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Active stabilization of a quantum system is the active suppression of noise (such as decohere
the system, without disrupting its unitary evolution. Quantum error correction suggests the possibi
achieving this, but only if the recovery network can suppress more noise than it introduces. A ge
method of constructing such networks is proposed, which gives a substantial improvement over pr
fault tolerant designs. The construction permits quantum error correction to be understood as ess
quantum state synthesis. An approximate analysis implies that algorithms involving very m
computational steps on a quantum computer can thus be made possible. [S0031-9007(97)0267

PACS numbers: 89.70.+c, 03.65.Bz, 03.75.Dg, 05.40.+ j
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All physical systems are subject to noise, arising from
an unavoidable coupling to an environment which cann
be completely analyzed or controlled. Typically, nois
is a problem we wish to minimize, and for this purpos
passive and active stabilization can be applied. Bypas-
sive stabilization we mean the careful construction an
isolation of a system so as to reduce the noise level to
minimum. Byactivestabilization we mean the use of de
tection and feedback to suppress the tendency of a syst
to depart from some desired state. An early example
the governor in a steam engine, and a common mode
example is the electronic servo based on a stable volta
reference, a high-performance amplifier and a low-nois
resistor (see inset to Fig. 2). Passive stabilization is i
sufficient to stabilize any but the most simple device
whereas active stabilization is a very powerful metho
and is used throughout the natural world, whether in ma
made devices or in living organisms.

The above examples of active stabilization are classic
not quantum systems, however. Is it possible to app
active stabilization in quantum physics? That is, ca
the complete unitary evolution of the state throughou
its Hilbert space be actively stabilized against the effec
of random noise? It has been widely supposed th
the answer to this question is “no.” The reason i
because active stabilization is based on amplification a
dissipation. However, a general unknown quantum sta
cannot be amplified (“no cloning theorem” [1]), and
dissipation will prevent unitary evolution, so it would
seem impossible to stabilize a quantum state.

This supposed impossibility was recently called int
question by the concept of quantum error correction (QEC
[2–9], which has shown that very powerful technique
exist for restoring a quantum state which has been affect
by noise, and error correction can be applied in a mann
(dubbed “fault tolerant” [10,11]) which is itself sufficiently
insensitive to noise during the corrective process to allo
an overall stabilization of a quantum system.

In this Letter I will present a reinterpretation of QEC
showing that the task of applying QEC in the lab i
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essentially one ofquantum state synthesis,that is, the
preparation of a desired (nontrivial) quantum state. Th
is more than merely a change of emphasis, since
proposed method allows a substantial improvement on
best previously described correction technique. I will the
estimate the degree of passive stability and redunda
needed to enable a quantum computer to carry out lo
computations.

First let us summarize the concept of QEC. Suppo
we wish to store or communicate an unknown quantu
state jfl of some quantum systemq, in the presence
of noise. We introduce an extra systemc, similar to
q, in an initial known statej0l. A unitary “encoding”
operationE is performed,jfl ≠ j0l ! Esjfl ≠ j0ld ;
jfEl. The encoded statejfEl is transmitted or stored,
during which time it is subject to noise,jfEl ! esjfEl.
Now, such noise will not degrade the transmitted quantu
information, for all error operatorses such that [12]

EyesjfEl ­ jfl ≠ jsl . (1)

Furthermore, the “decoding” operationEy will recover
the correct quantum statejfl after noise processes o
the form jfEl !

P
s esjfEl, and even after mixtures of

such processes [4,5,8,9,13]. The latter possibility includ
the case of entanglement with an unknown environme
which is an important source of error. The theory o
QEC involves identifying encodingsE such that the set
S ­ hesj of correctable errors includes thosemost likely
to be produced by the actual noise to which the system
subject.

In the rest of this Letter, it will be convenient to
consider the case thatq andc are sets of two-state system
(quantum bits or qubits). Letk be the number of qubits in
q, andn 2 k be the number of qubits inc. The combined
system will be referred to asqc (also a mnemonic for
“quantum channel”). A general error of a single qubit ca
be expressed as a sum [13] of operators taken from
setP ­ hI , sx, sz , sxsz ­ isyj, whereI is the identity
(corresponding to no error) andsi are the Pauli spin
© 1997 The American Physical Society
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operators. A general error ofn qubits is a sum of tensor
products of such single-qubit errors.

