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Active stabilization of a quantum system is the active suppression of noise (such as decoherence) in
the system, without disrupting its unitary evolution. Quantum error correction suggests the possibility of
achieving this, but only if the recovery network can suppress more noise than it introduces. A general
method of constructing such networks is proposed, which gives a substantial improvement over previous
fault tolerant designs. The construction permits quantum error correction to be understood as essentially
qguantum state synthesis. An approximate analysis implies that algorithms involving very many
computational steps on a quantum computer can thus be made possible. [S0031-9007(97)02672-0]

PACS numbers: 89.70.+c, 03.65.Bz, 03.75.Dg, 05.40.+j

All physical systems are subject to noise, arising fromessentially one ofjuantum state synthesithat is, the
an unavoidable coupling to an environment which cannopreparation of a desired (nontrivial) quantum state. This
be completely analyzed or controlled. Typically, noiseis more than merely a change of emphasis, since the
is a problem we wish to minimize, and for this purposeproposed method allows a substantial improvement on the
passive and active stabilization can be applied. pag- best previously described correction technique. | will then
sive stabilization we mean the careful construction andestimate the degree of passive stability and redundancy
isolation of a system so as to reduce the noise level to aeeded to enable a quantum computer to carry out long
minimum. Byactivestabilization we mean the use of de- computations.
tection and feedback to suppress the tendency of a systemFirst let us summarize the concept of QEC. Suppose
to depart from some desired state. An early example isve wish to store or communicate an unknown quantum
the governor in a steam engine, and a common moderstate |¢) of some quantum system, in the presence
example is the electronic servo based on a stable voltag# noise. We introduce an extra system similar to
reference, a high-performance amplifier and a low-noise, in an initial known statg0). A unitary “encoding”
resistor (see inset to Fig. 2). Passive stabilization is ineperationE is performed,|¢) ® |0) — E(|¢) ® |0)) =
sufficient to stabilize any but the most simple devices|¢r). The encoded statRbr) is transmitted or stored,
whereas active stabilization is a very powerful methodduring which time it is subject to noisépr) — e;|dg).
and is used throughout the natural world, whether in manNow, such noise will not degrade the transmitted quantum

made devices or in living organisms. information, for all error operators, such that [12]
The above examples of active stabilization are classical,
not quantum systems, however. Is it possible to apply Ete,lpr) = o) ® |s). @

active stabilization in quantum physics? That is, can
the complete unitary evolution of the state throughoutFurthermore, the “decoding” operatiafi! will recover
its Hilbert space be actively stabilized against the effectshe correct quantum statep) after noise processes of
of random noise? It has been widely supposed thathe form|¢r) — > esldE), and even after mixtures of
the answer to this question is “no.” The reason issuch processes [4,5,8,9,13]. The latter possibility includes
because active stabilization is based on amplification anthe case of entanglement with an unknown environment,
dissipation. However, a general unknown quantum statevhich is an important source of error. The theory of
cannot be amplified (“no cloning theorem” [1]), and QEC involves identifying encodingg such that the set
dissipation will prevent unitary evolution, so it would S = {e,} of correctable errors includes thoswst likely
seem impossible to stabilize a quantum state. to be produced by the actual noise to which the system is
This supposed impossibility was recently called intosubject.
guestion by the concept of quantum error correction (QEC) In the rest of this Letter, it will be convenient to
[2—-9], which has shown that very powerful techniquesconsider the case thatandc are sets of two-state systems
exist for restoring a quantum state which has been affecte@juantum bits or qubits). Leét be the number of qubits in
by noise, and error correction can be applied in a mannej, andrn — k be the number of qubits in. The combined
(dubbed “fault tolerant” [10,11]) which is itself sufficiently system will be referred to agc (also a mnemonic for
insensitive to noise during the corrective process to allowquantum channel”). A general error of a single qubit can
an overall stabilization of a quantum system. be expressed as a sum [13] of operators taken from the
In this Letter | will present a reinterpretation of QEC, set? = {I, o, 0, 00, = ioy}, wherel is the identity
showing that the task of applying QEC in the lab is(corresponding to no error) and; are the Pauli spin
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operators. A general error af qubits is a sum of tensor In this case the stabilizer is, in the notation of [14],
products of such s_lngle-.qubn errors. _ 11000 1 00 101

