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The Role of Surface Tension in Stable Single-Bubble Sonoluminescence
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A theory for stable bubble oscillations in high pressure sound fields is presented. It is based on th
strong influence of the surface tension on the dynamics of small bubbles and takes into account rectifi
diffusion and the resonancelike response of small bubbles to very strong acoustic pressure amplitud
This theory provides an explanation for the existence of small, stably oscillating bubbles that have be
observed in experiments on sonoluminescence. [S0031-9007(96)02169-2]
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Bubbles in a liquid that are subject to an external sou
field not only oscillate strongly nonlinearly but may als
emit light. This phenomenon is calledsonoluminescence
(SL) and was discovered by Marinesco and Trillat [1]
1933. Since then it has been investigated experimen
as well as theoretically by many authors [2–12]. T
interest in SL was restimulated by the elaborate exp
ments of Gaitanet al. [6], who investigated SL of a single
bubble in water trapped by a strong periodical acou
field. This phenomenon is calledsingle-bubble sonolu-
minescence(SBSL) and was investigated in a number
papers [7–11].

One of the most striking results of SBSL experimen
was the observation that bubbles can oscillate per
nently for several days without dissolution and witho
changing their size. A detailed investigation of the u
derlying physical mechanism shows that there are m
effects and phenomena that have to be taken into acco
This list includes rectified diffusion, surface tension, d
solved gas, thermoconductivity, acoustic radiation, visc
ity, microstreaming around a bubble (maybe generated
surface waves on the bubble [13]), the nonlinear chara
of bubble oscillations, and the fragmentation and coa
cence of bubbles [14–17]. The analysis of experimen
and theoretical results shows that the main effects that
important for the generation of stable cavitation bubb
are rectified diffusion, surface tension, and shape osc
tions. The mechanisms of how gas diffusion may le
to stability of the bubble size were discussed in [18]
order to analyze the possibility of multiple stable equili
rium radii of the bubble. The stability of shape oscill
tions was investigated in [19,20] where it was shown t
large bubbles have a tendency to disintegrate due to
stable surface oscillations. In this Letter we focus on
influence of rectified diffusion and surface tension on
stability of small bubbles in a sound field.

Without external sound field, bubbles of any si
are unstable because the pressure inside the bubb
larger than in the liquid, and therefore the bubble w
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dissolve slowly due to a continuous mass flux from
interior of the bubble into the liquid. In the presen
of a periodic acoustic field the bubble starts to oscilla
During the expansion period gas diffuses from the liq
into the bubble, and during the contraction cycle
diffusion process takes place in the opposite direct
There is a net flow of gas into the bubble because
area of the bubble wall is greater during the expans
period and therefore more gas will enter during
expansion than will leave during the contraction cyc
This phenomenon is calledrectified diffusionand leads
to a growth of the bubble [21,22]. For small amplitud
it was shown [23,24] that the growth rate depends
the sound field amplitudePa, the resonance radiusRr ,
and the equilibrium radiusR0 of the bubble. This
growth rate is closely correlated with the response cu
that describes the dependence of the maximum bu
radius on the equilibrium radius.The theory for weakly
nonlinear oscillations gives a good description of
growth and dissolution processes of sufficiently la
bubbles and small pressure amplitudes. However
provides no answer to the questions pertaining to (sta
sonoluminescence:Why are small gas bubbles in a liqu
stable in the presence of a strong sound field?

For single-bubble oscillations under medium and la
pressure amplitudes a complicated scenario of bifurcat
and coexisting (chaotic) attractors exists [25,26]. O
numerical simulations show, however, that for very sm
bubbles in very strong sound fields the dynamics beco
more regular and a new type of strong resonance w
a thresholdlike increase in oscillation amplitude occ
[12,27]. The physical reason for this phenomenon
the fact that for very small bubbles the surface tens
pressurePs ­ 2syR0 is very high and the bubble
behave like flexible solid particles even for large drivi
pressures. One cycle of a typical bubble oscillation
this case is shown in Fig. 1(b) for the normalized bub
radius RstdyR0. Figure 1(a) shows the driving pressu
of the external sound fieldpastd ­ 2Pa sinsvtd. When
© 1997 The American Physical Society 227
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FIG. 1. The influence of surface tension on bubble oscill
tions. Plotted is one period of oscillation (frequencyn ­
vy2p ­ 20 kHz) of the normalized sound field pressur
pastdyp0 (a) and of the normalized bubble radiusRstdyR0
vs time t (b), (c) for a pressure amplitude ofPa ­ 1.5 bar.
(b) A bubble with equilibrium radiusR0 ­ 1 mm oscillates
with small amplitude due to the relatively high surface tensio
pressurePs ­ 2syR0. (c) For R0 ­ 1.5 mm strongly nonlin-
ear oscillations with high amplitude occur.

