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Kinetics of Trapping Reactions with a Time Dependent Density of Traps
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We study a trapping process where the traps (particlesB), besides being mobile, have a variable
number. We analyze two cases related with the coupled reactions:A 1 B ! B, B 1 C ! C, and
A 1 B ! B, B 1 C ! 0. It is shown that the time evolution of the traps strongly influences the
kinetics of the trapping process, yielding qualitatively different behavior in both cases. The resul
of a model, adapted from one used before for trapping and annihilation in a one dimension
diffusion-limited system, have been compared with simulations yielding good qualitative agreemen
[S0031-9007(97)02752-X]

PACS numbers: 82.20.Hf, 05.60.+w
-
c
in
o
le
f
m
te
v
a
m
e
it
e
e

th
h
y

a
d

e

n
te
e

th
a
t
-

a
s
g

ur

o
ith
r
l

-

-
-

re

el
e

The important role played by diffusion-controlled reac
tions in the most diverse branches of chemistry, physi
and biology has attracted the interest of researchers
the study of these problems during the last couple
decades [1]. This interest was motivated by the so-cal
“anomalous” kinetic laws that govern the evolution o
these chemical reactions as in low dimensional syste
(d # 2); they depart from the standard mean field ra
equations [1,2]. In general, the kind of problems that ha
been studied include coalescence and annihilation re
tions in one or two-species systems [1,2]. Such syste
show a remarkable sensitivity in the kinetics of the r
combination process and segregation to changes on in
conditions, presence of sources, disorder, external forc
etc. [1–4]. Most of the recent literature is devoted to th
analysis of these phenomena under the assumption
some kinds of rate equations are valid, considering t
case of perfect reactions and, with lesser emphasis, in s
tems of partially absorbing media, which are of particul
interest in many problems of attenuation in biological an
physical problems [5–8].

In this Letter we address the problem of a trapping r
action (symbolically writtenA 1 B ! B) in a one dimen-
sional system of diffusingA particles andB traps, but in
the case where the number of traps is time depende
This dependence can arise because the traps participa
another reaction or because they are externally controll
Such a situation, which has not been treated previously
the scientific literature, besides its interest in relation wi
several problems related to heterogeneous reactions
catalysis, shows some peculiarities that makes relevan
study on its own right. Here we will consider the follow
ing two related situations: (a)A 1 B ! B, B 1 C ! C
(double trapping). (b)A 1 B ! B, B 1 C ! 0 (trap-
ping with annihilated traps). In both cases it is clear th
the second reaction will not be affected at all by the fir
one. This allows us to exploit known results for trappin
and annihilation. In case (b), as usual, we restrict o
selves to equal initial densities ofB andC particles in the
annihilation reaction.
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In the present work, we show the results of Monte Carl
simulations made for both cases, and comparisons w
the result of a mean field evaluation and with anothe
theoretical model, which is a version of the Galanin mode
[8–11], adapted to the present situation.

First we present the mean field results in both situa
tions. In case (a) the solution is given by

nBstd ­ nB0 exps2gBCnCtd , (1)

nAstd ­ nA0 exp

"
2

gAB nB0

gBC nC
s1 2 e2gBC nCtd

#
. (2)

For case (b), the solution is

nBstd ­ nB0s1 1 gBCnB0td21, (3)

nAstd ­ nA0s1 1 gBCnB0td2gABygBC . (4)

HeregAB,BC are the reaction rates of each reaction,nA0,B0

the initial densities ofA, B particles, andnC the (fixed)C
density for the case (a).

It is worth remarking that the qualitative behavior of
the indicated solutions is clearly different. The most re
markable aspect is that asymptotically they reach com
pletely different limits. In the first case we have

nAst ! `d ­ nA0 exp

√
2

gABnB0

gBCnC

!
. (5)

This finite value is in contrast with the second case whe
we have total extinction [nAst ! `d ~ t2gABygBC ] for A
particles.

For the Galanin description we have adapted the mod
that was introduced for the annihilation case [9]. W
will not go into the details of the model (discussed, in
particular, in [8,9]), but only exploit the results of our
previous work. The general result fornA, the density of
A particles, is

d
dt

nAstd ­ 2gABnAstdnBstd

1
Z t

0
dt0 Cst 2 t0 dnAst0dnBst0 d , (6)
© 1997 The American Physical Society
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where Cstd ­ agABfsptd21y2 2 a expsa2td erfcsa
p

t dg
with a ­ gABy

p
4sDA 1 DBd; DA and DB are the dif-

fusivities of particlesA and B, respectively, andnBstd is
the (variable) density ofB particles. Even though this
equation was originally derived for a simple annihilatio
process, it can be proved to be correct for the general c
of variable nBstd. For our particular cases this densi
comes from a trapping [case (a)] or an annihilation [ca
(b)] process.

The indicated integrodifferential equation must b
solved numerically. However, the asymptotic analy
can be done analytically by means of Laplace transform
tion procedures yielding for the double trapping case
final value reached forA density

nAf ­ nAst ! `d ­ nA0

√
1 1

nB0

nC

s
DA 1 DB

DB 1 DC

!21

.

(7)

This, again, is a finite value that contrasts with the seco
case where we have potentially a decay to zeronAst !

`d ~ t21y4. In the most general way, the asymptot
analysis within this model predicts that, if we assume
long time behaviornBstd ~ tb, for 21y2 , b # 0, nA

will have a potential decay to zero, with an expone
2s1y2 1 bd. On the contrary, as indicated in the doub
trapping case, whenb ­ 21y2, nA reaches a finite value
Hence, we can expect that forb , 21y2, nA will also
reach a finite asymptotic value.