Each type of noise will have a corresponding quantu
error correcting code (QECC) designed to deal with it.
what follows we will analyse the case where the noi
involves all the Pauli spin operators, but affects differe
qubits independently. This is sufficient to cover many
realistic situations. Lete be the order of magnitude of
erroneous terms in the density matrix ofqc caused by
the noise. A t-error correcting code is defined to b
one which can correct any error where up to but n
more than t qubits out of then are defective. This
allows the decoding operation to be successful [Eq. (
for all the terms in the noisy density matrix involving
up to t defective qubits. The remaining uncorrecte
part has a relative magnitude of orderest11dCsn, t 1 1d,
which is very small for en , t and t ¿ 1, so the
noise is strongly suppressed [Csn, td is the binomial
coefficientn!yt! sn 2 td!]. Such powerful QECC’s were
first discovered by Calderbank and Shor [4] and mys
[5]; they are related to the pioneering work of Shor [2
and myself [3].

So far we have discussed QEC as it might be appl
to a communication channel, in which the noise occurs
the channel but is not present in the operationsE andEy.
To consider active stabilization, it is necessary to rel
this assumption. We will require therecovery operator
R, defined byResjfEl ≠ j0la ­ jfEl ≠ jsla, ;es [ S .
This is an interaction betweenqc and an ancillaa
consisting of furtherna qubits introduced in an initial
statej0la. The recovery corrects the encoded systemqc
without decoding it, carrying the noise intoa.

An example quantum network to perform recovery
shown in Fig. 1. This network is for affn, k, 2t 1 1gg ­
ff5, 1, 3gg single-error correcting code in which a singl
qubit is encoded into five [6,7]. The network can b
obtained directly from thestabilizer of the code [14,15].

FIG. 1. Recovery network for aff5, 1, 3gg code, showing how
the network may be built directly from the stabilizer matrix
but yielding a design which functions poorly in the presen
of noise. The symbolS means the Hadamard transform
j0l ! sj0l 1 j1ldy

p
2, j1l ! sj0l 2 j1ldy

p
2. The rectangular

box represents a measurement of the ancilla bits; the vert
arrow signifies a final corrective operation which depends
this measurement result.
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In this case the stabilizer is, in the notation of [14],

H ­ sHxjHzd ­

0BBB@
11 000
01 100
00 110
00 011

ØØØØØØØØ
00 101
10 010
01 001
10 100

1CCCA . (2)

The quantum exclusive-or (XOR) gates shown in Fig. 1
are positioned exactly where the 1’s occur in the tw
halves of the stabilizer. Their effect is the transformatio
esjfEl ≠ j0la ! esjfEl ≠ jsla. The final state ofa is
measured, to reveal the error syndromes, which is used
to identify the corrective operatione21

s to be applied to
qc (see [5,6,11] for details).

The network in Fig. 1 will not function well in the pres-
ence of noise, since errors in one qubit can be transpor
to several others by theXOR operations, and errors ina go
uncorrected. I now propose to replace this general ty
of recovery network by the type illustrated in Fig. 2. Th
new network requires a larger ancilla,na ­ 2n instead of
n 2 k, but has the great merit of reducing interactions b
tweena andqc to a minimum, and furthermore each qub
in a only interacts with a single qubit inqc, so single qubit
errors ina are only carried onto single qubits inqc. The
latter feature was also achieved in the fault-tolerant des
of DiVincenzo and Shor [11], but their technique involve
on the order ofs2t 1 1d sn 1 kd interactions betweena
and qc, whereas the present method involves just2n in-
teractions; this is important because each interaction int
duces noise intoqc.