Each type of noise will have a corresponding quantum 01100 | 10010
error correcting code (QECC) designed to deal with it. In H = (H,|H,) = 00110 | 01001 |- (2)
what follows we will analyse the case where the noise 00011 | 10100
involves all the Pauli spin operators, but affects different
qubits independently This is sufficient to cover many The quantum exclusive-oix¢r) gates shown in Fig. 1
realistic situations. Lekt be the order of magnitude of are positioned exactly where the 1's occur in the two
erroneous terms in the density matrix @f caused by halves of the stabilizer. Their effect is the transformation
the noise. Ar-error correcting code is defined to be es|¢r) ® 10), — eldr) ® |s),. The final state of is
one which can correct any error where up to but nomneasured, to reveal the error syndromevhich is used
more than: qubits out of then are defective. This to identify the corrective operatioa; ' to be applied to
allows the decoding operation to be successful [Eq. (1)}ic (see [5,6,11] for details).
for all the terms in the noisy density matrix involving  The network in Fig. 1 will not function well in the pres-
up to ¢ defective qubits. The remaining uncorrectedence of noise, since errors in one qubit can be transported
part has a relative magnitude of orde€f™"C(n,t + 1),  to several others by theor operations, and errors ingo
which is very small foren <t and r > 1, so the uncorrected. | now propose to replace this general type
noise is strongly suppressed’(fz,¢) is the binomial of recovery network by the type illustrated in Fig. 2. The
coefficientn!/t! (n — )!]. Such powerful QECC'’s were new network requires a larger ancilla, = 2n instead of
first discovered by Calderbank and Shor [4] and myselfz — k, but has the great merit of reducing interactions be-
[5]; they are related to the pioneering work of Shor [2] tweena andgc to a minimum, and furthermore each qubit
and myself [3]. in a only interacts with a single qubit ipc, so single qubit

So far we have discussed QEC as it might be appliegrrors ina are only carried onto single qubits gr. The
to a communication channel, in which the noise occurs idatter feature was also achieved in the fault-tolerant design
the channel but is not present in the operatisrsndE*T.  of DiVincenzo and Shor [11], but their technique involved
To consider active stabilization, it is necessary to relaxon the order ofi2r + 1) (n + k) interactions between
this assumption. We will require thecovery operator andgc, whereas the present method involves juistin-
R, defined byRe|¢r) ® |0), = |pr) ® |s)4, Ve, € S.  teractions; this is important because each interaction intro-
This is an interaction betweegc and an ancillaa  duces noise intgc.
consisting of furthern, qubits introduced in an initial The network of Fig. 2 is constructed as follows. First,
state|0),. The recovery corrects the encoded systgm the ancilla is prepared in a superposition of all states sat-

without decoding it, carrying the noise into isfying the parity checks oﬂ-[ Where each row ofH is
An example quantum network to perform recovery isinterpreted as a singl-bit parity check. Nextg andgc
shown in Fig. 1. This network is forfgn, k,2t + 1]] =  interact in such a way that errors ge are carried intaz.

[[5,1,3]] single-error correcting code in which a single The idea is to store the error syndrome not directly in the

qubit is encoded into five [6,7]. The network can bestate ofn — k qubits ofa as before, but in the value of

obtained directly from thetabilizer of the code [14,15]. then — k parity checks om given by H . Itis simple to
show that any erroe, (acting ongc before the recovery
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FIG. 1. Recovery network for H5, 1, 3]] code, showing how
the network may be built directly from the stabilizer matrix,
but yielding a design which functions poorly in the presence
of noise. The symbol® means the Hadamard transform FIG. 2. Proposed design for the recovery network, illustrated
|0y — (J0) + |1)/+/2, 1) = (10) — |1))/+/2. The rectangular for the same code as Fig. 1 [cf. Eq. (2)]. The interaction
box represents a measurement of the ancilla bits; the verticddletween the encoded system and the ancilla is now minimal,
arrow signifies a final corrective operation which depends orand prevents unnecessary propagation of errors. Inset: the
this measurement result. elements of a classical active stabilization servo.
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network is applied) will result, after the action of the net-first discussed in [4,5]). Thisis shownin Fig. 3. Forthese
work, in a final state of: which passes or fails these parity codes, the correction af, and o, errors can take place
checks in the correct way to yield the error syndrome. Furseparately, using an ancilla@iqubits twice. Remarkably,
thermore, then qubits ofa were prepared in an equally the preparation ot is identical to first preparing it in
weighted superposition 012"~ orthogonal product the encoded zero state g, |0z), and then carrying out
states, in a Hilbert space 2t dimensions, so there is suf- a Hadamard transform! Figure 3 shows two separately
ficient Hilbert space remaining farto storen — k qubits  encoded qubits interacting by a quantum gate, which
of quantum information, which is just enough to store thewe take to be one elementary step in a longer quantum
error syndrome. Therefore, no further information passesomputation, followed by a recovery operation applied first
from the gc¢ to a, and there is no problem of extrane- to one qubit, then to the other. Not shown is the testing of
ous entanglement left between the two systems after their, nor the repetition of the syndrome generation.
interaction. To estimate the effects of noise in the whole network
We have now reduced the problem of QEC essentiallshown in Fig. 3, a simple analysis using classical error
to one of quantum state synthesis, since the only nontrivigbrobabilities will suffice. This relies on the more thor-
part of the recovery network is that involved in preparingough treatment of Knill and Laflamme [8,17] who have
the ancilla state. Comparing with active stabilization ofshown that such an analysis is sufficient for approximate
classical systems (Fig. 2), we see that the amplifier ipurposes as long as the noise does not have certain patho-
replaced by the use of redundant storage of the quantuingical features.
information, the stable reference is replaced by a precise Let o be the probability that the syndrome obtained in
quantum state synthesis, and the dissipative feedbaday one cycle of syndrome generation does not correctly
resistor is replaced by dissipative measurements on thiadicate the errors iryc. During each cycle there are
ancilla (or, if preferred, by a unitary network to interpret n, = n opportunities for the last tests ento leave errors
the syndrome, followed by dissipative repreparatioa)of in a, n XOR gates betweenc anda, andn measurements
The preparation ofa can be accomplished in the on a, making 3n opportunities in all for errors in,
presence of noise by adopting the ideas of purificatiorso 1 — a = [(1 — y) (1 — €)"]**, giving @ = 3n(y +
[16] and fault-tolerant quantum computing [10]. The ne) for y,e,a < 1, wherey is the probability of gate
ancilla is prepared and then tested before it is allowedr measurement failure andis the probability per time
to interact withgc. If it fails a test, the preparation step that a freely evolving qubit defects. A failed gate
is started over again. Only once a “good” ancilla statecauses all qubits involved in the gate to become defective;
is obtained is the rest oR applied. The tests could a failed measurement yields an arbitrary result. Ehe
consist of measurements of the parity checks which term allows one time step per gate; that is, these gates are
should satisfy, whether in the or z bases, performed by not performed in parallel. The probability that more than
XOR’s onto an additional qubit introduced for the purpose.half ther syndromes are wrong is
Of course noise will cause some of these tests to give r
erroneous results, but random errorsdnare unlikely P = Z C(r,i)a'. 3
to go undetected, except those occurring during or after i=(r+1)/2

