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We present strong attacks against quantum key distribution schemes which use quantum memories
and quantum gates to attadkectly the final key. We analyze a specific attack of this type, for which
we find the density matrices available to the eavesdropper and the optimal information which can be
extracted from them. We prove security against this attack and discuss security against any attack
allowed by the rules of quantum mechanics. [S0031-9007(97)02537-4]

PACS numbers: 89.80.+h, 03.65.Bz, 89.70.+c

Quantum cryptography [1-5] uses quantum mechangy; a resultyy is treated as inconclusive, and a reskfltis
ics to perform new cryptographic tasks—especially in-identified asy;. Alice and Bob use also an unjammable
formation secure key distributions—which are beyondclassical channel to inform which bits were identified
the abilities of classical cryptography. Unfortunately, theconclusively, and to compare some of the common bits
security of such a key is still unproven: Sophisticated atin order to estimate the error rate. They must accept
tacks (calleccoherentor joint attackg which are directed some small error ratg, due to imperfections in creating,
against the final key were suggested; the analysis of sudhansmitting, and receiving the quantum states. If the
attacks is very complicated, and, by the time this work wasstimated error rate exceeds the allowed error rate they
submitted, security against them was proven only in thejuit the transmission and do not use the data, thus any
nonrealistic case of ideal (error-free) channels [6,7]. Thesavesdropping attempt is severely constrained to induce
security in the real case, which is crucial for making quan-an error rate smaller thap.. Alice and Bob are now
tum cryptography practical, is commonly believed but yetleft with similar n-bit strings which contain errors. They
unproven. A proof of security must bound the informationrandomize the order of the bits and correct the errors
available to the eavesdropper (traditionally called “Eve”),using any error-correction code [9]. The error-correction
on the final key, to be negligible (i.e., much smaller thancode is usually made of parities of substrings [where the
one bit). A protocol is considered secure if the adversaryarity bit p(x) of a binary stringx is zero if there is an
is restricted only by the rules of quantum mechanics, anéven number of 1's i, and one otherwise]. Alice sends
a protocol is considered practical if the legitimate userdhese parties to Bob (using the classical channel), who
are restricted to use existing technology. In this work weuses them to obtain a (possibly shorter) string identical
obtain the strongest security result for practical protocolsto Alice’s, up to an exponentially small error probability.
We suggestollective attackgsimpler than the joint at- Finally, Alice and Bob can amplify the security of the
tacks) which are simple enough to be analyzed, but arénal key by using privacy amplification techniques [10]
general enough to imply (or at least suggest) the securitipy choosing some parity bits of substrings to be the final
against any attack. We prove security against the simkey. Their aim is to derive a final key on which Eve’s
plest collective attack: We generalize methods developedverage information is negligible.
in [8] in order to calculated Eve’s density matrices explic- Eve can measure some of the particles and gain a
itly, and to find the information which can be obtained fromlot of information on them, but this induces a lot of
them; we show that it is negligible. Our result also pro-error. Hence, she can attack only a small portion of
vides better understanding of the issue of information splitthe particles, and this reduces her information on the
ting between two parties which is a fundamental problenparity of many bits exponentially to zero. Translucent
in quantum information theory. Parts of this work wereattacks [11] are much more powerful: Eve attaches
done together with Dominic Mayers. a probe toeach particle and performs some unitary

In any quantum key distribution scheme, the senderransformation, after which her probe is correlated to
“Alice,” sends to the receiver, “Bob,” a classical string the transmitted state. In the case where each probe is
of bits by encoding them as quantum states. In thdeft in a pure state [11], and measured separately to
two-state scheme [2] (B92 scheme) a classical bit i®btain information on Alice’s bit, it is a rather obvious
represented by either of two nonorthogonal pure stategonclusion (from [10]) that privacy amplification is still
which can be written agy = (23), andy; = (°%F,).  effective. Thus, such amdividual translucent attack is
Bob performs a test which provides him with a conclusiveineffective. We deal with a much more sophisticated
or inconclusive result. For instance, he can test whether attack in which Eve’'s measurement is doa#er the
specific particle is in a statg, or a state orthogonal to it processes of error correction and privacy amplification
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are completed. Privacy amplification techniques werghe bit (x ©@ y); is one if both(x); and (y); are one.

not designed to stand against such attacks, hence théMso x @ y is the bitwise “XOR”, so that(x & y); is

efficiency against them is yet unknown. Consider thezero if (x); and (y); are the same. Fok (indepen-

following collectiveattack: (1) Eve attachesseparate, dent) strings,v;...v,, of equal length let the sdiw},

uncorrelatedprobe to each transmitted particle using acontain the2* linear combinationsv,),..., (vs), (v; ®

translucent attack. (2) Eve keeps the probes in a quantum), (v| @ v;),...,(v] ® v,... ® vy). If these strings

memory (where nonorthogonal quantum states can bare not all different, then the originalstrings are linearly

kept for a long time [5]) till receivingall classical data dependent. The quantum state of a string is the tensor