We give here a short description of the algorithm w
have used in the simulations. These were made on a
dimensional lattice with periodic boundary condition
We choose a particle at random and update this part
in the following way: we consider the possibility of
jump in either direction with a probabilityqA,B,C. For
A or B particles, if the particle does not jump an
there is some trap (B or C, respectively) at the sam
site, then we consider the possibility of reaction with
probability mins1, pNB,Cd [12], whereNB,C is the number
of traps in the site. After that, the time is increas
in snA 1 nB 1 nCd21. If we call the space and time
increments Dx and Dt, we can establish a relatio
between simulation and macroscopic parameters thro
the master equation for the process [13]. These relati
areDA,B,C ­ qA,B,C sDxd2yDt andgAB,BC ­ pAB,BCs1 2

2 qA,BdDxyDt. We have takenDx ­ Dt ­ 1 in all the
cases.

In Fig. 1 we show the result of simulations, the Galan
model and the mean field for the density ofA particles
for two different values ofgAB. Note that in order to
keep a constant macroscopic rateg we must change
the microscopic absorption probabilityp whenever we
change the jump probabilityq. It is clear that the Galanin
model offers a better description of the problem th
mean field approach although both give a qualitative go
description for short times.
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FIG. 1. Temporal evolution of the density ofA particles
for a double trapping system. The solid line corresponds
simulations, the dashed one to the Galanin model (numeric
integration) and the dashed-dot one to mean field resul
The simulation (10 realizations) was performed in a 100
sites lattice with periodic boundary conditions. The commo
parameters arenA0 ­ 1000, nB0 ­ 200, nC ­ 50, qA ­ qB ­
qC ­ 0.1, gBC ­ 0.4, while gAB ­ 0.008 for (a) and 0.08 for
(b). The final valuenAfynA0 for the Galanin model is0.2 in
both cases.

Figures 2 and 3 show a study of the asymptotic valu
dependence with the diffusivities and the macroscop
absorption rate, respectively. The error bars indicate th
standard deviation of values. For computing the fina
value we waited untilnb ­ 0 in each realization. In
Fig. 2 we include the theoretical expression (7) in orde
to compare with simulations. In both figures we restricte
ourselves to the case whereDB ­ DC . We can see that
the dependence of the asymptotic value ofnA on the

FIG. 2. Variation of the final valuenAf as function ofd ­
DByDA. Here we choose the same initial densities and lattic
size as in Fig. 1. The diffusivities areDB ­ DC ­ 0.03 in
all the cases. The parameters aregAB ­ 0.2 (squares) and
0.02 (circles), andgBC ­ 0.2 for both cases. The dashed
line indicates the Galanin result [Eq. (7)]. The correspondin
(constant) values for the mean field model are53.6 (squares)
and0.5 (circles). The dotted lines correspond to a fitting of the
simulation results.
2245
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FIG. 3. Variation of final valuenAf as function ofgBCygAB.
Here we have chosen the same initial densities and latti
size as in Fig. 1. The parameters areDB ­ 0.3 (circles) and
0.03 (squares) whilegBC ­ 0.2, DA ­ 0.3 in both cases. The
dashed line corresponds to mean field result [Eq. (5)]. Th
(constant) Galanin values are 0.2 (circles) and 0.96 (square
The dotted lines correspond to a fitting of the simulation result

diffusivity is qualitatively well described by the Galanin
model, while it does not depend at all on the diffusivitie
for the mean field description. However, the Galani
expression does not show any dependence on theg’s
though it is qualitatively well described by the mean
field. Matching both theoretical results we expect tha
the diffusivity dependence will appear only on the rati
d ­ DByDA while the reaction rates dependence wi
appear as the ratiogBCygAB. We have computednAf

FIG. 4. Temporal evolution of the density ofA particles for a
trapping with annihilated traps. The solid line corresponds
simulations, and the dots to mean field results. The dot-dash
line indicates thet21y4 slope. The simulations (10 realizations
or more) were performed in a lattice of 100 sites with periodi
boundary conditions. The parameters arenA0 ­ 100, nB0 ­
nC0 ­ 50, qA ­ qB ­ qC ­ 0.1, andgBC ­ gAB ­ 0.8. The
inset shows the dependence with the lattice size: a 100-s
lattice (dashed,nAfynA0 ­ 0.35 6 0.06) and a 200-site lattice
(solid, nAfynA0 ­ 0.16 6 0.06); keeping the same density and
the same parameters except thatgAB ­ 0.008.
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in some simulations, with results that confirm (at leas
approximately) this guess.

In Fig. 4 we show results for the annihilation case.
is worth remarking here that the result ofnA reaching
a zero value is only valid for an infinite lattice. For
a finite one we can, for example, reducegAB until the
trapping reaction becomes so slow that all the traps c
be annihilated before they can trap allA particles. This is
shown in the inset of Fig. 4.

Summarizing, we have shown that, for the reactio
A 1 B ! B, the time evolution of the number of traps
(B) can strongly influence the time evolution of the
trapping process. Even more, there is a critical expone
[nBst ! `d ~ tb, bc ­ 21y2] separating different quali-
tative asymptotic behaviors fornA: for 21y2 , b #

0 we have complete extinction, while forb # 21y2
we obtain the asymptotic survival of theA particles.
In the double trapping case, matching mean field, an
Galanin results, we have seen that thenAf dependence on
diffusivities and reaction rates comes through the ratio
DByDA andgBCygAB. The adapted Galanin model gives
a much better agreement with simulations than me
field, with a better qualitative prediction of the paramete
dependence. However, it needs further improvement
order to obtain a still better quantitative agreement wit
simulations. This last point will be the subject of furthe
work.
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