we increase the size of the bubbleR0 it starts to oscillate
differently. During the expansion period the influence o
the surface tension decreases rapidly, and therefore
amplitude of the expansion grows enormously leading
a strong collapse. The transition point may be calle
nonstatic Blake threshold[3,28]. The kind of oscillation
present beyond this threshold is shown in Fig. 1(c). T
results given in Fig. 1 and in all following figures hav
been computed using the Keller-Miksis model [26,29]:µ
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for air bubbles in water at 20±C with k ­ 1.4, s ­
0.0725 Nym, p0 ­ 1 bar, Cl ­ 1500 mys, and a driving
frequency ofv ­ 2p ? 20 kHz. Qualitatively the same
results have been obtained for the Gilmore model [30].

When the equilibrium radius of the bubble is increase
further the influence of the surface tension pressurePs

becomes smaller and a nonmonotonous resonance cu
for the normalized radiusRmyR0 occurs. These response
228
-

he
o

e

ve

FIG. 2. (a) Response curves showing the normalized ma
mum bubble radiusRmyR0 vs the equilibrium radiusR0 for
different pressure amplitudesPa ­ 1.1 1.5 bar. (b) Illustra-
tion of the cavitation threshold showing the nonlinearly ave
aged concentration near the bubble wallkc̄lt vs the equilibrium
radiusR0 for different pressure amplitudesPa ­ 1.1 1.5 bar.
The horizontal dashed lines denote different levels of gas c
centrationsc̄` in the liquid. The open circles denote the cav
tation threshold valueRth of the radius and the filled circle the
stable bubble radiusRs.

curves are shown in Fig. 2(a) for different values o
the pressurePa. One can see that the nonmonotono
behavior starts forPa . 1.2 bar.

Now we investigate the rectified diffusion in the stron
resonance region for small bubbles. The theoretical f
mulation for mass transport across the dynamic interfa
associated with a spherical bubble undergoing volume
cillations was derived in Ref. [31]. The equations go
erning the convection and diffusion of dissolved gas
the liquid outside a spherical bubble can been written
the following form:

≠c
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D
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, cjr­` ­ c` ,

(2)

dm
dt

­ 4pR2stdD
≠c
≠r

Ç
r­Rstd

. (3)

Here Eq. (1) describes the convective diffusion, whe
Rstd is the bubble radius governed by some dynamic
equation for bubble oscillations,c is the mass concentra
tion of gas dissolved in the liquid, andD is the diffusivity
of the gas in the liquid. Equation (2) gives the bounda
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conditions at the bubble surface and far from it provid
by Henry’s law, which relates the concentration of gas
a liquid to the partial pressure of the gas above the
uid. The symbolH denotes Henry’s constant andc` is
the initial uniform gas concentration in the fluid where t
bubble is assumed to be created. Equation (3) descr
the rate of the gas transport across the bubble interfac

This mass transport problem was solved approxima
for large Peclet numbers [31] (Pe­ R2

0vyD ¿ 1). In
this case Eqs. (1)–(3) can be simplified by a transform
tion of the problem into normalized Lagrangian coord
natesh ­ fr3 2 R3stdgy3R3

0 to avoid difficulties because
of the moving boundary conditions. Another analytic
difficulty—oscillatory behavior of the concentration clos
to the bubble surface and slow diffusion behavior farth
away from the bubble—was solved by splitting the pro
lem into two parts. Finally, it was shown that the tim
averaged rate of mass transport in the case of any n
linear periodic bubble oscillation may be approximated
follows:

dm̄
dt

­
c̄` 2 kc̄lt

Trd
, Trd ­

Z `

0

dh

kf3h 1 R̄3stdg4y3l
,

(4)

c̄ ­
csssRstd, tddd

Trd
, c̄` ­

c`

c0
, m̄ ­

m
m0

, R̄ ­
R
R0

.

Here c0 is the saturation concentration in the liqu
separated from gas at pressurep0 by a plane boundary an
m0 is the mass of the gas soluted in the liquid displaced
the undisturbed bubble. The variablet ­ tDyR2

0 is the
slow diffusion time scale, andTrd is the dimensionless
characteristic time of rectified diffusion mass growth ra
of the bubble.

In this approach two different averaging procedures
used. First, ordinary averaging over the periodT of the
acoustic field

k fstdl ­
1
T

Z T

0
fstd dt ;

and second, a “nonlinear averaging” procedure in
specific nonlinear time scale

k fstdlt ­
1RT

0 R4std dt

Z T

0
R4stdfstd dt ,

where the radius evolutionRstd is used for computing the
gas concentration near the bubble wallkc̄lt . This ap-
proach was also used by Brenneret al. [18] to investi-
gate the multiple stable equilibrium radii of the bubble f
medium pressure amplitudes. Here we use it to cons
the stability problem in the case of very small bubbles
a strong acoustic field.

