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Kinetics of Trapping Reactions with a Time Dependent Density of Traps
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We study a trapping process where the traps (partiBlgsbesides being mobile, have a variable
number. We analyze two cases related with the coupled reactiors:B — B, B + C — C, and
A+ B— B, B+ C— 0. Itis shown that the time evolution of the traps strongly influences the
kinetics of the trapping process, yielding qualitatively different behavior in both cases. The results
of a model, adapted from one used before for trapping and annihilation in a one dimensional
diffusion-limited system, have been compared with simulations yielding good gqualitative agreement.
[S0031-9007(97)02752-X]
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The important role played by diffusion-controlled reac- In the present work, we show the results of Monte Carlo
tions in the most diverse branches of chemistry, physicssimulations made for both cases, and comparisons with
and biology has attracted the interest of researchers intihe result of a mean field evaluation and with another
the study of these problems during the last couple ofheoretical model, which is a version of the Galanin model
decades [1]. This interest was motivated by the so-callefB—11], adapted to the present situation.

“anomalous” kinetic laws that govern the evolution of First we present the mean field results in both situa-
these chemical reactions as in low dimensional systemons. In case (a) the solution is given by

(d = 2); they depart from the standard mean field rate _ _

equations [1,2]. In general, the kind of problems that have ns(r) = npo XM =yscnct)., (1)
been studied include coalescence and annihilation reac- _ YAB NBO e net

tions in one or two-species systems [1,2]. Such systems ~ "4(t) = 740 ex;{— (I — et )}' @)
show a remarkable sensitivity in the kinetics of the re- o

combination process and segregation to changes on initige" ¢@se (b), the solution is

YBC HC

conditions, presence of sources, disorder, external forces, ng(t) = ngo(1 + ypengot) ™', (3)
etc. [1-4]. Most of the recent literature is devoted to the _ -
analysis of these phenomena under the assumption that na(t) = nao(l + ypcnpot) g (4)

some kinds of rate equations are valid, considering thélerey.p zc are the reaction rates of each reactieg, zo

case of perfect reactions and, with lesser emphasis, in syghe initial densities ofs, B particles, and:¢ the (fixed)C

tems of partially absorbing media, which are of particulardensity for the case (a).

interest in many problems of attenuation in biological and It is worth remarking that the qualitative behavior of

physical problems [5-8]. the indicated solutions is clearly different. The most re-
In this Letter we address the problem of a trapping remarkable aspect is that asymptotically they reach com-

action (symbolically writted + B — B) in a one dimen-  pletely different limits. In the first case we have

sional system of diffusing\ particles andB traps, but in

the case where the number of traps is time dependent. na(t = ®) = ny exp<_M)_ (5)

This dependence can arise because the traps participate in YBchc

another reaction or because they are externally controlledrhis finite value is in contrast with the second case where

Such a situation, which has not been treated previously ive have total extinctionsy(r — o) o« r~74s/7sc] for A

the scientific literature, besides its interest in relation withparticles.

several problems related to heterogeneous reactions andror the Galanin description we have adapted the model

catalysis, shows some peculiarities that makes relevant ithat was introduced for the annihilation case [9]. We

study on its own right. Here we will consider the follow- will not go into the details of the model (discussed, in

ing two related situations: (8 + B— B, B + C — C  particular, in [8,9]), but only exploit the results of our

(double trapping). (bA + B— B, B+ C — 0 (trap-  previous work. The general result fay, the density of

ping with annihilated traps). In both cases it is clear thatA particles, is

the second reaction will not be affected at all by the first

one. This allows us to exploit known results for trapping — na(t) = —yapna(t)np(t)

and annihilation. In case (b), as usual, we restrict our-

selves to equal initial densities 8fandC particles in the o ; , ,
annihilation reaction. + j; di' C(t — )na(t)np(t’),  (6)
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where C(1) = ayag[(71)"V? — a expla?t) erfo(a /7 )]
with a = 7AB/\/4(DA + DB): Dy and Dpg are the dif-
fusivities of particlesA and B, respectively, andiz(z) is
the (variable) density oB particles. Even though this
equation was originally derived for a simple annihilation

0.84

process, it can be proved to be correct for the general casez *°
of variable ng(r). For our particular cases this density <.
comes from a trapping [case (a)] or an annihilation [case & °*7

(b)] process.

The indicated integrodifferential equation must be
solved numerically. However, the asymptotic analysis
can be done analytically by means of Laplace transforma-
tion procedures yielding for the double trapping case the
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y FIG. 1. Temporal evolution of the density of particles
for a double trapping system. The solid line corresponds to
simulations, the dashed one to the Galanin model (numerical
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Dy + D
nAf=nA(l‘—’°°)=nAol+@ e . ( :
nc \Dp + D¢ integration) and the dashed-dot one to mean field results.

