple stable equilibrium radii of the bubble forto dynamical instabilities (e.g., surface oscillations). Such
medium pressure amplitudes. Here we use it to considex finite pressure range for stable bubble oscillations has
the stability problem in the case of very small bubbles inalso been observed experimentally [6].
a strong acoustic field. In this Letter a theory for stable bubble oscillations in
Figure 2(b) shows the averaged gas concentrgipn  high pressure sound fields has been presented that is based
near the bubble wall vs the equilibrium radiRg of the  on the strong influence of the surface tension on the dy-
bubble for different amplitude®, of the acoustic field. namics of small bubbles. The approach presented takes
For small and medium values df, the concentration into account the interaction of two effects: rectified diffu-
decreases monotonically as a function of the equilibriunsion and the resonancelike response of small bubbles on
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