Figure 2(b) shows the averaged gas concentrationkc̄lt

near the bubble wall vs the equilibrium radiusR0 of the
bubble for different amplitudesPa of the acoustic field.
For small and medium values ofPa the concentration
decreases monotonically as a function of the equilibri
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radius. For sufficiently large amplitudesPa, however,
the corresponding concentration curves possess a gl
minimum for small bubble radii. This nonmonotonou
dependence ofkc̄lt on R0 is a result of the strong
resonance shown in Fig. 2(a).

Since the characteristic timeTrd in Eq. (4) is always
positive the evolution of the mean bubble mass depe
only on the difference between the concentration of ga
the liquid c̄` and the nonlinearly averaged concentrati
near the bubble wallkc̄lt. As can be seen in Fig. 2(b
there are two possible scenarios. Ifc̄` is large [upper
dashed line in Fig. 2(b)] a single equilibrium pointkc̄lt ­
c̄` exists that is unstable. This case is denoted in Fig. 2
by the open circle at the point of intersection of th
upper dashed line with the concentration curve forPa ­
1.2 bar. The unstable equilibrium provides a thresho
value Rth for the bubble radius. Bubbles with radiu
R0 , Rth dissolve due to diffusion flux from the bubbl
into the liquid. On the other hand, bubbles withR0 . Rth

grow permanently due to rectified diffusion until the
become very large (and may disintegrate).

If c̄` is small [lower dashed line in Fig. 2(b)] two
equilibrium pointskc̄lt ­ c̄` exist. The left fixed point
denoted by the open circle in Fig. 2(b) is unstable a
closely related to the previous case. It defines
cavitation threshold radiusRth. The equilibrium point
plotted as a filled circle at the right hand side in Fig. 2(
is stable and provides a stable radiusRs for single bubbles
oscillating in the acoustic field. Bubbles with radiu
Rth , R , Rs grow until they reach the stable radiusRs.
If the bubble radius is larger thanRs the bubble shrinks
until R0 ­ Rs. A necessary condition for the existenc
of Rs is a nonmonotonous dependence of the nonlinea
averaged concentrationkc̄lt on the equilibrium radiusR0
for small bubbles. Only in this case a range ofc̄` values
exists such that stable bubble oscillations are possi
For given small values of the concentration of gas in t
liquid c̄` there exists a lower threshold valuePc

a for the
pressure amplitudesPa that leads to stable bubbles as c
be seen in Fig. 3 showing the dependence of the thres
valueRth (dashed curve) and the stable bubble radiusRs

(solid curve) on the pressure amplitudePa. For small
values ofPa bubbles of any size will dissolve. At som
critical valuePc

a the stable bubble radiusRs occurs due
to a saddle-node bifurcation. When the pressurePa is
increased further the value ofRs increases, the bubble
becomes very large and will eventually be destroyed d
to dynamical instabilities (e.g., surface oscillations). Su
a finite pressure range for stable bubble oscillations
also been observed experimentally [6].

In this Letter a theory for stable bubble oscillations
high pressure sound fields has been presented that is b
on the strong influence of the surface tension on the
namics of small bubbles. The approach presented ta
into account the interaction of two effects: rectified diffu
sion and the resonancelike response of small bubbles
229
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FIG. 3. Cavitation threshold radiusRth (dashed curve) and
stable bubble radiusRs (solid curve) in dependence on th
pressure amplitudePa for fixed small value of the ga
concentrationc̄` corresponding to the lower dashed line
Fig. 2(b). The islands of growth (light shading) in the sea
dissolution (dark shading) is a necessary prerequisite for st
bubble oscillations and thus SBSL to occur.

very strong acoustic pressure amplitudes due to the
face tension pressure. The results provide an explana
for the existence of small, stably oscillating bubbles t
have been observed in experiments on sonoluminesce

During the reviewing process a paper appeared wh
the occurrence of sonoluminescence in the param
spacesR0, Pad has been determined experimentally
just the case studied here, the small bubble, large aco
pressure amplitude limit [32]. There one main finding
that sonoluminescence experimentally occurs along aline
in the sR0, Pad parameter space, just as predicted by
Fig. 3 (solid line). We predict and with the measurem
technique of Holt and Gaitan [32] it can be checked t
this line starts at a bifurcation value where the sta
and unstable branch of bubble oscillations equilibri
meet opening up an island of growth in the sea
dissolution. Both theory and experiment fall short
explaining the low gas content in the bubble. This is
at all astonishing as a wealth of other phenomena are
considered, for instance pertaining to the chemistry ins
the bubble.
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