7) The simulation (10 realizations) was performed in a 1000
sites lattice with periodic boundary conditions. The common

: i e o i : arameters are,o = 1000, ngy = 200, nc = 50, g4 = g5 =
This, again, is a finite value that contrasts with the secongc = 0.1, ype — 0.4, while 7,5 — 0.008 for (a) and0.08 for

case where we have potentially a decay to zef@ —  (p). The final valuen,s/ny for the Galanin model i9.2 in
w) o« t~1/4 In the most general way, the asymptotic both cases.
analysis within this model predicts that, if we assume a
long time behaviorng(t) = t#, for —1/2 < B = 0,n,4
will have a potential decay to zero, with an exponent Figures 2 and 3 show a study of the asymptotic value
—(1/2 + B). On the contrary, as indicated in the doubledependence with the diffusivities and the macroscopic
trapping case, whefi = —1/2, n4 reaches a finite value. absorption rate, respectively. The error bars indicate the
Hence, we can expect that f@ < —1/2,n, will also ~ standard deviation of values. For computing the final
reach a finite asymptotic value. value we waited untiln, = 0 in each realization. In

We give here a short description of the algorithm weFig. 2 we include the theoretical expression (7) in order
have used in the simulations. These were made on a ort@ compare with simulations. In both figures we restricted
dimensional lattice with periodic boundary conditions.ourselves to the case wheby = Dc. We can see that
We choose a particle at random and update this particlhe dependence of the asymptotic value mf on the
in the following way: we consider the possibility of a
jump in either direction with a probabilitys zc. For
A or B particles, if the particle does not jump and
there is some trapB( or C, respectively) at the same ]
site, then we consider the possibility of reaction with a ] E
probability min(1, pNg ¢) [12], whereNp ¢ is the number 1004 e
of traps in the site. After that, the time is increased ]
in (ny + ng + nc)~'. If we call the space and time
increments Ax and Az, we can establish a relation . ’
between simulation and macroscopic parameters through 03 g7 L Rt
the master equation for the process [13]. These relations ‘ 1 ]
areDapc = qapc (Ax)*/At andyagpc = pappc(l — &
2 gap)Ax/Atr. We have takem\x = At = 1 in all the
cases. 1 10

In Fig. 1 we show the result of simulations, the Galanin (d+1)/d
model anq the mean field for the density@fparticles FIG. 2. Variation of the final valuei,, as function ofd =
for two different values ofysp. Note that in order to p,/p,. Here we choose the same initial densities and lattice
keep a constant macroscopic raje we must change size as in Fig. 1. The diffusivities arBz = D¢ = 0.03 in
the microscopic absorption probability whenever we all the cases. The parameters args = 0.2 (squares) and
change the jump probability. It is clear that the Galanin 002 (circles), andyzc = 0.2 for both cases. The dashed

model offers a better description of the problem thargne indicates the Galanin result [Eq. (7)]. The corresponding

1000 .

Nag Nag -1
-
o

i . e constant) values for the mean field model &6e6 (squares)
mean field approach although both give a qualitative goo@dndo.5 (circles). The dotted lines correspond to a fitting of the

description for short times. simulation results.
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FIG. 3. Variation of final valueis, as function ofygc/yas.

Here we have chosen the same initial densities and lattic

size as in Fig. 1. The parameters dpg = 0.3 (circles) and
0.03 (squares) whilergc = 0.2, D4 = 0.3 in both cases. The

in some simulations, with results that confirm (at least
approximately) this guess.

In Fig. 4 we show results for the annihilation case. It
is worth remarking here that the result af reaching
a zero value is only valid for an infinite lattice. For
a finite one we can, for example, reduggp until the
trapping reaction becomes so slow that all the traps can
be annihilated before they can trap alparticles. This is
shown in the inset of Fig. 4.

Summarizing, we have shown that, for the reaction
A + B — B, the time evolution of the number of traps
(B) can strongly influence the time evolution of the
trapping process. Even more, there is a critical exponent
[np(t — =) < tP, B, = —1/2] separating different quali-
tative asymptotic behaviors fon,: for —1/2 < g =
D we have complete extinction, while fo8 = —1/2
we obtain the asymptotic survival of th& particles.

dashed line corresponds to mean field result [Eq. (5)]. Thdn the double trapping case, matching mean field, and
(constant) Galanin values are 0.2 (circles) and 0.96 (squaresizalanin results, we have seen that thg dependence on
The dotted lines correspond to a fitting of the simulation resunsdiffusivities and reaction rates comes through the ratios
Dg/D4 andygc/vap. The adapted Galanin model gives
e _ ) . a much better agreement with simulations than mean
diffusivity is qualitatively well described by the Galanin fio|q with a better qualitative prediction of the parameter
model, while it does not depend at all on the d'ﬁus'v't'esdependence. However, it needs further improvement in
for the mean field description. However, the Galaningqer 1o obtain a still better quantitative agreement with
expression does not show any dependence onyt8e  qjmjations. This last point will be the subject of further
though it is qualitatively well described by the mean _
field. Matching both theoretical results we expect that Tha authors want to thank to V. Griinfeld for a critical

the diffusivity dependence will appear only on the ratio g, ing of the manuscript and D. H. Zanette for fruitful
d = Dg/D4 while the reaction rates dependence Wi”discussions.

appear as the ratigzc/yap. We have computed,,
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