the last test operation on each qubitdn Since there How many errors will accumulate igc? Then XOR's

are n, qubits, there arew, such opportunities for error. betweengc and a during each cycle carry all the errors
fOHOV\./’ the most guestionable assumption bein'g that the%rror, makingr2n in all. The original elementary step
are distributed independently amongst the qubits.of in the computation involve® (») logic gates, using fault-
and a, and at other times, resulting in an inappropriate s ; ;
’ . - 2n error opportunities which each half (eithex or
syndrome ine. To handle this, the whole syndrome gen- ren PP ( koro
is repeated- times (following Shor [10]). Together the
r syndromes are used to deduce the corrective operatiol T TGX T TGZ
ZC*@-l—l ol—@-l
the probability that more than half of the syndromes
were wrong. Note that thé&(r) correct syndromes will FIG. 3. A complete computational step, including stabiliza-
rors inge at the time it was generated. line is a single encoded qubit, i.ez, physical qubits, and an
The method of Fig. 2 becomes particularly elegant whe open circle at the beginning of a line means the preparation
the encoding uses[fn, k = 2k, — n,d]] QECC based on the corrective operatiowr, or o, carried out on one or more
a[n, k., d] classical weakly self-dual code (i.e., the codesqubits.

These errors will be taken into account in the analysis t%lready ina into gc, and add further opportunities for
Noise will also take place during the interaction qf tolerant computation [10]. Finally we must add further

eration procedure (preparation, interaction, measurement)

most likely to be appropriate farc after therth syndrome

was generated. It will be assumed that the probability this Ox O

final corrective operation is nevertheless wrong is equal tc

not necessarily all be the same; each one identifies the effon, for two encoded qubits. In this diagram each horizontal

f the encoded zero stat@z). The vertical arrow represents
2254



VOLUME 78, NUMBER 11 PHYSICAL REV

IEW LETTERS 17 MRcH 1997

correction) of the recovery network causes for the othe
half. Given thatgc is encoded with a-error correcting
code, the probability that more errors accumulateyin
than can be corrected is

n[4r+0(1)]

S Cl[ar + 0()]i)(y + ne).

i=t+1

P, (4)

The probability that the whole computational step fails
is p = 4(P; + P,), assuming the two encoded qubits can
be recovered in parallel. Solving this equation foras
a function ofy, for givenn,r, taking e = y/10n (i.e.,
the noise is dominated by gate and measurement error
and choosingr large enough to mak®, < P,, yields
p = O((nry)"*V). The solution is plotted in Fig. 4 for
various QECC'’s taken from [18]. The main result is that
v must be reduced to a level less thah0~* before active
stabilization can work, but below this break-even point th
stabilization is very powerful, allowing, for example,=
10~ 12 with y of order1073. For a computation involving
S elementary steps, it is only necessary to redude less

than1/S for the stabilization to be deemed sufficient, since
then a repetition of the whole computation can be used
to enhance the chances of getting a correct result. Thus

y = 107> would permit a quantum computation involving
10'? steps, which is probably impossible to achieve with
passive stabilization alone.

In conclusion, active stabilization of a quantum system 5

B

€

prevents errors propagating from one qubit to many. The
recovery network consists primarily in the preparation of
the ancilla state, and the syndrome information is stored
in a subtle form, in the values of parity checks over
the ancilla qubits. A heuristic analysis of the effects
of noise on the whole recovery network suggests that
long quantum computations can thus be made possible.
The method described is a great improvement on the
previously reported fault-tolerant error correctors, and
allows QEC to be reinterpreted as active stabilization
based on repeated quantum state synthesis. Future work
ust analyse in more detall this state synthesis (ancilla
eparation) in the presence of noise.
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