including error-correction and privacy amplification data.product

(3) Eve performs the optimal measurement on her probes

. . . . . cce...ccce

in order to learn the maximal information on tfieal key. c c c tece . cos

The case in which Eve attaches one probe (in a large- ¢, = < )( ) ( ) =" , (D)

dimensional Hilbert space) to all transmitted particles is o

called ajoint or coherentattack [4], and it is the most — 888588

general possible attack. No specific joint attacks weréeaving in a2” dimensional Hilbert space. The sign of

yet suggested; the collective attack defined above is thghe ith bit (in the middle expression) is plus for); = 0

strongest joint attack suggested so far, and there are goeghd minus for(x); = 1. The sign of thejth term(j =

reasons to believe that it is the strongest possible attack.0...2""!) in the expression at the right depends on the
The security of quantum cryptography is a very compli-parity of the stringr ® j and is equal td—1)?*®/), The

cated and tricky problem. Several security claims donelensity matrixp, = ¢, ¢! also has for any, the same

in the past were found later on to contain loopholesterms up to the signs. We denote the absolute values by

Recently, we become aware of three new such claimg ;. = |(p.);|. The sign of each terrtp,) . is given by

[12-14]. We hope that these approaches, together with

*+s *+s *+s

our approach, really produce the solution; yet it is im- (—1)PEe)(—1)Perek) = (—q)plxeljen] (2)
portant to have them all, since each of them has different
advantages. A priori, all strings are equally probable, and Eve needs

Our approach deals with error correction and privacyto distinguish between the two density matrices describing
amplification, by calculating the density matrices whichthe parities. These matrices were calculated and analyzed
are available to the eavesdropper by the time all datéh Bennett, Mor, and Smolin [8] (henceforth, the BMS
transmissions (classical and quantum) are completed. \W&ork), and independently in [15] for the case= /4.
provide an example of collective attacks based on thén case Eve is being told what the error-correction code is,
“translucent attack without entanglement” of [11], which all strings consistent with the given error-correction code
leave Eve with probes in a pure state, and we provéther Subparities) are equa”y prObable, and Eve needs to
security against them. These attacks use the unitaf§fistinguish between the two density matrices,

H / H “ ”
transformation( .22%,) — (.52¢,) (L2 ) with “+” for

o, and “=" for ¢, where g’ is the angle of the states p(g"”) __ 1 Z oy

received by Bob, andv is the angle of the states in 2n-r-l N v

Eve’s hand. The error ratey, = sin’(@ — @), is the ) 1 v opee

probability that Alice senty, and Bob measuredy. p1 = S > e, )
The connection between this induced error rate and the xl( P91

x OECC

angle « is calculated using the unitary condition [11]
cos26 = cos26’ cos2a. For weak attacks which causes where “OECC” is a shortcut for “obeys error-correction
small error rate the angle of Eve’'s probe satisfies=  code.” Let us look at two simple examples wheare= 5,
(p.tan?20)'/*. In our case, the same translucent attackone with» = 1 and the second with = 2. Suppose that
is performed on all the bits, and it leaves Eve with the parity of the first two bits(x); and (x),, is p1 = 0.
probes, each in one of the two stat€s), with ¢ = cosa Formally, this substring is described by thebit string
and s = sina. As result, Eve holds an bits stringx  v; = 24 which is 11000 binary; the number of 1's in the
which is concatenated from its bits),(x),---(x),. For first two bits of a stringx is given byi(x © v;), andx
simplicity, we choose the final key to consist of one bit,obeys the error-correction code jfix © v{) = p;. Let
which is the parity of the: bits. Eve wants to distinguish v, be the binary string (11111 in this case) which describes
between two density matrices corresponding to the twdahe substring of the desired parity. Eve could perform the
possible values of this parity bit. Our aim is to calculateoptimal attack on the three bit which are left or, in general,
the optimal mutual information she can extract from themonv, & v,;. For any such case, the optimal attack is given
For our analysis we need some more notations. Leby the BMS work, and the optimal information depends
f(x) be the number of 1's inx. For two strings on #ii(v; ® v,), the Hamming distancébetween the two
of equal lengthx @ y is the bitwise “AND,” so that words. Thisinformation [using Eq. (53) of the BMS work]
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is same sign: Suppose that there are two termsand y
2k with opposite signs. Thed = x & y satisfies the two
I1(A) = c< . )aZk, (4) demands, leading to a contradiction.

This theorem tells us the place of all nonvanishing terms
with ¢ = 1 for evena (which equal2k) andc = 1/In2 in the original ordering. The matrices can be reordered to
for odd 2 (that is7 = 2k — 1). Suppose that Eve gets a block-diagonal form by exchanges of the basis vectors.
another parity bip, = 1 of the binary string 01100, =  We group the vectors,s & vy, etc., for all (v;)’s in