The network of Fig. 2 is constructed as follows. Firs
the ancilla is prepared in a superposition of all states s
isfying the parity checks ofH , where each row ofH is
interpreted as a single2n-bit parity check. Next,a andqc
interact in such a way that errors inqc are carried intoa.
The idea is to store the error syndrome not directly in th
state ofn 2 k qubits of a as before, but in the value of
then 2 k parity checks ona given byH . It is simple to
show that any errores (acting onqc before the recovery

FIG. 2. Proposed design for the recovery network, illustrat
for the same code as Fig. 1 [cf. Eq. (2)]. The interactio
between the encoded system and the ancilla is now minim
and prevents unnecessary propagation of errors. Inset:
elements of a classical active stabilization servo.
2253
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network is applied) will result, after the action of the net
work, in a final state ofa which passes or fails these parity
checks in the correct way to yield the error syndrome. Fu
thermore, the2n qubits ofa were prepared in an equally
weighted superposition of22n2sn2kd orthogonal product
states, in a Hilbert space of22n dimensions, so there is suf-
ficient Hilbert space remaining fora to storen 2 k qubits
of quantum information, which is just enough to store th
error syndrome. Therefore, no further information pass
from the qc to a, and there is no problem of extrane
ous entanglement left between the two systems after th
interaction.

We have now reduced the problem of QEC essentia
to one of quantum state synthesis, since the only nontriv
part of the recovery network is that involved in preparin
the ancilla state. Comparing with active stabilization o
classical systems (Fig. 2), we see that the amplifier
replaced by the use of redundant storage of the quant
information, the stable reference is replaced by a prec
quantum state synthesis, and the dissipative feedba
resistor is replaced by dissipative measurements on
ancilla (or, if preferred, by a unitary network to interpre
the syndrome, followed by dissipative repreparation ofa).

The preparation ofa can be accomplished in the
presence of noise by adopting the ideas of purificatio
[16] and fault-tolerant quantum computing [10]. The
ancilla is prepared and then tested before it is allow
to interact with qc. If it fails a test, the preparation
is started over again. Only once a “good” ancilla sta
is obtained is the rest ofR applied. The tests could
consist of measurements of the parity checks whicha
should satisfy, whether in thex or z bases, performed by
XOR’s onto an additional qubit introduced for the purpose
Of course noise will cause some of these tests to gi
erroneous results, but random errors ina are unlikely
to go undetected, except those occurring during or af
the last test operation on each qubit ina. Since there
are na qubits, there arena such opportunities for error.
These errors will be taken into account in the analysis
follow, the most questionable assumption being that th
are distributed independently amongst the qubits ofa.

Noise will also take place during the interaction ofqc
and a, and at other times, resulting in an inappropriat
syndrome ina. To handle this, the whole syndrome gen
eration procedure (preparation, interaction, measureme
is repeatedr times (following Shor [10]). Together the
r syndromes are used to deduce the corrective operat
most likely to be appropriate forqc after ther th syndrome
was generated. It will be assumed that the probability th
final corrective operation is nevertheless wrong is equal
the probability that more than half of ther syndromes
were wrong. Note that theOsrd correct syndromes will
not necessarily all be the same; each one identifies the
rors inqc at the time it was generated.

The method of Fig. 2 becomes particularly elegant whe
the encoding uses affn, k ­ 2kc 2 n, dgg QECC based on
a fn, kc, dg classical weakly self-dual code (i.e., the code
2254
-

r-

e
es
-
eir

lly
ial
g
f
is

um
ise
ck

the
t

n

ed

te

.
ve

ter

to
ey

e
-
nt)

ion

is
to

er-

n

s

first discussed in [4,5]). This is shown in Fig. 3. For thes
codes, the correction ofsx and sz errors can take place
separately, using an ancilla ofn qubits twice. Remarkably,
the preparation ofa is identical to first preparing it in
the encoded zero state ofqc, j0El, and then carrying out
a Hadamard transform! Figure 3 shows two separate
encoded qubits interacting by a quantum gate, whi
we take to be one elementary step in a longer quant
computation, followed by a recovery operation applied fir
to one qubit, then to the other. Not shown is the testing
a, nor the repetition of the syndrome generation.

To estimate the effects of noise in the whole netwo
shown in Fig. 3, a simple analysis using classical err
probabilities will suffice. This relies on the more thor
ough treatment of Knill and Laflamme [8,17] who hav
shown that such an analysis is sufficient for approxima
purposes as long as the noise does not have certain pa
logical features.

Let a be the probability that the syndrome obtained
any one cycle of syndrome generation does not correc
indicate the errors inqc. During each cycle there are
na ­ n opportunities for the last tests ona to leave errors
in a, n XOR gates betweenqc anda, andn measurements
on a, making 3n opportunities in all for errors ina,
so 1 2 a ­ fs1 2 gd s1 2 edng3n, giving a ­ 3nsg 1

ned for g, e, a ø 1, whereg is the probability of gate
or measurement failure ande is the probability per time
step that a freely evolving qubit defects. A failed ga
causes all qubits involved in the gate to become defecti
a failed measurement yields an arbitrary result. Thee

term allows one time step per gate; that is, these gates
not performed in parallel. The probability that more tha
half ther syndromes are wrong is

P1 >
rX

i­sr11dy2

Csr , idai. (3)

How many errors will accumulate inqc? Then XOR’s
betweenqc and a during each cycle carry all the errors
already ina into qc, and add furthern opportunities for
error, makingr2n in all. The original elementary step
in the computation involvesOsnd logic gates, using fault-
tolerant computation [10]. Finally we must add furthe
r2n error opportunities which each half (eithersx or sz

FIG. 3. A complete computational step, including stabiliza
tion, for two encoded qubits. In this diagram each horizont
line is a single encoded qubit, i.e.,n physical qubits, and an
open circle at the beginning of a line means the preparat
of the encoded zero statej0El. The vertical arrow represents
the corrective operationsx or sz carried out on one or more
qubits.
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correction) of the recovery network causes for the oth
half. Given thatqc is encoded with at-error correcting
code, the probability that more errors accumulate inqc
than can be corrected is

P2 >
nf4r1Os1dgX

i­t11

Csssnf4r 1 Os1dg, iddd sg 1 nedi . (4)

The probability that the whole computational step fai
is p ­ 4sP1 1 P2d, assuming the two encoded qubits ca
be recovered in parallel. Solving this equation forp as
a function of g, for given n, t, taking e ­ gy10n (i.e.,
the noise is dominated by gate and measurement erro
and choosingr large enough to makeP1 , P2, yields
p ­ Ossssnrgdst11dddd. The solution is plotted in Fig. 4 for
various QECC’s taken from [18]. The main result is tha
g must be reduced to a level less than,1024 before active
stabilization can work, but below this break-even point th
stabilization is very powerful, allowing, for example,p ­
10212 with g of order1025. For a computation involving
S elementary steps, it is only necessary to reducep to less
than1yS for the stabilization to be deemed sufficient, sinc
then a repetition of the whole computation can be us
to enhance the chances of getting a correct result. Th
g . 1025 would permit a quantum computation involving
1012 steps, which is probably impossible to achieve wi
passive stabilization alone.

In conclusion, active stabilization of a quantum syste
is possible through the use of quantum error correctio
as long as the recovery network removes more no
than it introduces. This has been achieved by minimizi
the interaction between the ancilla and the system to
stabilized, using only2n quantumXOR gates, which also

FIG. 4. Solution of p ­ 4sP1 1 P2d; e ­ gy10n [cf.
Eqs. (3) and (4)], as a function ofg, for various quantum
codes which support fault tolerant computation. The kinks
the curves occur whenr must be increased in order to keep
P1 , p; the values ofr are in the range 3 to 15. The code
are identified by the notationffn, k, 2t 1 1gg. The dashed line
is for a higher rate code which probably will support univers
fault tolerant computation, but this has yet to be proved.
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prevents errors propagating from one qubit to many. Th
recovery network consists primarily in the preparation o
the ancilla state, and the syndrome information is store
in a subtle form, in the values of parity checks ove
the ancilla qubits. A heuristic analysis of the effect
of noise on the whole recovery network suggests th
long quantum computations can thus be made possib
The method described is a great improvement on t
previously reported fault-tolerant error correctors, an
allows QEC to be reinterpreted as active stabilizatio
based on repeated quantum state synthesis. Future w
must analyse in more detail this state synthesis (anci
preparation) in the presence of noise.
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