12). Now, a stringx obeys the error-correction code if {v},;; to be one after the other, so each such group is
it also obeysp(x © v,) = p,. Clearly, it also satisfies separated from the other groups. Now the theorem implies
plx © (v1 ® v)] = p1 ® po. In the general case there that all nonvanishing terms are grouped in blocks, and
are r independent parity strings, ar@l parity strings all vanishing terms are outside these blocks. As a result
in the set{v}, (including the string 00000). The BMS the matrix is block diagonal. This form'~"~! blocks
result cannot be directly used but still provides someof size 2"*! x 271, All terms inside the blocks and
intuition: For each word (i.e., each parity string) €  their signs are given by Eqgs. (1) and (2), respectively, up
{v},, let I[A(v; ® vy)] be the optimal information Eve to reordering. The organization of the blocks depends
could obtain using Eq. (4). Also lek,,, be the sum only on the parity strings); and not on the paritieg,,

of these contributions from all such words. In reality thus p{"" and p\"" are block diagonalized in the same
Eve cannot obtaidm since each measurement changegasis. The rank of a density matrix is the number of
the state of the measured bits, hence we expect/that  (independent) pure states which form it, and @1s” ! in
bounds her optimal informatiof. from aboveZiwa1 < case of the parity matrices [Eq. (3)]. When these matrices
Ium. On the other hand, Eve knows all these words agre put in a b|ock-diagona| form, there ae 1 (a||
once, and could take advantage of it, thus we leave this asonzero) blocks. Thus, the rank of each block is one, the
an unproven conjecture. corresponding state is pure, and, when fully diagonalized,

In the following we find an explicit way to calculate the nonvanishing term; in the jth block is the probability
exactly the optimal information. However, this exact that a measurement will result in this block.
result requires cumbersome calculations, thus it is used In the BMS work(r = 0), the information , in case of
only to verify the conjecture for short strings. small angle, was found to be exponentially small with the
The parity of the full string is also known since the length of the string. When each probe is in a pure state,
density matrix p"*1 corresponds to eithep()"’r) or this result can be generalized to> 0 as follows: The
pi”" depending on the desired parity,.;, thus we optimal mutual information carried by two pure states (in
add the stringv,+; = v,. There arer + 1 independent any dimension) in well known. The two possible pure
subparities altogether, hengé&*! parity strings in the set states in thejth block of p(()””) and p§’”) can be written
{v}+1. Astringx is included inp™" "V if p[x © v] = as(.2%F;). The optimal mutual information which can be
p; for all given substring infv},+;. In the BMS work  obtained from thejth block is given by the overlap (the
(wherer = 0) the parity density matrices were put in aangleB;) I; =1 + p;log, p; + (1 — p;)log(1 — p,),
block diagonal form o2"~! blocks of size2 X 2. This  where p; = (1 — sin2B;)/2; the overlap is calculated
result can be generalized to the case whegarities of  using Egs. (1) and (2). Thus, for any given error-
substrings are given. There will b2"~"~!' blocks of  correction code, we can find the two pure states in each
size 2"*! x 27*1. We shall show that th¢jk)th term  block, the optimal information/;, and finally, the total
in a density matrixo""* of r + 1 subparities is either information/io,1 = 3a;1;. We did not use the value of
zero, pjr Or —pj, that is, either all the relevant strings v, in the proof, and thus, the final key could be the parity
contribute exactly the same term, or half of them cancel®f any substring. Moreover, a similar method can be used
the other half. The proof can be skipped in a first readingto analyze keys of several bits which can be formed from
Theorem—The elemen(p(””“))jk iszeroifj ® k & parities of several substrings.
{vhrer,anditisxp if j ® k € {v},11. We wrote a computer program which receives any
Proof—In casej @ k & {v},+; chooseC such that (short) error-correction code and calculates the total
plC o v;] = 0 with all (v;)’sin{v},+; andp[C © (j & information as a function of the angle between the
k)] = 1 (many suchC’s exist sinceC hasn independent pure states of the individual probes. We checked many
bits and it needs to fulfill only- + 2 constraints). For short codes (up ta = 8) to verify whetherl,,; < Igum
such aC and for anyx which obeys the error-correction as we conjectured. Indeed, all our checks showed that
code there exists one (and only oney = x ® C, which  the conjecture holds. The information for small angle
also obeys the code (due to the first demand) but has is bounded byly, = Ca?* as previously explained,
the opposite sign in thgkth element (due to the second whereC is given by summing the terms which contribute
demand), s@p,)jx = —(px)jx. Since this is true for any to the highest order of Eq. (4), and the Hamming distance
relevantx, we obtain(p<"’r+1))jk =0. Incasej ® k € i (which is2k or 2k — 1) can be increased by choosing
{v},+1 suchC cannot exist, and all terms must have thelonger codes to provide any desired level of security.
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In addition to a desirable security level, the error-The correlations between the bits (as specified by the
correction code must provide also a desirable reliability;error correction and privacy amplification) as well as the
a complete analysis must include also estimation of theandom reordering of the bits are not known in advance.
probability p, that Alice and Bob still has the wrong (i.e., It is very reasonable that Eve can only lose by searching
different) final key. For enabling such analysis, one musfor such correlations when the particles are transmitted
use known error-correction codes. Random linear codethrough her. Thus, the best she can do is probe the
allow for such analysis but cannot be used efficiently byparticles via the best collective attack.
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n = 2" — 1, have an efficient decoding/encoding proce-discussions. We are especially grateful to D. Mayers for
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